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Natural compounds are highly effective anticancer chemotherapeutic agents, and the

targets of plant-derived anticancer agents have been widely reported. In this review,

we focus on the main signaling pathways of apoptosis, proliferation, invasion, and

metastasis that are regulated by polyphenols, alkaloids, saponins, and polysaccharides.

Alkaloids primarily affect apoptosis-related pathways, while polysaccharides primarily

target pathways related to proliferation, invasion, and metastasis. Other compounds,

such as flavonoids and saponins, affect all of these aspects. The association between

compound structures and signaling pathways may play a critical role in drug discovery.

Keywords: natural active compounds, signaling pathway, cancer, polyphenol, alkaloid, saponin, polysaccharide

INTRODUCTION

In 2018, an estimated 9.6 million deaths were caused by cancer, and cancer is anticipated
to be the leading cause of death worldwide in the twenty-first century (1). Therefore, cancer
prevention remains an innovative area of anticancer research, in addition to cancer therapy. The
mechanisms of aberrant signal transduction pathways in cancer and the impacts of these pathways
on tumorigenesis, apoptosis, andmetastasis have been increasingly revealed due to intensified study
(2). Searching for targeted molecules that can regulate signal transduction has recently emerged as
a globally popular research area in biomedicine.

Herbal medicines, such as Chinese medicines, are naturally exceptional at ameliorating many
human diseases. Increasing numbers of new drugs with pharmacological activity have been
discovered due to the modernization of herbal medicine. The anticancer agents vincristine, taxol,
and vinblastine have been used for their anticancer effects in many countries (3). Moreover, other
promising anticancer agents are available, including arteannuin (4), quercetin (5), and tetrandrine
(6). Alkaloids and polyphenols are significantly dominant among cancer therapeutics (7, 8).
Recently, the targets and mechanisms of plant-derived anticancer agents have been widely reported
(9). In this review, we will focus on advances in knowledge about the signaling pathways affected
by plant-derived natural products.

POLYPHENOLS

Polyphenols are particularly ubiquitous in vegetables, fruits, and other foods. Thousands
of polyphenols have been identified (10), and these compounds have broad-spectrum
pharmacological activities including anticancer effects. Polyphenols can be classified by their
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TABLE 1 | Classifications of polyphenols.

carbon units Classifications Components

C6-C3-C6 Flavonoids Chrysin, silibinin

C6-C1-C6 Xanthones α-mangostin

C6-C2-C6 Stilbenes Resveratrol

C6-C3-C3-C6 Lignans Podophyllotoxin

C6-C3-C1-C3-C6 Curcuminoids Curcumin

chemical structures into several classes such as flavonoids,
xanthones, stilbenes, lignans, and curcuminoids (Table 1) (11–
14). Many natural polyphenols have cytostatic and apoptotic
properties because of their antioxidant characteristics (11).
The anticancer effects of polyphenols depend not only on
their chemical structure and concentration but also on the
type of cancer. Lignans considered to be phytoestrogens are
bioactive compounds exhibiting various anticancer properties,
such as apoptosis induction and tumor growth reduction (15).
Xanthones, such as α-mangostin, mediate cytotoxicity mainly
via cell cycle arrest and reactive oxygen species (ROS)-induced
apoptosis (16). The anticancer effects and molecular mechanisms
of polyphenols are reported to be associated with their chemical
constitution which is necessary for its anticancer activities,
such as the C-3 prenylation of benzoxanthone-type prenylated
flavonoids, C-1 hydroxy group and isoprenyl group at C-8
of prenylated xanthones, the C-2 carbonyl group, C-4 prenyl
group and pyran ring connected at the C-2 and C-3 of
caged xanthones (9). Anticarcinogenic activities of polyphenols
include suppressing the proliferation, differentiation, metastasis,
and angiogenesis of various kinds of cancer cells through
inhibiting several kinases involved in signal transduction (17–
20). Polyphenols can bind and cross cell membranes easily
and trigger various pathways involving microRNAs (miRNAs),
caspases, B cell lymphoma 2 (Bcl-2) family proteins, nuclear
factor (NF)-κB, epidermal growth factor (EGF)/epidermal
growth factor receptor (EGFR), phosphatidylinositol-3-kinase
(PI3K)/Akt, mitogen-activated protein kinase (MAPK) (Table 2).

