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In recent decades, biomedical research has focused on understanding the functionality

of the human translated genome, which represents a minor part of all genetic

information transcribed from the human genome. However, researchers have become

aware of the importance of non-coding RNA species that constitute the vast majority

of the transcriptome. In addition to their crucial role in tissue development and

homeostasis, mounting evidence shows non-coding RNA to be deregulated and

functionally contributing to the development and progression of different types of human

disease including cancer both in adults and children. Small non-coding RNAs (i.e.,

microRNA) are in the vanguard of clinical research which revealed that RNA could

be used as disease biomarkers or new therapeutic targets. Furthermore, many more

expectations have been raised for long non-coding RNAs, by far the largest fraction

of non-coding transcripts, and still fewer findings have been translated into clinical

applications. In this review, we center on PVT1, a large and complex long non-coding

RNA that usually confers oncogenic properties on different tumor types. We focus on

the compilation of early advances in the field of pediatric tumors which often lags behind

clinical improvements in adult tumors, and provide a rationale to continue studying

PVT1 as a possible functional contributor to pediatric malignancies and as a potential

prognostic marker or therapeutic target.
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PEDIATRIC CANCER

Pediatric cancers are rare diseases which differ from adult malignancies owing to their etiology,
biology, response to treatment, and outcome. The most frequent adult cancers are of epithelial
origin and, in some cases, are caused by environmental factors. By contrast, pediatric tumors tend
to be of hematologic, mesenchymal, or nervous system origin and their etiology is often little known
(1). Approximately 160,000 cases of cancer in children and adolescents are diagnosed every year
worldwide, accounting for up to 2% of all cancers (2). In recent decades, with the introduction of
multimodal treatments, the outcome of children and adolescents has improved, reaching∼80% of
overall survival. Despite this significant improvement, cancer remains the leading cause of death
in children, and adolescents worldwide (3). Furthermore, two thirds of patients may suffer severe
side effects associated with these intensive treatments (4). Thus, the development of safe and more
effective therapies is a must.

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.01173
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.01173&domain=pdf&date_stamp=2019-11-06
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:miguel.segura@vhir.org
https://doi.org/10.3389/fonc.2019.01173
https://www.frontiersin.org/articles/10.3389/fonc.2019.01173/full
http://loop.frontiersin.org/people/618027/overview
http://loop.frontiersin.org/people/791795/overview
http://loop.frontiersin.org/people/710534/overview
http://loop.frontiersin.org/people/833848/overview
http://loop.frontiersin.org/people/833844/overview
http://loop.frontiersin.org/people/834460/overview
http://loop.frontiersin.org/people/823145/overview
http://loop.frontiersin.org/people/586953/overview


Boloix et al. PVT1 in Pediatric Cancer

LNCRNAS AND CANCER

The Emerging Opportunity of Long
Non-coding RNAs (LncRNAs)
Current therapies are directed at targeting the functionality of
the human translated genome (i.e., proteins), barely 2% of all
transcribed genetic information (5). Therefore, use of the largest
part of the transcribed genome for therapeutic, diagnostic, and
prognostic purposes remains unexplored (6). Recent advances in
high-throughput sequencing technologies have been crucial for
improving understanding of non-coding RNA (ncRNA), which
represents a significant fraction of all transcribed RNAs, and in
the past, were considered evolutionary junk or transcriptional
noise (7, 8). However, ncRNA are now known to be important
regulators of biological processes such as gene expression (9).
Furthermore, interest in ncRNAs has grown owing to their
implication in different diseases, such as cancer (6, 10).

In general, ncRNAs are classified according to their length as
small ncRNAs (sncRNAs) or long ncRNAs (lncRNAs), smaller
than 200 nt and larger than 200 nt, respectively (11).

