
REVIEW
published: 05 November 2019
doi: 10.3389/fonc.2019.01145

Frontiers in Oncology | www.frontiersin.org 1 November 2019 | Volume 9 | Article 1145

Edited by:

Jason Roszik,

University of Texas MD Anderson

Cancer Center, United States

Reviewed by:

Sarah Coupland,

University of Liverpool,

United Kingdom

Chandrani Chattopadhyay,

University of Texas MD Anderson

Cancer Center, United States

Takami Sato,

Thomas Jefferson University,

United States

*Correspondence:

Paolo Fagone

paolofagone@yahoo.it

Specialty section:

This article was submitted to

Cancer Immunity and Immunotherapy,

a section of the journal

Frontiers in Oncology

Received: 04 May 2019

Accepted: 15 October 2019

Published: 05 November 2019

Citation:

Basile MS, Mazzon E, Fagone P,

Longo A, Russo A, Fallico M,

Bonfiglio V, Nicoletti F, Avitabile T and

Reibaldi M (2019) Immunobiology of

Uveal Melanoma: State of the Art and

Therapeutic Targets.

Front. Oncol. 9:1145.

doi: 10.3389/fonc.2019.01145

Immunobiology of Uveal Melanoma:
State of the Art and Therapeutic
Targets

Maria Sofia Basile 1, Emanuela Mazzon 2, Paolo Fagone 1*, Antonio Longo 3,

Andrea Russo 3, Matteo Fallico 3, Vincenza Bonfiglio 3, Ferdinando Nicoletti 1,

Teresio Avitabile 3 and Michele Reibaldi 3

1Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy, 2 IRCCS Centro Neurolesi

Bonino Pulejo, C.da Casazza, Messina, Italy, 3Department of Ophthalmology, University of Catania, Catania, Italy

Uveal Melanoma (UM) represents the most common primary intraocular malignant tumor

in adults. Although it originates from melanocytes as cutaneous melanoma, it shows

significant clinical and biological differences with the latter, including high resistance to

immune therapy. Indeed, UM can evade immune surveillance via multiple mechanisms,

such as the expression of inhibitory checkpoints (e.g., PD-L1, CD47, CD200) and the

production of IDO-1 and soluble FasL, among others. More in-depth understanding of

thesemechanismswill suggest potential targets for the design of novel andmore effective

management strategies for UM patients.
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INTRODUCTION

Uveal melanoma (UM) is amalignant cancer of the eye that is thought to arise from themelanocytes
within the uveal tract of the eye. It differs from cutaneous melanoma (CM), which arises from skin
melanocytes, and has distinct clinical and biological features. UM, with an annual incidence of six
cases per million, is the most common primary intraocular malignant tumor in adults. It mainly
originates from the choroid (∼85%), while the remaining cases arise from the ciliary body (5–8%)
and the iris (3–5%) (1).

Cutaneous and uveal melanocytes have the same embryonic origin and cellular function,
however, they undergo different tumoral transformation processes (2). The majority of CMs
(∼80%) present mutations in BRAF, NRAS, and NF1 genes (2). Instead, in UM, the most common
mutations involveGNAQ/11 (83% of the cases) and recurrent alterations can be found on the BAP1
gene (∼40%) (2). CM shows several cytogenetic alterations, involving loss of chromosomes 4, 5, 6q,
8p, 9p, 10q, 11q, 12q, 14, 15, 16, 21, and 22 (3), and gain of 1q, 6p, 7, 8q, 18, and 20q (4, 5). In UM,
chromosomal aberrations mainly include monosomy 3 (50%) and 6p and 8q gain. UM tumors
with monosomy 3 and polysomy 8q have high metastatic risk and a poor prognosis (6, 7). Ludmil
and collaborators have shown that CM has the highest somatic mutation prevalence (8), while UM
has low somatic mutation rates (9). It is believed that a high mutational burden is predictive of the
response to immunotherapy (10), as the neoantigens that derive from tumor-specific mutations can
be targets for anti-tumor immune responses. Therefore, the reduced number of neoantigens onUM
cells may explain why immune-checkpoint inhibitors are insufficient in UM but can be effective
in CM. However, as a low mutational load may also bring the activation of neoantigen-specific
T cells (11, 12), it is reasonable to believe that the tumor microenvironment and intrinsic cancer
cell phenotypic patterns may be pivotal in the regulation of the ability of T cells to respond to
cancer-specific antigens.

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.01145
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.01145&domain=pdf&date_stamp=2019-11-05
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:paolofagone@yahoo.it
https://doi.org/10.3389/fonc.2019.01145
https://www.frontiersin.org/articles/10.3389/fonc.2019.01145/full
http://loop.frontiersin.org/people/676296/overview
http://loop.frontiersin.org/people/731827/overview
http://loop.frontiersin.org/people/164092/overview
http://loop.frontiersin.org/people/380369/overview
http://loop.frontiersin.org/people/774921/overview
http://loop.frontiersin.org/people/485293/overview
http://loop.frontiersin.org/people/360249/overview
http://loop.frontiersin.org/people/163378/overview


Basile et al. Uveal Melanoma: Immune-Escape Mechanisms and Targets

In this review, we will discuss key aspects of
the immunobiology of UM and potential novel
immunotherapeutic targets.

THE EYE: AN IMMUNE-PRIVILEGED SITE
FOR UVEAL MELANOMA?