MicroRNAs
MicroRNAs (miRNAs) are small non-coding RNAs (NC-RNAs)
and regulate gene expression via binding to 3′ untranslated
regions (UTRs) of target mRNA (44). Approximate 1,500miRNA
have been identified in the human (45). Oncogenic miRNAs
have been identified in many kinds of cancers such as miR-7-
1, miR-21, miR-92, miR-122, miR-125b, miR-155, miR-330 (46).
It is indicated miRNAs are critical in cancer cell proliferations,
differentiation, apoptosis, and invasion through the regulation of
oncogenic gene expression (47, 48). It is predicted a miRNA can
recognize an average of 100–200 different mRNA targets (49, 50).
For example, miR-155 modulates the expression of NF-κB and
MAFK via regulation of BACH1 (BTB and CNC homology 1,
basic leucine zipper transcription factor 1) and LDOC1 (leucine
zipper, downregulated in cancer 1) which is critical to malignant
transformation in leukemia, breast and lung cells (51–53). It
is emphasized that miRNAs are novel therapeutic targets of

polyphenols such as curcumin, resveratrol, genistein, EGCG and
silibinin (45, 54–56).

Curcumin [(1,7-bis(4-hydroxy-3-methoxyphenyl)-1,6-hept-
ane-3,5-dione] is a curcuminoid extracted from the rhizome of
Curcuma longa Linn (57). It is demonstrated that 5–40µM of
curcumin has effects on a variety of miRNAs in different cancer
cell lines such as miR-192-5b (58), miRNA-98 (59), miR-21
(60–62), miR-15a (63, 64), miR-101 (65, 66) in lung cancer,
colorectal cancer, leukemia, colon cancer, and breast cancer to
inhibit cell viability and metastasis, induce apoptosis.

According to quantitative reverse transcription-polymerase
chain reaction (qRT-PCR) analysis, resveratrol (3,4′,5-
trihydroxy-trans-stilbene) with dosage of 10–150µM induces
apoptosis and depresses cell proliferation, invasion via inhibition
of NF-κB activity, Akt/Bcl-2 pathway, EZH2 pathway, STAT3
and COX-2 activity through upregulation of miR-34a (67),
miR-326 (68), miR-200c (69), miR-137 (70), and miR-328 (71),
and downregulation of miR-19 (72), miR-21 (73), miR-196b (74),
miR-1290 (74), and miR-221 (75, 76).

Genistein (4′,5,7-trihydroxyisoflavone, Figure 1), found in
soy products, has effects on miRNAs in various cancer cells (77).
Breast cancer cell growth is inhibited by the induction ofmiR-23b
and inhibition of miR-155 by 25–175µM of genistein treatment
(78, 79). Genistein inhibits the expression of miR-27a (80) and
miR-223 (81) and induces the expression of let-7d (82) and
miR-34a (83) which play an important role in pancreatic cancer
cell growth and invasion. Genistein also exerts its anticancer
activity via upregulation of miR-200c (84) and downregulation
of miR-151 in prostate cancer (85).

The green tea extracts (–)-epigallocatechin (EGC) and
(–)-epigallocatechin-3-gallate (EGCG) also targets oncogenic
miRNAs including upregulation of miR-16, let-7a, and miR-
221 and downregulation of miR-18a, miR34b, miR-193, miR-
222, and miR-342 in human hepatocellular carcinoma cells (86).
Expression of miR-548m and miR-720 are down-regulated in
human breast cancer MCF-7 cells (87). miR-210 is up-regulated
by EGCG in lung cancer cells which is associated with HIF-1α
(hypoxia-inducible factor 1-alpha) (88). EGCG (40–60µg/ml)
suppresses cell growth of cervical carcinoma by regulation of
miRNAs including up-regulation of miR-29, miR-29a, miR-203
and miR-210, and down-regulation of miR-125b, miR-203, miR-
125b (89).

NF-κB Pathways
NF-κB can regulate the transcription of genes associated with
the inflammatory response, cell death, and proliferation (90, 91).
NF-κB pathways participating in the development of various
cancers can be disrupted by polyphenols. The PI3K/Akt signaling
pathway and MAPK signaling pathways are related to the
activation of NF-κB in numerous tumor cell lines (92).