Functions of LncRNAs
LncRNAs functionality depends on their subcellular distribution
(12). LncRNAs located in the nucleus can regulate gene
expression at different levels: (a) LncRNAs can interact with
transcription factors or chromatin-remodeling complexes to
regulate gene expression in cis, i.e., when the lncRNAs locus
is proximal to the regulated gene, or in trans, when the gene
affected and lncRNAs are at distant locations of the genome
(13). For example ANRIL is a lncRNA that interacts with
the polycomb repressive complex-1 (PRC1) and−2 (PRC2)
and mediates transcriptional silencing of INK4b-ARF-INK4a
locus. Specifically, ANRIL binds to Suz12 to recruit PRC2
complex which initiates H3K27me3, a post-translational histone
mark indicative of transcriptional repression (14); (b) LncRNAs
may bind directly to DNA, causing chromatin remodeling or
looping, where the lncRNAs can recruit chromatin modifiers
(e.g., histone methyltransferases, DNA methyltransferases) to
enhance or repress gene transcription (15). In fact, there are
evidence of sequence-specific interactions of lncRNAs with
DNA via triple-helix (triplex) formation, a structure that allows
lncRNAs to recruit protein complexes to specific genomic regions
and regulate gene expression. For example, the GATA6-AS
lncRNA regulates the expression of several genes related to
cardiac development using this mechanism (16); (c) finally, other
functions of lncRNAs such as their participation in splicing
and export or translation of mRNA have also been described
(17). One of these examples is the lncRNA Fas-antisense or
Saf, which interacts with Fas receptor pre-mRNA and with the
human splicing factor 45 (SPF45) in the nucleus of the cell. As
a consequence, the exclusion of exon 6 from the Fas mRNA is
produced. The resulting protein product is a soluble Fas that
protects cells against FasL-induced apoptosis (18).

When lncRNAs are in cytoplasm, they can interact with
proteins, thereby either activating or inhibiting its function
(19). For example, lincRNA-21 is able to interact with the
Heterogeneous Nuclear Ribonucleoprotein K, and modulates

the P53 transcriptional response (20). Furthermore, lncRNAs
may also regulate mRNA stability and translation processes. For
instance, the TMPO-AS1 lncRNA regulates the expression of
Thymopoietin, a protein involved in the maintenance of the
nuclear envelope structure. Qin et al. demonstrated that the
knockdown of TMPO-AS1 also resulted in a decrease of TMPO
mRNA and protein levels (21).

However, one of the most described roles of lncRNAs in
cytoplasm is microRNA (miRNA) sequestration. LncRNAs may
contain multiple miRNA binding sites and can sequester them,
thereby reducing their availability for their target genes (22).
In particular, lncRNAs may regulate the expression of a certain
mRNA by having a miRNA recognition element (MRE) in its
sequence. This competition for a miRNA gives name to the
competing endogenous RNA (ceRNA) hypothesis formulated by
Salmena et al. (23). One of such examples is the lncRNA FER1L4,
which modulates PTEN expression by sponging miR-106a-5p in
gastric (24) or in colon cancer (25).

LncRNAs present evolutionarily-conserved secondary
structure and function, although their exon sequence is much
less conserved than protein-coding genes (8, 26). LncRNAs
have been reported to present tissue-specific expression and
their deregulation has been associated with cancer development,
metastasis, and patient outcome (13) often by regulating
oncogenes or tumor suppressors.

For example, one of the most studied lncRNAs is the Hox
transcript antisense intergenic RNA (HOTAIR). HOTAIR, has
been shown to be overexpressed in multiple human tumors such
as breast, pancreatic, liver, lung, and hepatocellular cancer among
others, and has been involved in different hallmarks of cancer (6,
27). Mechanistically, HOTAIR acts as a scaffold for the chromatin
repressors polycomb repressor complex 2 (PRC2) and histone
lysine-specific demethylase 1 (LSD1) and may perform a cis and
trans-regulation of HOX genes and HOXD cluster, respectively
(28). While the bibliography is abundant for tumors in adult
patients, examples are scant in the field of pediatric cancer. One
such example is the lncRNA neuroblastoma-associated transcript
1 (NBAT-1) which was associated with good prognosis in
high-risk neuroblastoma patients (29). Mechanistically, NBAT-1
epigenetically controls the expression of target genes involved in
cell proliferation, differentiation and cell invasion by interacting
with EZH2, a subunit of PRC2 (29).