The eye has been proposed to be an immunologically privileged
site, possibly providing UM with a protective niche. This
protection has been attributed to cell surface molecules and
soluble factors able to impair, weaken, or disturb the immune
system. The immune privilege of the eye is instrumental to
protecting ocular tissues and preserving vision from damage
that may occur following inflammatory reactions (13, 14). Both
physical and biochemical mechanisms maintains the immune
privilege of the eye (13, 15, 16). The intraocular compartments
are separated from the blood circulation by the blood-ocular-
barrier, which comprises the blood-aqueous barrier and the
blood-retinal barrier (15). The blood-aqueous barrier is made
up of tight junctions between the endothelial cells of the ciliary
blood vessels and between the lining epithelial cells (15). The
aqueous humor is a transparent and colorless medium that
is present in the anterior and posterior chambers of the eye.
The aqueous humor is secreted by the ciliary epithelium and
enters the posterior chamber. Afterwards, it flows around the
lens and the pupil into the anterior chamber. Finally, the
aqueous humor leaves the eye by passive flow at the anterior
chamber angle, in the supraciliary and suprachoroidal space,
through the choroidal vessels or through scleral pores (17, 18).
In the early seminal work by Taylor and colleagues (19), it was
found that primed T cells, activated in vitro in the presence of
the aqueous humor, produced lower levels of IFN-γ and IL-4
with generation of TGF-β-producing regulatory T cells. TGF-
β is an immunomodulatory cytokine primarily produced by
Th3 cells that exhibits multiple immunosuppressive properties
and has been shown to counteract immunoinflammatory and
autoimmune responses both in vitro and in vivo (20, 21). Recent
studies have indicated that, through its immunosuppressive
properties exerted in the tumor microenvironment, TGF-β
may play a pathogenic role in oncogenesis by suppressing
anti-cancer cell-mediated immune responses. On this basis,
much attention has recently been focused on the possibility
that specific inhibitors of TGF-β, such as antibodies, antisense
molecules, and small-molecule tyrosine kinase inhibitors, may
represent novel therapeutic approaches for the treatment of
certain forms of cancers, possibly including UM (22, 23). In
addition, apart from being rich in TGF-β, other studies have
demonstrated that the aqueous humor contains large amounts
of the pleiotropic cytokine Macrophage Migration Inhibitory
Factor (MIF), which promotes immune privilege by inhibiting
NK cell activity (24), though MIF possesses proinflammatory
properties that qualify it as an important mediator of several
autoimmune diseases such as multiple sclerosis and Guillain
Barrè syndrome (25, 26). Recent data also highlight that
MIF can activate multiple oncogenic pathways, including the
inhibition of p53, production of HIF-1α (Hypoxia-inducible

factor 1-alpha), and activation of the PI3K/Akt/mTOR pathway.
These observations have attracted much attention to the role of
MIF in the pathogenesis of several types of cancer, including
glioblastoma, melanoma, and head and neck cancer, among
others, and on the possible use of specific MIF inhibitors in these
diseases (27–30).

Other molecules that have been detected in the aqueous
humor and could dampen anti-tumor immune responses include
α-melanocyte-stimulating hormone (α-MSH), calcitonin gene-
related peptide (CGRP), vasoactive intestinal peptide (VIP), and
somatostatin, by which delayed-type hypersensitivity reactions
are suppressed and Treg cell activity is induced (13, 31, 32).

Finally, iris and ciliary body epithelial cells are able to
prevent T cell activation and proliferation via direct cell-to-cell
contact (33).

The absence of afferent lymphatics also limits the homing
of immune cells to and from the secondary lymphoid organs.
However, studies by Camelo and colleagues have shown that,
after intracameral and subconjunctival injection, antigens reach
the ipsilateral head and neck lymph nodes via the conjunctival
lymphatics, and that antigen administration into the anterior
chamber is internalized by ocular Antigen Presenting Cells
(APCs) and presented in a tolerogenic fashion in the spleen (34,
35). This is referred to as anterior chamber-associated immune
deviation (ACAID). In ACAID, eye-derived APCs promote the
expansion of tolerogenic B cells in order to induce invariant
natural killer T cells and antigen-specific Tregs. In particular,
afferent CD4+ Tregs act in the secondary lymphoid organs to
suppress the initial activation and differentiation of naïve T cells
into Th1 effector cells, while efferent CD8+ Tregs act in the
eye, inhibiting the delayed hypersensitivity responses [reviewed
by (36)].

Apparently, this condition of immune privilege should
promote the incidence of intraocular tumors; however, as
reported in the American Cancer Society 2008 statistics, UM is
about 15 times less frequent than CM. Despite this, it is likely the
UMmay receive an advantage from the ocular immune privilege
that, coupled to the acquisition of immune-regulatory properties,
could eventually result in clinically relevant tumors.

After leaving the eye, the ability of UM cells to express pro-
oncogenic molecules such as indoleamine dioxygenase-1 (IDO-
1), MIF, and PD-L1 (37–39) re-establish their immune privilege
and provide the possibility to set up metastatic disease.

Also, in contradiction with the immune surveillance
hypothesis, in the case of UM, the immune system seems to
promote cancer development, maintenance, and progression.
Indeed, the presence of Tumor-Associated Lymphocytes (TILs)
and Tumor-Associated Macrophages (TAMs) correlates with a
poor prognosis (40–42).

It is of note that the choroid is located outside of the above-
mentioned outer blood-retina barrier. Choroidal capillaries are
fenestrated and very leaky (43, 44); therefore, the choroidal space
is considered to be exposed to the systemic immune surveillance.
It is possible that, once the primary choroidal melanoma grows
and breaks the outer blood-retina-barrier, the tumor could utilize
the immune suppressive mechanisms of the affected eye to
tolerize the immune attacks against melanoma cells.
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IMMUNOBIOLOGY OF PRIMARY UM

UM cells express tumor-specific antigens, including
the Melanoma Antigen Gene (MAGE) family proteins,
premelanosome protein gp100, and tyrosinase (45–47), that are
recognized by elements of the immune system. Accordingly, in
vitro data show that circulating CD8+ CTL from UM patients
or from primary UMs are able to lyse UM cells (48–50). NK
cells are able to induce cytotoxicity in UM cell lines, such as
OCM-3 (32). However, both the innate and adaptive effector
immune responses can be circumvented by UM cells. Some of
these strategies are common to those that provide the immune
privilege to the eye. Indeed, the immune privilege is not absolute
nor permanent, and it can be overcome as is shown by the
development of uveitis and the rejection of corneal transplant.

On the other hand, preclinical data have demonstrated that
the intraocular transplantation of ultraviolet light (UV)-induced
tumors in syngeneic mice subjected to CTL-mediated rejection
and that the adoptive transfer of CD8+TILs in immune-deficient
mice challenged with intraocular UV-induced tumors exhibited
anti-cancer actions (51). Altogether, these data provide evidence
that UM cells put in place specific immune escape mechanisms
responsible for its progressive course and bad prognosis.