The flavonoid component chrysin (5,7-dihydroxyflavone,
Figure 1) has been shown to suppress the growth of colon
cancer cells via direct inhibition of NF-κB expression and
activity, according to computational docking experiments (24).
In addition, 30µM chrysin activates NF-κB/p65 by inducing
p38 MAPK signaling pathways in HeLa cells (33). Quercetin
(Figure 1) has a potential role in inhibiting processes in
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TABLE 2 | Polyphenols and their anticancer mechanisms.

Mechanism Components Plant origin Cell line References

PKC/MAPK signalway ↓ Trichosanthin Trichosanthes kirilowii Maxim K562

HeLa

(21)

β3 integrin/FAK signalway ↓ Tuteolin dragonhead B16F10 (22)

fatty acid synthase (FAS) ↓ Epigallocatechin-3-gallate green tea LNCaP (23)

STAT3 ↓ Tectochrysin A. oxyphylla Miquel NCI-H460

A549

(24, 25)

MAPK/ERK signalway silibinin

Fisetin

Genistein

licochalcone A

Apigenin

pterostilbene

Silybum marianum

fruits and vegetables

soy

licorice root

fruits and vegetables

grapes, blueberries

A549

PC12

PC3

BGC-823

Leukemia cells

Breast cancer

(26)

(27)

(28)

(29)

(30)

(31)

Akt signalway ↓ Chrysin celery U87-MG

U-251

(21)

EGFR tyrosine kinase Luteolin

Quercetin

Dragonhead

Quercus

A431 (22)

EGFR/MEK/ERK signalway ↓ Arctigenin Arctium lappa Tissues from gallbladder cancer

patients

(32)

Akt/mTOR signalway Fisetin Fruits and vegetables U266 (23)

Bcl-2 ↓ Fisetin Fruits and vegetables U266 (33)

Ampelopsin Ampelopsis grossedentata LNCaP

PC3

Animal model

(34)

X-linked inhibitor of apoptosis protein

(XIAP)↓

chrysin celery U937 (35)

PI3K/Akt signalway Licochalcone A

Pterostilbene

Arctigenin

licorice root

grapes, blueberries

Arctium lappa

BGC

Breast cancer

LNCaP

(35)

(31)

(36)

DNA topoisomerase II podophyllotoxin rhizomes of Podophyllum species Ehrlich ascites tumor cells (37)

V-ATPase↓

mTORC1/HIF-1α-/VEGF signalway↓

Diphyllin Cleistanthus collinus TE-1

ECA-109

(38)

NAPDH oxidase-5/ROS↑ Resveratrol Red wine and grapes NSCLC (39)

ASK1/p38 signalway α-mangostin Garcinia

mangostana Linn

SiHa and HeLa (40)

miR-21, miR-15a, miR-141, miR-155,

miR-125b and miR-182↓

miR-200c↑

silibinin Silybum marianum MDA-MB-231

MCF-7

T47D

(41–43)

human oral cancer cells through the NF-κB pathway (93). The
results of Western blot and flow cytometric assays indicate
that the flavonoid fisetin (3,3′,4′,7-tetrahydroxyflavone, Figure 1)
effectively suppresses the apoptosis, metastasis, angiogenesis
and invasion of cancer cells via ERK1/2-, Akt/NF-κB/mTOR-
and p38 MAPK-dependent NF-κB signaling pathways (94,
95). Furthermore, fisetin is not cytotoxic to normal cells
(94). Genistein has a potential role in inhibiting cell division
and apoptosis via Akt and NF-κB (28). Wogonin (Figure 1),
extracted from Scutellaria baicalensis Georgi, can decrease the
phosphorylation levels of IκB and p65. Modulation of the NF-
κB/Bcl-2 signaling pathway has been shown by Western blot
analysis to play a critical role in both of the invasion and
proliferation of hepatocellular carcinoma (HCC) in a dose-
dependent manner (96). Wogonin is shown to decrease the
protein and mRNA levels of cyclooxygenase (COX)-2 in skin
fibroblast NIH/3T3 cells and in animal experiments (97). The

stilbene pterostilbene (trans-3,5-dimethoxy-4-hydroxystilbene,
Figure 2), the dimethylated analog of resveratrol, is a highly
bioactive natural polyphenolic compound that is mainly found
in grapes, blueberries, tomatoes, and other berries (98).
According to the results of COX-2 activity assays and enzymatic
immunoassays, both resveratrol (Figure 2) and pterostilbene
cause COX-2 inactivation via the NF-κB signaling pathway
(31, 99).