PLASMACYTOMA VARIANT
TRANSLOCATION 1 (PVT1)

One of the lncRNAs that is attracting attention in both pediatric
and adult tumors is the plasmacytoma variant translocation 1
(PVT1). Initially described in the middle 80’s, this gene was
identified as a breakpoint site in chromosome 6;15 translocations,
which are associated with murine plasmacytomas (30). In
humans, this kind of translocation occurs in rare variants of
Burkitt’s lymphoma (31). Herein, we focus on this complex and
multi-functional lncRNA to raise awareness and pave the way
toward better characterization of its use as a potential prognostic
marker or therapeutic target in pediatric cancer.
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FIGURE 1 | Graphical representation of the 8q24 genomic locus.

PVT1 Gene Structure
“Plasmacytoma variant translocation 1” or PVT1 is a long
intergenic ncRNA encoded in the human PVT1 gene (Figure 1).
PVT1 gene is located at the chromosomal locus 8q24.21 which
contains the MYC oncogene. This region is frequently altered
in many types of cancer owing to chromosomal translocations,
amplifications or deletions, single nucleotide polymorphisms
(SNP) and/or viral integrations (32, 33). The PVT1 gene contains
nine exons, which produce multiple transcripts between 2.7 and
3.3 kb in length by alternative splicing (32). Thus, far, none of
these transcripts have been shown to be translated into a protein
product (32).

In addition to these splicing variants, PVT1 contains a cluster
of five different microRNA (i.e., miR-1204, miR-1205, miR-
1206, miR-1207, and miR-1208) which are encoded in the
intronic regions of PVT1, except miR-1204, which is located in
exon 1b (32, 34). Furthermore, PVT1 encodes a circular RNA,
which is presented as a covalent closed loop structure without
polyadenylated tail (35, 36). This structure, indeed, also has
the capacity to sequester miRNAs such as miR-497 (37, 38) or
miR-125 (39, 40).

PVT1 Participates in Embryonic
Development
Pediatric cancers are frequently originated in developing
organs where the integration of multiple signaling pathways
related to proliferation, growth factor signaling, developmental
angiogenesis and programmed cell death, take place (41). It is
in this scenario where lncRNA such as PVT1 become critical for
proper physiologic development (42). One of such examples is a
recent report showing that PVT1 is involved in the early stages
of development, such as pre-implantation and oocyte maturation
(43). Moreover, the loss of PVT1 function may also be implicated
in human disease. For example, PVT1 expression was found
to be significantly lower in pregnant women with preeclampsia
than that in women with normal pregnancies. Loss of function
experiments in trophoblast cell lines showed that PVT1 silencing
resulted in cell proliferation inhibition and apoptosis induction.

Conversely, ectopic expression of PVT1 increased trophoblastic
cell proliferation (44).

In following steps of embryonic development, PVT1 has also
been shown to play a significant role in neuronal differentiation.
Apparently, PVT1 expression is high in pluripotent stem cells,
whereas it decreases during neuronal differentiation (45).

Functional Role of PVT1 in Cancer
Several studies reported that PVT1 is overexpressed in a
wide variety of cancers compared to non-tumoral tissues,
including breast and ovarian cancer (46), pancreatic ductal
adenocarcinoma (47), cholangiocarcinoma (47), thyroid
carcinoma (47), malignant pleural mesothelioma (47), pediatric
malignant astrocytoma (46), acute myeloid leukemia (46), and
Hodgkin’s lymphoma (46). Less evidence, however, also supports
a potential role of PVT1 as a tumor suppressor (48).