Resistance to Cell-Mediated Immune
Responses
Natural killer (NK) cells have been shown to control the growth
of liver metastases (52). Decreased tumor expression of Class I
MHCmolecules, ligands for NK inhibitor receptors, is associated
with longer metastasis-free survival (53), while the loss of NK
activator receptors (i.e., MIC-A and MIC-B) is associated with
tumor progression (54). Cytotoxic T lymphocytes (CTL) and
Natural Killer (NK) cells exert anti-tumor functions by inducing
apoptosis via the activation of the death receptors of the TNF
superfamily, including TNF-α, TRAIL, and FasL. However, UM
cells are resistant to FasL-induced apoptosis (55). Indeed, the
production of a soluble form of FasL from UM cells protects UM
cells from apoptosis as, by acting in an autocrine manner, it binds
Fas expressed by UM cells themselves, blocking the engagement
of Fas expressed on CTL and NK cells, which, given its trimeric
structure, is more than 1,000 times more efficient in inducing
apoptosis (55).

Moreover, as previously stated, the aqueous humor contains
TGF-β and MIF, which have profound inhibitory effects on NK
cells (24). In particular, TGF-β and MIF act sequentially to
dampen NK function as MIF provides immediate inhibition (24),
while TGF-β exerts long-term inhibitory function (56).

The presence of TILs and TAMs in UMs correlates with a
poor prognosis (40–42). Although this observation is unexpected
and contrasts with data from other cancer types, there
may be multiple reasons for this peculiar UM feature. One
possible explanation is that the production of pro-inflammatory
cytokines, and in particular IFN-γ, is able to induce the
upregulation of MHC class I molecules, which help UM cells to
escape from NK cytolysis and promote the expression of IDO-
1 and of inhibitory immune checkpoints, e.g., PD-L1. Another
and not mutually exclusive explanation is that the IL-2 secreted

by infiltrating lymphocytes may have a proliferative effect on UM
cells as well. It has been found that UM cells express the receptor
for IL-2 and IL-15, which may promote their survival and growth
and deplete essential factors for the action and proliferation of
both T and NK cells (57). Moreover, IFN-γ can sustain cancer
growth by inducing a downregulation of tumor antigens (58, 59).

However, the mechanisms regulating the cancer-
microenvironment crosstalk remain elusive. In a recent study by
Rothermel et al. (60), analysis of TILs cultures from cutaneous
and UM showed that UMTILs were predominantly CD4+, while
in CMwere mainly composed of CD8+ T cells. Also, the absence
of melanin pigmentation in the primary tumor was strongly
correlated with highly reactive UM TILs. It is believed that UM
cells interact with infiltrating cells and skew their phenotype
to an immune-regulatory type. Recent studies have identified
the presence of CD4+ and Forkhead box P3 (FoxP3)+ Treg
cells within primary UMs, and their frequency has been found
to correlate with metastatic dissemination (61, 62). In patients
with primary UM, while circulating anti-tumor CD3–CD56dim

NK cells and CD8+ and double-negative CD3+CD56+ NK-T
cells decrease, pro-tumoral ICOS+CD4+FoxP3+ Treg cells
increase (63), further supporting a role for Treg in tumor
progression. The striking correlation between tumor size and
high metastatic risk primary UMs infiltrated by CD8+ T cells
seems to suggest that UM may promote the generation of CD8+
Tregs (41, 64). Accordingly, Streilein and Niederkorn showed
that elimination of CD8+ Treg in a murine model of UM
was sufficient to induce tumor rejection (65). It has also been
found that patients with primary UMs and liver metastases
bear increased frequencies of circulating CD11b+CD15+
cells, which could represent immunosuppressive myeloid-
derived suppressor cells (63, 66). Interestingly, untreated
metastatic UM (and breast cancer patients, as well) have an
increased percentage of circulating CD127–CD25–CD4+ T
cells in the blood, as compared to healthy people. This cell
population, considered to be “chronically stimulated” CD4+
T cells, shares features observed in anergic cells from tumor-
bearing mice, i.e., reduced proliferation ability and diminished
cytokine production. Accordingly, these cells have significant
transcriptome overlapping that mirrors that of mouse anergic
cells (67).

An increased body of data is accumulating for IDO-1 as an
evading mechanism put in place by cancer to elude the immune
surveillance (68). A potential role for IDO-1 has already been
described in several tumor types, including colorectal cancer (69),
hepatocarcinoma (70), endometrial cancer (71), and CM (72). T
lymphocytes require the amino acid tryptophan for survival and
clonal expansion. The enzyme IDO-1 catalyzes the rate-limiting
step in tryptophan catabolism, which leads to the oxidation of
L-tryptophan to N-formylkynurenine. IDO-1 is expressed by the
retina, iris/ciliary body, lens, and cornea (73, 74). Although,
Chen and colleagues failed to observe the expression of IDO-
1 in both primary UM samples and in liver UM metastases
(75), UM cell lines exposed in vitro to IFN-γ, significantly
upregulate IDO-1 expression (75). These data suggest a potential
role for IDO-1 as an immune escape mechanism. Despite these
data, the role of IDO-1 in metastatic UM remains questionable,
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as specific anti-IDO-1 strategies have yet to prove efficacy in
UM patients.

Closely related to IDO-1, tryptophan 2,3-dioxygenase (TDO)
is a heme-containing enzyme, encoded by the TDO2 gene.
Terai et al. (76) have recently reported that TDO2 mRNA
is expressed by 62% of primary UM and correlates with a
poor prognosis. Also, the Authors show that TDO expression
is upregulated by 3.5-fold upon in vitro stimulation of UM
cells with recombinant TNF-alpha. These observations point
to a complementary and, possibly, overlapping role of TDO
and IDO-1 in the immune-evading strategies of advanced UM,
and, therefore, novel pharmacological interventions aimed at
inhibiting the kynurenine pathway, targeting both enzymes
simultaneously, are strongly warranted.