Matrix Metalloproteinase (MMP)-2 and
MMP-9
The MMPs are a group of metal-dependent proteolytic enzymes
that are involved in matrix remodeling and facilitate the
migration of cancer cells through degradation of the extracellular
matrix (100). MMP-2 and MMP-9 can degrade type IV
collagen in the basement membrane and facilitate tumor cell
metastasis (101).
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FIGURE 1 | Chemical structures of some flavonoids.

Various polyphenols affect MMPs. Some, such as 5µM
resveratrol (102) and 75–100µM kaempferol, inhibit the activity
of MMPs (Figure 1) (103). Others decrease the expression of
MMPs. The flavone luteolin (Figure 1) inhibits colon cancer
metastasis by reducing the expression of MMP-2 and MMP-
9 (104). The flavonolignan silibinin (C25H22O10, Figure 1), an
active compound of Silybum marianum (L.) Gaertn, decreases
the expression of MMP-2, MMP-3 and MMP-9 and increases
the expression of TIMP-2 in prostate tumor tissue in transgenic

adenocarcinoma of the mouse prostate (TRAMP) model mice
and in vitro in various cancer cells (26, 104, 105). MMP-2
expression is downregulated in human prostate cancer cells
by genistein treatment (28). In addition, treatment with 5µM
quercetin and chrysin decreases the expression of MMP-9
in A549 cells (106). Still other polyphenols affect both the
activity and expression of MMPs. For example, naringin (4’,5,7-
trihydroxyflavanone 7-rhamnoglucoside, Figure 1) can inhibit
the adhesion and invasion of human glioblastoma U87 cells and
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FIGURE 2 | Chemical structures of some stilbenes.

FIGURE 3 | Chemical structures of some lignans.

U251 cells via dose-dependent reductions in both the activity
and expression of MMP-2 andMMP-9, according to zymograohy
and Western blotting results, this effect is associated with the
p38 MAPK signaling pathway (107, 108). EGCG (20µM) reduce
the activity of MMP-2 and MMP-9 in prostate cancer cells
(109) and decrease the expression of MMP-9 in bladder cancer
cells (110).

Caspases
Caspases, which are activated by other caspases, are cysteinyl
aspartate-specific proteases and are divided into two groups. One
group comprises initiators (caspase-8, -9, and -10); the others,
executioners (caspase-3, -6, and -7). Caspase -3 is considered the
major downstream target of caspase-4, -8, and -9. Overexpression
of caspases is a common alteration in cancer cells that can
be exploited therapeutically. Activation of caspase-3 by fisetin
treatment associated with induction of the proapoptotic proteins
Bad, Bax, Bim, and inhibition of the antiapoptotic proteins Bcl-2
and Mcl-1(L) (35). Genistein has also been shown to increase the
expression of caspase-3,-9 and Bax in vitro (28). Chrysin-induced
apoptosis was associated with induction of caspase-3 and-8 and
downregulation of phospholipase C-gamma-1 (PLC-gamma1)
and XIAP. This finding suggests that the mechanism of apoptosis
induced by chrysin is associated with Akt dephosphorylation in
the PI3K signaling pathway (33). EGCG can induce apoptosis and
reduce cancer cell proliferation by decreasing the mitochondrial
membrane potential (19m) and stimulating caspase-3, -9
and c-Jun N-terminal kinase 1 (JNK1) expression in human
glioblastoma T98G and U87MG cells but does not induce

FIGURE 4 | Chemical structures of some xanthones.

apoptosis in human normal astrocytes (111). The flavonoid
baicalein (Figure 1), found in Scutellaria baicalensis Georgi,
participates in apoptosis by increasing the expression of caspase-
3 and -8 (112). The lignan phillygenin (Figure 3) induces
apoptosis by increasing the mitochondrial membrane potential
due to increased ROS levels in human esophageal cancer SH-1-
V1 cells. Concurrent upregulation of Bax and cleaved caspase-
3 and -9, along with dose-dependent downregulation of Bcl-2,
was found by propidium iodide staining and Western blotting
(15). The anticancer effects of arctigenin (Figure 3), the active
component of Arctium lappa, are mainly directed toward cancer
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FIGURE 5 | Chemical structures of some alkaloids.
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TABLE 3 | Alkaloids and their anticancer mechanisms.