PVT1 may impact on tumor biology through
different mechanisms:

Role of the miRNA Cluster
PVT1 encodes a cluster of five miRNA (miR-1204, miR-1205,
miR-1206, miR-1207, and miR-1208) (34) which have been
shown to play both oncogenic and tumor-suppressive roles. For
example, miR-1204 has been shown to be overexpressed and
associated with poor prognosis in breast cancer (BC). The ectopic
expression of miR-1204 promoted proliferation, epithelial to
mesenchymal transition and invasion of BC cells by targeting
the vitamin D receptor (49). MiR-1204 was also shown to
promote cell proliferation in different types of cancer such
as ovarian squamous cell carcinoma (50), non-small cell lung
cancer (51), or in hepatocellular carcinoma (52). In line with
these results, miR-1205 expression was found to be increased in
primary prostate tumors and castration-resistant prostate cancer
cell lines. Functional analyses revealed that miR-1205 induced
cell proliferation and cell cycle progression (53). Concurring
with these results, miR-1205 inhibition impaired osteosarcoma
proliferation in vitro and in vivo by suppressing Wnt/β-catenin
activation (54). Overexpression of miR-1207-5p has been shown
to promote cancer stem cells traits in ovarian cancer cells by
targeting inhibitors of the Wnt/β-catenin pathways (55) and
induce breast cancer cell proliferation by targeting STAT6 (56).

Conversely, tumor suppressive roles for some of these
miRNAs have also been reported. For example, ectopic
expression of miR-1205 significantly inhibited tumor growth
in NSCLC mouse xenograft by targeting MDM4 and E2F1. In
addition, multiple circRNA have been suggested to sponge miR-
1205 in glioma (57–59) and papillary thyroid cancer (60) to
increase oncogenicity of these tumors. MiR-1207-5p inhibition
induced stem phenotype and expression of stem cell markers,
such as OCT4, C-MYC, and SOX2, in nasopharyngeal cancer
(61). MiR-1207-5p also has shown to reduce cell invasion in vitro
and metastasis in a lung cancer mouse xenograft model (62).

PVT1-MYC Interaction
The proximal location between the well-established oncogene
MYC and PVT1 in the 8q24 region prompted researchers
to analyze whether this lncRNA may somehow regulate or
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TABLE 1 | Examples of PVT1-interacting microRNAs.

Type of cancer Effects of PVT1 silencing MiRNA Targets References

Bladder cancer ↓ Tumor growth miR-31-5p CDK1 (70)

↓ Tumor growth miR-128-3p VEGFC (71)

Cervical cancer ↑ Cell apoptosis miR-195-5p SMAD3 (72)

Colorectal cancer ↓ Tumor growth miR-455-5p RUNX2 (73)

↓ Cell proliferation, invasion, and migration miR-26b - (74)

ESCC ↓ Tumor growth miR-203a-3p LASP1 (75)

Hepatocellular carcinoma ↓ Tumor growth miR-150-5p HIG2 (76)

- miR-365-3p ATG3 (77)

↓ Cell proliferation and invasion miR-186-5p YAP1 (78)

HUVEC* ↓ Cell migration miR-26b-5p ANGPT2 and CTGF (79)

Gallbladder cancer ↓ Cell proliferation and invasion miR-143-3p HK2 (80)

Gastric cancer - miR-152-3p CD151, FGF2 (81)

- miR-216a-5p YBX1 (82)

↓ Cell proliferation and migration miR-186-5p - (83)

Glioma ↓ Tumor growth miR-190a-5p MEF2C (84)

↓ Tumor growth miR-488-3p

↓ Invasion and migration miR-200a-3p - (85)

↓ Tumor growth miR-128-3p GREM1 (86)

↓ Cell proliferation miR-186-5p - (87)

Lung cancer ↓ Cell proliferation miR-126-3p SLC7A5 (88)

LSCC ↓ Cell proliferation and migration miR-519d-3p - (89)