Inhibitory Immune Checkpoints in Primary
Uveal Melanoma
The immune system uses a diverse set of antigens to distinguish
tumor cells from their healthy cells. The amplitude of the
T cell response is regulated by both co-stimulatory and
inhibitory molecules, known as “immune checkpoints,” which
are essential for the maintenance of self-tolerance. In cancer,
multiple inhibitory checkpoints may be modulated, including
programmed death ligand-1/2 (PD-L1/2), CD47, Galectin 9, and
TNFRSF6B, for which ligands expressed on T cells or APCs may
act synchronously or sequentially to promote overall suppression
of the immune responses (77). Robertson et al. (78), by
performing a multiplatform analysis of 80 primary UM samples
from the TGCA dataset, identified four distinct UM subtypes,
two with poor prognosis monosomy of chromosome 3 (named
M3) and two with better prognosis disomy of chromosome 3
(named D3). Deconvolution analysis of both DNA methylation
and RNA-seq data revealed that a CD8+ T cell infiltrate was
present in ∼30% of M3 samples, whereas it was almost absent
in D3 samples. Also, they found that genes co-expressed with
CD8A were associated with immunosuppression (IDO1, TIGIT,
IL6, IL10, and FOXP3), T cell migration (CXCL9 and CXCL13),
cell-mediated cytotoxicity (PRF1 and GZMA), and interferon-γ
signaling (IFNG, IFNGR1, and IRF1). Moreover,HLA expression
was higher in M3 samples as compared to D3 samples and
correlated with CD8A expression (78). Accordingly, Maat and
colleagues, in a comparative immunohistochemical analysis of
M3 andD3 samples, observed thatM3 tumors have a significantly
higher number of infiltrating macrophages and express higher
levels of MHC class I and II (79).

Elucidation of the complex network of stimulatory and
inhibitory signals that contribute to immune regulation and its
dysregulation in cancer may lead to more effective therapeutic
opportunities to enhance anti-tumor immune responses.

PD-1/PD-L1

PD-1 is expressed on T lymphocytes and has the two ligands,
PD-L1 (also known as B7-H1 or CD274) and PD-L2, that
belong to the B7 superfamily. Both are expressed on APCs and
cancer cells. A lack of expression of PD-L1 has been observed
in primary UM. Yang and collaborators (80) found that PD-
L1 was not expressed by primary UM in situ, and, similarly,

Kaunitz et al. (81) observed that only 10% of UM samples
expressed PD-L1. Interestingly, when present, the expression of
PD-L1 on tumor cells was mainly associated with the presence of
CD8+ T-lymphocytes, consistent with an adaptive mechanism
of expression. This is in line with the observation that, in UM cell
lines, derived from primary tumors PD-L1 and PD-L2, expression
significantly increased under inflammatory conditions. Also, PD-
L1 was found to inversely correlate with OS, PFS, and thickness
of the tumor (82).

CD47

CD47 is an immunoglobulin-like domain containing protein
expressed by the tumor cell surface that inhibits macrophage
phagocytosis by binding the signal regulatory protein α (SIRPα)
on APCs. CD47 downregulation is associated with macrophage
phagocytosis of senescent or damaged cells. On the contrary,
upregulation of CD47 inhibits phagocytosis. The interaction
between CD47 and SIRPα activates the tyrosine phosphorylation
of the cytoplasmic region of SIRPα, thus recruiting the
tyrosine phosphatase, SHP-2, which acts by dephosphorylating
its substrates, and functions as a negative signaling regulator.
CD47 is overexpressed in many different cancer cell types and
represents an independent negative prognostic factor (83, 84).
We have shown that UM cells lines dramatically upregulate
CD47 expression after incubation with an activated T cell
supernatant, and that higher levels of CD47 were associated
with significantly lower disease-free survival time. Accordingly,
the expression of CD47 in primary UM samples was an
independent predictor of recurrence disease (82). In UM, we
also found that CD47 levels did not significantly change in the
different stages of the disease, and that patients with the lowest
expression of CD47 had improved progression-free survival
(PFS), even after correcting for the presence of BAP1, GNAQ,
andGNA11mutations (85). Interestingly, deconvolution analysis
of infiltrating immune cell populations showed a significantly
higher proportion of CD4+ and CD8+ T cells in patients
with high CD47 levels, with the most represented populations
being the Th2, Treg, and CD8+ TCM cells (85). Finally, we
demonstrated that a large number of transcripts are differentially
expressed between tumors expressing high and low levels of
CD47, with a significant enrichment of interferon IFN-alpha
regulated genes (85).

CD200

CD200 (also known as OX-2) is a type 1a glycoprotein, capable
of modulating the immune system via its inhibitory receptor
CD200R, which is expressed on both myeloid and lymphoid
cells. It contains two extracellular immunoglobulin domains and
a small intracellular domain with no known signaling motif.
CD200R expression, the cognate ligand for CD200, is mainly
restricted to the myeloid lineage of cells (86). Accordingly,
CD200-deficient mice show hyperactivation of macrophages and
enhanced inflammation in autoimmune disease models (87).
CD200 has been found to be a good predictor of recurrent disease
in UM (82).

Frontiers in Oncology | www.frontiersin.org 4 November 2019 | Volume 9 | Article 1145

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Basile et al. Uveal Melanoma: Immune-Escape Mechanisms and Targets

Gal9 and TNFRSF6B

A potential prognostic role for GAL9 and TNFRSF6B has also
been recently evaluated (82). Higher levels of expression of
these proteins have been associated with a better PFS. Galectin
9 is protein encoded by the gene GAL9 that, interacting
with its cognate receptor, TIM-3, is able to inhibit Th1
responses, triggering the apoptosis of CTLs and increasing Tregs
suppressive activity. Conversely, it was shown in a preclinical
model of melanoma that GAL9 increased the NK-mediated
cytolysis of cancer cells. Accordingly, a recent meta-analysis
on solid cancer patients showed that higher levels of GAL9
correlated with improved OS, reduced depth of invasion, and
negative distal tumor dissemination (88).

TNFRSF6B belongs to the tumor necrosis factor receptor
superfamily and functions as a decoy receptor for FasL, tumor
necrosis factor-like ligand 1A (TL1A), and lymphotoxin analogs
(LIGHT). TNFRSF6B expression correlated with reduced OS in
patients with solid tumors, but it did not influence recurrence-
free survival (89). Along the same lines, higher levels of
TNFRSF6B were associated with longer PFS in UM (82).