Mechanism Components Plant origin Cell line References

HIF-1α protein ↓ Dauricine Menispermum dauricum DC MCF-7 (139)

VEGF ↓ Dauricine Menispermum dauricum DC MCF-7 (139)

Ezrin ↓ Berberine Berberis species 5-8F

6-10B

(140)

MMP-2, 9, 13 ↓ Berberine Berberis species A549 (141)

Piperine Piper nigrum 4T1 (142)

p-Smad2/3 ↓ Berberine Berberis species A549 (141)

NF-κB Noscapine Opium KBM-5

HL-60

(141)

Piperine Piper nigrum 4T1 (142)

Cryptopleurine Boehmeria pannosa MDA-MB231

Hep3B

(143)

PI3K/Akt/GSK3β pathway ↓ Tetrandrine Stephania tetrandra S. Moore HT-29 (144)

FIGURE 6 | Chemical structures of some saponins.

cell growth inhibition and apoptosis through the peroxisome
proliferation-activated receptor α (PPARα)/gankyrin, Bax and
caspase pathways (36). The xanthone α-mangostin (Figure 4)

increases the activity of caspase-3 and causes late apoptosis in
ovarian adenocarcinoma SKOV3 cells after 12 h and 72 h of
treatment, respectively (113).
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FIGURE 7 | Chemical structures of ginsenosides.

ALKALOIDS

Alkaloids are the secondary biologically active components found
in many plants. Alkaloids have various biological activities that
render them important sources for drug discovery. The presence
of nitrogen in their molecular architecture is critical to the
biological activity of this class of compounds. Many studies have
shown that alkaloids inhibit the growth of human breast, liver,
colon, prostate, and liver cancer cells (114).

Bcl-2 Protein Family
Bcl-2 proteins are divided into two groups. Bcl-2 and Bcl-xL
are antiapoptotic proteins, while Bax and Bad are multidomain
proapoptotic proteins. The balance of antiapoptotic proteins to
proapoptotic proteins, for example, the ratio of Bax to Bcl-2 is
crucial to the regulation of apoptotic pathways (115). The balance
between Bcl-2 family proteins is a potential target of alkaloids for
inducing cell death (116).

Oxymatrine (Figure 5), derived from Sophora flavescens
Aiton, significantly increases p53 and Bax expression and
decreases Bcl-2 expression dose-dependently, as evidenced
by A Western blot assay, in osteosarcoma cancer cells via
dephosphorylation of PI3K and Akt in the PI3K/Akt signaling
pathway (117).

Treatment with crude alkaloid extractof Rhazya stricta
(CAERS) induced apoptosis and suppressed the proliferation
of HCT116 cells. Downregulation of Bcl-2, survivin, Bcl-X and
XIAP expression and upregulation of Bad and Noxa expression
were examined by qRT-PCR and Western blot analyses and
coincided with the increase in the Bax/Bcl-2 ratio (118).

Various alkaloids induce apoptosis via an increase in the
Bax/Bcl-2 ratio. Cancer cells treated with nitidine chloride
(NC, Figure 5), matrine (Figure 5), berberine (Figure 5), and
subditine (Figure 5) showed upregulation of Bax expression and
downregulation of Bcl-2 expression (119–123).

PI3K/Akt/mTOR Signaling Pathway
Autophagy is a critical process for maintaining intracellular
homeostasis. Generally, autophagy may play a critical role

in cancer prevention (124). The PI3K/Akt/mTOR pathway is
critical for autophagy induction and is a latent target in cancer
therapeutics and control (101).

Piperlongumine (Figure 5) (125), swainsonine (Figure 5)
(126), and sinomenine (Figure 5) (127) induce apoptosis and
inhibit cancer cell growth through the PI3K/Akt/mTOR pathway,
with decreased levels of p-Akt and p-mTOR, as evidenced by
the results of Western blot analysis and immunofluorescence.
Isoliensinine (Figure 5), matrine, dauricine (Figure 5), and
cepharanthine (Figure 5) induce autophagy through the AMPK-
TSC2-mTOR signaling pathway, with suppression of mTOR
activity (128–130).