Melanoma ↓ Cell proliferation miR-26b-5p - (90)

NSCLC ↓ Tumor growth miR-195-5p - (91)

↓ Tumor growth miR-497-5p - (92)

↓ Cell proliferation miR-200a-5p MMP9 (93)

miR-200b-5p

- miR-216b Beclin 1 (94)

↓ Cell proliferation and invasion miR-125b-5p E2F2 (40)

Osteosarcoma ↓ Tumor growth miR-195-5p - (95)

↑ Chemoresistance to gemcitabine miR-152-3p c-MET (96)

↓ Cell proliferation miR-497-5p HK2 (97)

Ovarian cancer ↓ Cell proliferation, invasion, and migration miR-133a-3p - (98)

↓ Cell proliferation miR-140-5p - (99)

Pancreatic cancer - miR-488-3p - (100)

↓ Cell proliferation, invasion and migration miR-448 SERBP1 (100)

↓ Tumor growth miR-20a-5p ULK1 (101)

PTC ↓ Cell proliferation and invasion miR-30a-5p IGF1R (102)

Prostate cancer ↓ Cell proliferation and migration miR-186-5p Twist1 (103)

Renal cell carcinoma ↓ Cell proliferation and invasion miR-16-5p - (104)

Retinoblastoma ↓ Tumor growth miR-488-3p Notch2 (105)

ESCC, Esophageal squamous cell carcinoma; LSCC, Laryngeal squamous cell carcinoma; NSCLC, Non-small cell lung cancer; PTC, Papillary thyroid carcinoma; HUVEC, Human

umbilical vein endothelial cells. * Indicates that experiments were performed in non-tumoral human cell lines.

be regulated by MYC, a master regulator of cell growth,
proliferation, and differentiation, widely implicated in cancer
(47). In fact, genomic co-amplification of MYC and PVT1
has been reported in different types of tumor (63). The first
evidence found for the interaction between these two molecules
was reported by Carramusa et al. who found that PVT1 can
be transcriptionally regulated by MYC proteins (64). Further
in depth studies revealed that PVT1 interacts with MYC in

the nucleus and inhibits its degradation by blocking MYC
phosphorylation at threonine 58 (65). Moreover, stabilized MYC
protein can activate a positive feedback loop, thereby activating
PVT1 expression. Hence, MYC and PVT1 enhance each other’s
oncogenic effects (65). Concurring with these observations,
siRNA-mediated silencing of PVT1 resulted in a reduction in
MYC protein levels in different tumor types such as colorectal
carcinoma, breast, and ovarian cancer (33). Another level of
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regulation is also possible, since MYC can be targeted by miR-
1205, one of the miRNA encoded in the PVT1 RNA (66). Other
authors, however, suggested that the oncogenic activities of MYC
and PTV1 are independent of each other (67).

PVT1 as a Mediator of the Tumor Suppressor Role of

p53
Since p53 modulates the expression of several coding and non-
coding genes, Barsotti et al. analyzed a potential relationship
between p53 and PVT1. Experimental evidence demonstrated
that PVT1 contains several p53-binding elements and that certain
stress-inducing agents such as DNA-damaging drugs, induced
p53-dependent expression of PVT1. The authors went further
and found mature levels of miR-1204 to be raised after p53
activation and that it was one of the mediators of the tumor-
suppressive functions of p53 in colon cancer cell lines (46).

PVT1 as a Competing Endogenous RNA (ceRNA)
ceRNA are transcripts that may contain multiple miRNA
binding sites (alternatively known as mRNA response elements)
that regulate gene expression by sequestering miRNA which
otherwise would be bound to their target mRNA. Several studies
reported that ceRNA are key regulators of cancer progression (68,
69). Several miRNA have been reported to interact directly with
PVT1 in different cancers (Table 1) and, importantly, restoration
of miRNA levels partially rescues the oncogenic effect of PVT1
overexpression (40, 102).