Nitric Oxide

Nitric oxide (NO) is an endogenous gas produced from
neural, constitutive, or inducible nitric oxide synthases (NOS)
from L-arginine. Together with Hydrogen Sulfide and Carbon
Monoxide, NO represents the main gaseous endogenous system
in the body. It is of interest that recent data indicate that these
gas-signaling molecules play critical roles in regulating signal
transduction and cellular homeostasis. Interestingly, through
various administrations, these molecules also exhibit potential
in cancer treatment (90, 91). As, out of the three gases, the
role of NO in cancer and UM is the most widely known,
we will briefly review the literature of NO in UM. NO plays
pleiotropic biological functions ranging from blood pressure
homoeostasis to the regulation of responses to infectious
agents and modulation of immune responses and oncogenesis.
Depending on the concentration and location of the effects,
NO may often exert dichotomic roles in the regulation of the
same process (91). In the setting of cancer, depending on the
type of tumor and doses and location of its action, NO has
been shown to exert both anti- and pro-oncogenic properties
(92, 93). As a matter of fact, expression of iNOS has been
shown to represent a negative prognostic factors for multiple
types of cancer, including primary UM (94, 95). In particular,
recent evidence seems to indicate that NO may act as an
addition local immune checkpoint inhibitor, favoring immune
evasion of the tumor, by modulation of the acquisition of stem
cell-like capacities, the metabolic reprogramming of tumor-
infiltrating immune cells, and the induction of myeloid-derived
suppressor cells that deplete arginine, via the iNOS pathway, and
consequently inhibit T cell function (96, 97).

However, despite these above-mentioned data that strongly
support the concept that endogenous NO represents a powerful
oncogenic mediator in the maintenance and progression of
UM, data by ourselves and others indicate that exogenous
NO-derivatives of parental drugs possess enhanced anticancer

properties in preclinical models of blood cancer, bladder and
prostate cancer, and cutaneous melanoma (98–102).

Dual strategies, therefore, could be envisaged aimed at
targeting the NO-producing enzymes and the signaling pathway
mediated by NO in UM. Further studies are needed to highlight
this concept, along with an evaluation of the other endogenous
gases and their donors, H2S in particular, in UM.

Immunobiology of UM Liver Metastasis
The principal organ for UM metastasis is the liver, which is
involved in up to 87% of patients with metastatic disease. The
liver is often the first metastatic site in UM, and in almost
40% of patients it is the only site of systemic metastasis. Unlike
CM, where metastasis to the central nervous system (CNS)
occurs in 40–60% of cases, only 4–15% of UM spread to the
CNS. Holfort et al. (103) found that UM patients with CNS
metastasis either had multiple organ metastasis, which included
the CNS, or showed selective CNS metastasis, and, interestingly,
a longer interval from primary tumor to CNS metastasis was
observed in patients with selective CNS metastasis as compared
with the multiple organ metastatic group (103). The peculiar
metastatic pattern of UM cannot be explained only by circulation,
as the lungs are the first organ that UM cells encounter during
their hematogenous spreading. Other factors should therefore
be involved, although the exact mechanisms that guide the
establishment of liver metastasis in UM remain speculative.

It is believed that the homing of UM cells to the liver is
dependent on the expression of the CXCR4, the chemokine
receptor for CXCL12, which is highly expressed in the liver
(104). Recent data have also demonstrated that exosomes
from UM cells expressing integrin αvβ5 are taken up by liver
cells, inducing the establishment of a pre-metastatic niche that
promote liver tropism (105, 106). However, it is likely that
the immunological microenvironment of the liver may favor
UM metastatic growth, protecting cancer cells from cytotoxic
immune responses [reviewed by (107)]. The Liver must be
considered an immuno-modulatory organ as it is continually
exposed to exogenous antigens, such as food allergens and
low levels of lipopolysaccharide, from the gut. The peculiar
anatomy of the liver promotes both direct and indirect priming
of lymphocytes, and it can modulate the immune response to
pathogens and tumor cells through its ability to induce antigen-
specific tolerance. Several highly specialized cellular types are
located within the sinusoidal structure and in the parenchyma
of the liver, including liver sinusoidal endothelial cells (LSECs),
Kupffer cells (KCs), NK cells, andNKT cells. LSECs are capable of
receptor-mediated phagocytosis and can present blood-derived
antigens to both CD4+ T and CD8+ T cells. Upon stimulation,
LSECs also produce the chemokines, CXCL9 and CXCL10, that
recruit T lymphocytes. On the other hand, LSECs may express
the inhibitory immune checkpoint PD-L1, thus controlling T cell
activation (108–112).

KCs, the most abundant tissue macrophages in the body,
reside within the sinusoidal vascular space and are able to
recognize microorganisms and tumor cells via the C-type lectin
receptor Dectin-2 (113). However, KCs may also produce
soluble factors, such as IL-10 and prostaglandin E2 (PGE2),
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that induce a downregulation of MHC class II expression and
of the costimulatory molecules, CD80 and CD86, on LSECs,
dampening antigen presentation to Helper T cells (114).

The liver also hosts diverse populations of both resident and
transiting lymphocytes that are strikingly different from those
observed in other tissues and in the circulation. Approximately
half of the population of hepatic lymphocytes are represented
by NK cells. Liver-resident NK cells are compose of CD49+
NK cells and Eomeshi NK cells, the latter located in the
sinusoidal space and accounting for 50% of human liver NK
cells (115). NK cells respond to a variety of cell-surface ligands
expressed by damaged, tumoral, or infected cells, and exert
direct cytotoxicity by releasing cytotoxic granules containing
perforin and granzymes (116). NKT cells represent an important
immunomodulatory population of the liver. These cells have
a restricted TCR repertoire and are able to respond to lipid
antigens. However, NKT cells may sustain both inflammatory
and anti-inflammatory responses, producing cytokines, such as
IFN-γ, IL-4, and IL-17, based on the type of the activating signal
(116). NK cells are thought to control metastases growth of UM
(117), while NK T cells are able to suppress the cytotoxicity of NK
cells via bone marrow-derived cells (118).