ERK Signaling Pathway
The MAPK/ERK pathway participates in multiple processes in
cancer including growth, invasion, metastasis, angiogenesis, and
inhibition of apoptosis (131, 132). Because of these multiaspect
effects, the MAPK/ERK pathway plays a critical role in the
promotion of cancer cell growth and the inhibition of apoptosis
(133, 134).

β-carboline alkaloids extracted from the seeds of
Peganum harmala inhibit the proliferation and induce the
apoptosis of SGC-7901 cells, possibly because β-carboline
alkaloids can disrupt the balance between PTEN and ERK,
inhibit the MAPK/ERK signaling pathway and induce
apoptosis in cancer cells (135). Berberine can suppress the
senescence of human glioblastoma cells by inhibiting the
EGFR/Raf/MEK/ERK pathway (136). Sinomenine, extracted
from Sinomenium acutum, is reported to inhibit various types
of cancer cells. Sinomenine hydrochloride (SH) increases
the phosphorylation of ERK1/2, p38 and JNK but does
not affect the total levels of the abovementioned cytokines
(137). The benzo phenanthridine alkaloid chelerythrine
chloride (CC, Figure 5) (5 and 10µM) significantly
enhances ERK1/2 phosphorylation and dose-dependently
decreases Akt phosphorylation, as detected by Western blot
analysis (138).

The other anticancer targets of alkaloids are summarized in
Table 3.

SAPONINS

Saponins are valuable sources with minimal toxic effects and
are found in many dietary plants. Saponins are composed of a
triterpenoid or steroidal aglycone attached to one or more sugar
chains (145). Saponins are divided into two types: triterpenoid
saponins and steroidal saponins. Both types have various
biological activities, such as anticancer and immunological
adjuvant activities (146).

Diosgenin (DG, Figure 6), a steroidal saponin, has been
shown to be an anticancer agent in many tumors. DG acts against
cancers via the following pathways and mechanisms: (1) the
STAT pathway, (2) activation of caspase-3 and p53, (3) activation
of the TRAIL death receptor DR5 and (4) the Wnt-β-catenin
pathway (147).

The steroidal saponin of Paris polyphylla (Chinese name:
Chonglou) has long been used for lung cancer treatment
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FIGURE 8 | Signaling pathways of the natural products.

(148). Paris saponin I (PSI, Figure 6) and Paris polyphylla
steroidal saponins (PPSS) regulate the Bcl-2 family and caspase-
3 and -8, inducing apoptosis (149). In addition, PSI and PPSS
induce autophagy by the conversion of LC3 I to LC3 II and
upregulation of Beclin 1 (150). Paris saponin VII (PS VII,
Figure 6), extracted from Trillium tschonoskii Maxim, inhibits
the migration and invasion of several types of cancer cells
via the downregulation of MMP-2 and -9 expression and
p38 MAPK phosphorylation in a dose- and time- dependent
manner (151).

Saikosaponin D (SSD, Figure 6), prescribed for liver diseases,
was reported to exhibit anticancer activities (152, 153). SSD
effectively suppresses invasion, metastasis and angiogenesis
via the downregulation of TNF-α mediated NF-κB signaling,
affecting proteins such as MMP-9, VEGF, c-myc, cyclin
D1, ICAM-1, and COX-2. In addition, SSD activates the
Ca2+/calmodulin-dependent kinase/AMPK/mTOR pathway and
attenuates STAT3/HIF-1 pathway signaling, which induces
the apoptosis and inhibits the proliferation of cancer cells
(154, 155).

Ginsenosides (ginseng saponins) derived from ginseng
were reported to exhibit anticancer effects. Ginsenoside Rh2
(GRh2, Figure 7) and ginsenoside Rg1 (Figure 7) induce
apoptosis via activating extrinsic apoptosis pathways by p53-
Fas-caspase-8 signaling and the EpoR-mediated JAK2/STAT5
signaling pathway, respectively (156, 157). Moreover, the
expression of phosphoglucose isomerase/autocrine motility
factor (PGI/AMF) enhances the anticancer effects of GRh2
by attenuating Akt/mTOR signaling (158). A metabolite of
ginsenoside compound K (CK, 20-O-D-glucopyranosyl-20(S)-
protopanaxadiol, Figure 7) can enhance apoptosis via the ROS-
mediated p38 MAPK pathway (159).