Despite the increasing understanding of the immune-
phenotypic architecture of the liver, the immune suppressive
pathways involved in metastatic UM and the liver tumor
microenvironment remain largely elusive. Krishna et al. (119)
have recently characterized the immune cell infiltrates in liver
metastatic UM and found that CD4+ TILs were located within
the tumor, whereas CD8+ TILs tended to be peritumoral. Also,
CD68+ and CD163+ TAMs of “indeterminate” morphology
were observed, suggesting the presence of protumorigenic
M2 macrophages (119). It is worth noting that a meta-
analysis of the transcriptomic features of metastatic UM
samples (120) found no differences in the expression of genes
involved in immune evasion (including HLAmolecules, immune
checkpoints, cytokines, and anti-inflammatory factors). Hence,
we may speculate that intrinsic transcriptomic features of
UM cells allow the development and progression of hepatic
metastatic disease.

Considering the pre-existing immune tolerance against
UM cells, the low mutational burden, and the hepatic
immune-modulating microenvironment, it is reasonable that
the combination of these factors may promote the more
frequent establishment of metastasis in the liver as compared to
other organs.

IMMUNOTHERAPY IN
ADVANCED/METASTATIC UVEAL
MELANOMA

Cancer immunotherapy differs from conventional
chemotherapeutic agents in that it enhances the immune
responses toward tumor cells rather than affecting cancer cell
survival and proliferation via radio- or chemical-induced
toxicity. Immunotherapy encompasses several subtypes
of treatment modality, including vaccination, cell-based

therapies using patients’ immune cells, and immunomodulatory
agents, among which anti-checkpoint inhibitor therapies have
been successful in some solid tumors. A list of the current
immunotherapy trials enlisted in ClinicalTrials.gov is presented
in Table 1.

The immune-based therapies that have improved the overall
survival (OS) of CM patients have not yet led to significant
clinical benefits in unresectable/metastatic UM patients (121).

For example, while the immunomodulatory antibodies against
the antigen associated with cytotoxic T lymphocytes 4 (CTLA-
4) and PD-1/PD-L1 have significantly ameliorated the course of
metastatic CM, they have failed when translated to UM patients
(121). A multicenter retrospective study on UM patients treated
with anti-CTLA-4 or anti-PD-1 mAbs revealed that the adjusted
OS of patients with immunotherapy was not significantly
different from that of patients treated with chemotherapy,
with an unadjusted median OS of 13.38 and 11.02 months,
respectively (122). Despite this, the increasing understanding
of the immunology of cancer may in the future suggest the
possibility of novel pharmacological strategies. Since both CM
and UM originate from the melanocyte as same precursor, there
might be subsequent factors of differentiation or local factors that
are responsible for the different responses to immunomodulatory
approaches. On the other hand, the first prospective study of
ipilimumab in high-risk primary UM in an adjuvant setting
showed that DMFS at 36 months was 80%, as compared to a
historical DMFS of 50%; in two of 10 patients, however, treatment
discontinuation was required due to grade 3–4 toxicity (123).

The PD-1/PD-L1 pathway is responsible for inhibiting T cell
activation in the periphery. To date, the largest clinical trial using
anti-PD-1 receptor monoclonal antibodies was conducted on
58 metastatic UM patients treated with either pembrolizumab,
nivolumab, or atezolizumab. Of the 56 evaluable patients, only
3.6% obtained partial responses and 8.9% presented a stable
disease (124). Also, in a prospective observational cohort single-
arm study investigating the efficacy and safety of pembrolizumab
as first-line therapy for metastatic UM patients, Rossi et al. found
that the efficacy of pembrolizumab does not seem particularly
different when compared to other agents for metastatic UM,
although responding patients had a remarkable disease control
(125). This is in sharp contrast to the response observed in
patients with CM, where pembrolizumab significantly increased
recurrence-free survival as compared to placebo (75.4% vs. 61.0%
for the 1-year rate of recurrence-free survival, respectively) (126).

Prospective studies on anti-PD-1 therapy, alone or in
combination with other agents, are currently ongoing (127).
Disappointing results have also been obtained with ipilimumab,
the anti-CTLA-4 antibody. In a retrospective study on 82 Stage 4
UM patients who received ipilimumab, only 5% had an objective
response and 29% had stable disease exceeding 3months. Median
OS was 6.0 months and median PFS was 3.6 months, with a 31
and 11% 1-year OS and PFS, respectively (128). Again, this is in
strong contrast with data from patients with stage III CM, where
ipilimumab was associated with a 5-year rate of recurrence-free
survival of 40.8%, as compared with 30.3% in the placebo group,
and to a rate of OS at 5 years of 65.4%, as compared with 54.4%
in the placebo group (129).
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TABLE 1 | Clinical trials on immunotherapy in uveal melanoma.

Title Status Intervention NCT Number

IMMUNE CHECKPOINT INHIBITOR-BASED INTERVENTIONS

Yttrium90, ipilimumab, and nivolumab for uveal melanoma with liver metastases Recruiting SIR-Spheres® yttrium 90; ipilimumab; nivolumab NCT02913417

Study of immunotherapy plus ADI-PEG 20 for the treatment of advanced uveal

melanoma

Recruiting ADI PEG20; nivolumab; ipilimumab NCT03922880

Study of AntiCTLA4 in patients with unresectable or metastatic uveal melanoma Completed CP-675,206 NCT01034787

Nivolumab and ipilimumab in treating patients with metastatic uveal melanoma Active, not recruiting Ipilimumab; nivolumab NCT01585194

Trial of nivolumab in combination with ipilimumab in subjects with previously

untreated metastatic uveal melanoma

Active, not recruiting ipilimumab; nivolumab NCT02626962

Efficacy study of pembrolizumab with entinostat to treat metastatic melanoma of

the eye

Active, not recruiting Pembrolizumab; etinostat NCT02697630

CAVATAK® and ipilimumab in uveal melanoma metastatic to the liver (VLA-024

CLEVER)

Completed CVA21; ipilimumab NCT03408587

Pembrolizumab in treating patients with advanced uveal melanoma Active, not recruiting Pembrolizumab NCT02359851