POLYSACCHARIDES

Polysaccharides which are abundant in plants, possess anticancer
activities, and are being used as immunopotentiators for cancer
patients, thus they are relatively ideal anticancer agents (160).

Fucoidans, a class of fucose-enriched sulfated polysaccharides,
primarily affect apoptosis-related pathways, as proven both
in vivo and in vitro (161, 162). Apoptotic morphological changes
result from the activation of caspases. Caspase-3 and-9 are
activated by fucoidan from Ascophyllum nodosum (163) mainly
composed of 52.1% fucose, 21.3% glucose, 19% sulfate content,
and 16.5% xylose. And caspase-7 and -8 are regulated by a
sulfated polysaccharide isolated from an enzymatic digestion
of Ecklonia cava (164). Cell apoptosis induced by S-fucoidan
from Cladosiphon okamuranus depends on caspase-3 and -7
(165). Other targets involved in apoptotic effects include Bax and
Bcl-xL, ERKs, p38, and the PI3K/Akt signaling pathway (166).
Fucoidan, from Cladosiphon novae-caledoniae Kylin, which is
consisted of 73% fucose, 12% xylose and mannose, inhibits
invasion and tubule formation via the suppression of MMP-2
and -9 activity and downregulation of VEGF expression in tumor
cells (167).

The purified polysaccharide extracted from Caulerpa
lentillifera, SP1, composed mainly of sulfated xylogalatan
and galactose, showed potent immunostimulatory effects by
activating macrophage cells through both the NF-κB and p38
MAPK signaling pathways (168). SP1 decreased the levels of
IκBα and the NF-κB p65 subunit and increased p38 MAPK
phosphorylation, as determined by Western blot assay.

Polysaccharides extracted from Phellinus linteus (PL)
significantly inhibit cell proliferation by decreasing β-catenin and
cyclin D1 expression in vitro. In addition, PL inhibits invasion
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and motility by directly reducing the activity of MMP-2 and -9,
with no effect on the gene expression or secretion of MMPs, as
indicated by RT-PCR and gelatin zymography (169).

The Radix astragali active extract Astragalus polysaccharide
(APS) can enhance the immune response by promoting IL-2,
IL-6, and TNF-α in H22 tumor-bearing mice. The effects
on the immune response are involved in the inhibition of
cancer. In addition to the immune response, the anticancer
mechanism involves apoptosis, cell cycle arrest, Akt
phosphorylation, Bcl-2 and Bax, caspase-3 and -9, p53 and
PTEN (163, 170).

The polysaccharides obtained from enzymatic digestion by
Celluclast enzyme digest (CCP) suppresses the activation of NF-
κB p50 and p65 and the phosphorylation of p38 MAPK in
macrophages (171).

Ganoderma lucidum (G. lucidum) polysaccharides (GLPs) can
inhibit growth in many types of cancer by inducing apoptosis
through FOXO3a-TNF-α-NF-κB signalway (172).

CONCLUSION

Natural compounds offer a great diversity of chemical structures
that are likely important in cancer therapeutics (18). Many
studies have shown that phytochemicals influence targets
and signaling pathways involved in oncogenesis and tumor
progression such as proliferation, invasion, metastasis and
angiogenesis (173). Different components have various
anticancer activities. (1) Alkaloids, with low bioavailability

and poor water solubility, have difficulty to reaching the
intended target. Moreover, the toxicity of alkaloids cannot be
ignored, primarily target apoptosis-related pathways (174). (2)
Flavonoids can affect the development of colon, lung, esophageal,
stomach and endometrial cancer, with minimal acute toxic effects
because of their poor water solubility accompanied by their rapid
digestion (17, 175). Polyphenols primarily target pathways
related to proliferation, apoptosis, invasion and metastasis. (3)
Polysaccharides and saponins effectively modulate the immune
response rather than directly inducing cell death. Polysaccharides
primarily affect apoptosis-related pathways, while saponins affect
apoptosis-related and invasion- and metastasis-related pathways
(176). The anticancer effects of these compounds are associated
with multiple targets (Figure 8) (176). Signaling pathways are
believed to be associated with specific chemical structures, and
this association is critical for continuing drug development.
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