Ipilimumab and nivolumab with immunoembolization in treating participants with

metastatic uveal melanoma in the liver

Recruiting Ipilimumab; nivoleumab; embolization therapy NCT03472586

Nivolumab with or without ipilimumab or relatlimab before surgery in treating

patients with stage IIIB–IV melanoma that can be removed by surgery

Recruiting Ipilimumab; nivolumab; relatlimab; therapeutic

conventional surgery

NCT02519322

Radioembolization and ipilimumab in treating patients with uveal melanoma with

liver metastases

Terminated Ipilimumab; yttrium Y 90 glass microspheres NCT01730157

Intravenous and intrathecal nivolumab in treating patients with leptomeningeal

disease

Recruiting Nivolumab NCT03025256

A study of XmAb®23104 in subjects with selected advanced solid tumors

(DUET-3)

Recruiting XmAb®23104 NCT03752398

A safety and tolerability study of INCAGN02385 in select advanced malignancies Recruiting INCAGN02385 NCT03538028

A safety and tolerability study of INCAGN02390 in select advanced malignancies Recruiting INCAGN02390 NCT03652077

Nab-paclitaxel and bevacizumab or ipilimumab as first-line therapy in treating

patients with stage IV melanoma that cannot be removed by surgery

Active, not recruiting Bevacizumab; ipilimumab; nab-paclitaxel NCT02158520

Glembatumumab vedotin, nivolumab, and ipilimumab in treating patients with

advanced metastatic solid tumors that cannot be removed by surgery

Withdrawn Glembatumumab vedotin; ipilimumab; nivolumab NCT03326258

CELL-BASED INTERVENTIONS

Messenger ribonucleic acid (mRNA) transfected dendritic cell vaccination in high

risk uveal melanoma patients

Terminated Autologous dendritic cells electroporated with mRNA NCT00929019

Dendritic cells plus autologous tumor RNA in uveal melanoma Recruiting Autologous dendritic cells loaded with autologous tumor

RNA

NCT01983748

Immunotherapy using tumor infiltrating lymphocytes for patients with metastatic

ocular melanoma

Terminated Aldesleukin; cyclophosphamide; fludarabine; young

tumor infiltrating lymphocytes (TIL)

NCT01814046

Adoptive transfer of tumor infiltrating lymphocytes for metastatic uveal melanoma Recruiting Tumor infiltrating lymphocytes (TIL) NCT03467516

Dendritic cell vaccination during lymphoid reconstruction Completed Autologous dendritic cells (DC); fludarabine; autologous

lymphocyte infusion (ALI)

NCT00313508

(Continued)
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TABLE 1 | Continued

Title Status Intervention NCT Number

CYTOKINE-BASED INTERVENTIONS

PEG-interferon Alfa-2b and thalidomide in treating patients with recurrent or

metastatic melanoma

Completed PEG-interferon alfa-2b; thalidomide NCT00238329

Dacarbazine and recombinant interferon Alfa-2b in treating patients with primary

uveal melanoma with genetic imbalance

Completed Recombinant interferon alfa-2b; dacarbazine NCT01100528

Temozolomide and interferon alfa in treating patients with stage III or stage IV

melanoma

Completed Pegylated interferon alfa; temozolomide NCT00027742

Interferon beta in treating patients with metastatic cutaneous melanoma or

ocular melanoma

Completed Leuprolide; GP100: 209-217(210M) peptide; MAGE-3

peptide; recombinant interferon beta; recombinant

human thrombopoietin; etoposide; ifosfamide; G-CSF

NCT00254397

VACCINE-BASED INTERVENTIONS

Vaccine therapy in treating patients with stage III or stage IV melanoma that

cannot be removed by surgery

Completed Incomplete Freund’s adjuvant; multi-epitope melanoma

peptide vaccine; sargramostim

NCT00089206

Safety and activity of controllable PRAME-TCR therapy in previously treated

AML/MDS or metastatic uveal melanoma

Active, not recruiting BPX-701; rimiducid NCT02743611

Vaccine therapy in treating patients with melanoma of the eye Terminated MART-1 antigen; NA17-A antigen; gp100 antigen;

tyrosinase peptide

NCT00036816

Safety and immunogenicity of a melanoma DNA vaccine delivered by

electroporation

Completed Xenogeneic tyrosinase DNA vaccine NCT00471133

Vaccine therapy in treating patients with metastatic melanoma Completed MART-1 antigen; gp100:209-217(210M) peptide

vaccine; tyrosinase peptide

NCT00334776

Vaccine therapy in treating patients with stage IIB, stage IIC, stage III, or stage IV

melanoma

Completed Mouse gp100 plasmid DNA vaccine NCT00398073

Vaccine therapy in treating patients with advanced melanoma Completed Incomplete Freund’s adjuvant; multi-epitope melanoma

peptide vaccine; tetanus toxoid helper peptide

NCT00705640

Vaccine therapy in treating patients with stage III or stage IV melanoma Terminated MART-1 antigen; gp100 antigen; incomplete Freund’s

adjuvant; progenipoietin; tyrosinase peptide

NCT00005841

Vaccine therapy in treating patients with stage IIC-IV melanoma Completed gp100 antigen; tyrosinase peptide; recombinant

MAGE-3.1 antigen; multi-epitope melanoma peptide

vaccine; incomplete Freund’s adjuvant; montanide ISA

51 VG; agatolimod sodium

NCT00085189

COMBINED IMMUNOTHERAPY INTERVENTIONS

Autologous CD8+ SLC45A2-specific T lymphocytes with cyclophosphamide,

aldesleukin, and ipilimumab in treating participants with metastatic uveal

melanoma

Recruiting Aldesleukin; autologous CD8+ SLC45A2-specific T

lymphocytes; cyclophosphamide; ipilimumab

NCT03068624

Safety and efficacy of IMCgp100 vs. investigator choice in advanced uveal

melanoma

Recruiting IMCgp100; dacarbazine; ipilimumab; pembrolizumab NCT03070392

Vaccine therapy and monoclonal antibody therapy in treating patients with stage

IV melanoma

Completed gp100 antigen; incomplete Freund’s adjuvant; ipilimumab NCT00032045

Monoclonal antibody therapy and interleukin-2 in treating patients with

metastatic melanoma

Completed Aldesleukin; ipilimumab NCT00058279

Trial of radiation and gene therapy before nivolumab for metastatic non-small cell

lung carcinoma and uveal melanoma

Recruiting ADV/HSV-tk; valacyclovir; SBRT; nivolumab NCT02831933

(Continued)
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2 Tremelimumab, an anti-CTLA-4 antibody, has also been

tested in a Phase II study on 11 advanced UM patients who had
not previously received other immunotherapy drugs. None of
them showed clinical benefit (130).

In a Phase II multicenter single-arm open-label study
of nivolumab in combination with ipilimumab (NIVO+IPI)
in untreated patients with metastatic UM (Clinical trial
identification EudraCT:201500442915), ORR was 12%, with
disease stabilization in 52% of patients and a Disease Control
Rate of 64% (95% CI 50.7–77.3). With a median follow-up of
7.06 months, PFS was 3.27 months and the median OS was 12.7
months, showing that the combination of NIVO+IPI is a feasible
option for UM patients (131). Also, in another single-center trial,
sequential/concomitant immune-checkpoint inhibitor treatment
produced a longer median OS than single-agent ipilimumab
or anti-PD1, with a median OS of 23.7 months (sequential
ipilimumab and anti-PD-1) vs. single-agent ipilimumab (13.8
months) and single-agent PD-1 (14.7 months) (132).

Accordingly, in a retrospective case series of eight patients
treated with ipilimumab and nivolumab combination along
with transarterial chemoembolization (TACE) followed by
nivolumab maintenance and monthly TACE procedures, two
patients showed a partial response, four had stable disease,
and the remaining two patient had disease progression
(133). Along the same lines, in a preliminary retrospective
case series using Yttrium-90 transarterial radioembolization
(TARE) and immunotherapy (either ipilimumab, nivolumab, or
pembrolizumab) for UM hepatic metastases, it was found that
TARE in addition to immunotherapy is safe and effective (134).

TILs treatment has given promising results in metastatic
UM, but no definite results have been yet achieved. In a
Phase II clinical trial on 21 patients treated with TILs therapy
(NCT01814046), seven of 20 patients showed objective tumor
regression. On the other hand, when fewer than 3% of tumor-
reactive T cells, fewer than 2 × 109 tumor-reactive T cells,
or low tumor-induced IFN-γ release were observed, patients
underwent poor clinical responses (135). This study suggests
that adoptive transfer of TILs with threshold production
of IFN-gamma could promote objective tumor regression,
but more effort is needed to increase the percentage of
responding patients.

Another promising immunotherapeutic approach is
represented by the use of the bispecific antibody IMCgp100.
IMCgp100 binds the melanocyte protein gp100 on one end
and is constituted by an anti-CD3 single-chain variable
fragment on the other end. Therefore, IMCgp100 is able to
recognize melanoma cells and contextually activate T cells
responses, leading to tumor cytolysis. In two Phase I trials, i.e.,
NCT01211262 and NCT2570308, IMCgp100 treatment was
associated with prolonged disease stabilization with a 1-year OS
of 73%. Interestingly, IMCgp100 treatment induced an increase
in the percentage of infiltrating PD-1+/CD8+ lymphocytes
and an upregulation in PD-L1 expression, suggesting the utility
of a combinatorial/sequential treatment regime with immune
checkpoint inhibitors (136).

The potential therapeutic value of current available
immunotherapeutics will be dissected in the near future,
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FIGURE 1 | Immune-escape mechanisms in Uveal Melanoma.

following the results of the several ongoing clinical trials.
However, the relatively low number of patients with UM and the
extremely aggressive nature of this cancer hinders the possibility
of easily deciphering the actual potential of immune-based
therapies. Also, we should avoid the misconception that the
failure of a target-specific approach is synonymous with absence
of biological relevance of the selected targets. The failure of a
treatment may be due to intrinsic properties of the drug used
(e.g., issues with its pharmacokinetics and pharmacodynamics)
as well as to the presence of overlapping and/or redundant
pathways that may function as a compensatory mechanism
to allow tumor growth and progression, hence the need for
combining pre-existing therapies. The potential advantages of
a combinatory treatment are 2-fold. On one hand, it may have
higher efficacy and overcome resistance coming from potential
compensatory mechanisms; on the other hand, it will allow
the downscaling of the doses of the drugs used, with a possible
reduction of the associated toxic adverse effects. Notably, in a
case report by Afzal and colleagues, a patient with metastatic
UM treated with a combination of ipilimumab and nivolumab,
following the progression with the single-agent, nivolumab,
demonstrated a durable response without recurrence for more
than 22 months after treatment (137).

CONCLUSIONS

Metastatic UM still represents an unmet medical need as there
is no current approved treatment able to significantly increase
the OS in patients. Chemotherapy has not proven successful
and current immune-based therapies, despite the encouraging
results coming from CM, have had unsatisfactory results. UM
cells evade immune responses via several mechanisms that inhibit
both the innate and adaptive immune system (Figure 1). It is
therefore of the utmost importance to increase the understanding
of the mechanisms put in place by UM to evade the immune
surveillance in order to develop novel therapeutic strategies. It
is likely that simultaneously targeting multiple immune-escape
mechanisms may give an opportunity for the treatment of
these patients. This, in fact, would allow them to overcome the
unfavorable effects of boosting the immune responses, which
in turn induce the establishment of additional immune-evading
strategies, such as the upregulation of IDO-1, CD47, PD-L1,
and MHC molecules. Promising results may be obtained, for
instance, by the combination of TILs in association to anti-CD47
treatment or IDO-1 inhibition. Indeed, TILs-based therapies are
currently ongoing and promising, but only partial responses are
being observed. Monoclonal antibodies targeting CD47 are also
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under investigation in two Phase I trials on advanced solid and
hematologic cancers (NCT02678338 and NCT02367196). The
successful completion of these trials will provide more paths to
follow in the search for novel and more effective management
options for UM patients. Though not even preclinical proof
of concept efficacy has so far been generated, with other
“pathogenic”-tailored therapeutic approaches it can be expected
that the emerging families of specific inhibitors of TGF-β (138)
andMIF (139) also have the potential to be effective in some cases
of UM.
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