PVT1 AND PEDIATRIC CANCER

Very little is known on themolecularmechanisms that could alter
PVT1 expression in pediatric tumors. While genetic aberrations
at the 8q24 locus could be responsible for deregulated PVT1
levels in adult malignancies, few cases have been described in
pediatric tumors. For example, recurrent translocations of PVT1-
MYC or PVT1-NDRG1 were identified in a large study on
medulloblastoma, the most malignant brain tumor in children
(106), or genomic amplifications of MYC/PVT1 in pediatric
gliomas (107). Additional genetic alterations have been reported
in the St. Jude PeCAn Data Portal. The analysis of the PVT1 gene
in a cohort of 3,769 pediatric cancer samples from the projects
PCGP (St. Jude-WashU Pediatric Cancer Genome Project) (108)
and TARGET (Therapeutically Applicable Research to Generate
Effective Treatments) (109) reveals 62 different intronic single
nucleotide variants and small insertions and deletions, 8 copy
neutral loss of heterozygosity, 50 copy number variants, 43 DNA
structural variants, and 6 RNA-seq fusions. However, the clinical
relevance of these alterations remains to be determined.

Regardless of these examples, transcriptomic analysis of PVT1
showed it to be expressed in different pediatric tumors, with
higher levels corresponding to hematologic malignancies and
sarcoma, and more moderate expression in nervous system
tumors (Figure 2), thereby suggesting that PVT1 has the
potential to be used as a prognostic marker or as a therapeutic
target in some pediatric tumors. Further studies, however, are
needed to reveal the mechanism(s) controlling PVT1 expression
in childhood tumors.

FIGURE 2 | PVT1 expression comparing healthy tissues (green) with pediatric

tumors (blue). PVT1 RNA expression levels were obtained from

publicly-available Affymetrix expression array (u133p2) datasets using the “R2:

Genomics Analysis and Visualization Platform” software. B cells (GSE12366),

brain (GSE11882), muscle (GSE9103), colon (GSE8671), Ewing sarcoma

(GSE34620), burkitt lymphoma (GSE26673), mantle cell lymphoma

(GSE93291), rhabdomyosarcoma (GSE66533), ALL (GSE68720),

neuroblastoma (GSE16476), osteosarcoma (GSE14827), ATRT (GSE70678),

wilm’s tumor (R2 ID: ps_avgpres_wilmsocg125_u133p2), ependymoma

(GSE64415), glioma (GSE19578), medulloblastoma (R2 ID:

ps_avgpres_mb500affym223_u133p2). a.u, Arbitraty units.

Prognostic Value of PVT1 in Pediatric
Cancer
While mounting evidence suggests that PVT1 could be a
prognostic marker in several adult malignancies (110), very few
analyses have been carried out in pediatric tumors. Indeed, Song
et al. analyzed PVT1 expression in osteosarcoma (OS), the most
common malignant bone tumor in children, adolescents and
young adults. The authors found PVT1 to be overexpressed in
OS cell lines and in tumor samples compared with healthy tissue.
Furthermore, high PVT1 RNA levels correlated with poor overall
survival (97).

In line with these observations, we sought to determine
whether PVT1 could also be a prognostic marker in other
pediatric cancers. Data mining of publicly-available databases
which contain PVT1 expression along with annotated clinical
parameters was performed for wilm’s tumor (n = 148, R2
ID:ps_avgpres_wilmsocga148_u133a), neuroblastoma (n = 476,
GSE45547), mantle cell lymphoma (n = 122, GSE93291),
ewing’s sarcoma (n = 52, GSE17679), osteosarcoma (n =

88, GSE42352), and pediatric glioma (n = 47, SE19578),
and revealed that, in neuroblastoma, the expression of PVT1
could have prognostic value (Figure 3). In addition to PVT1
full RNA, other authors used circular RNA (circRNA) of
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FIGURE 3 | Kaplan-Meier survival curves based on PVT1 expression in different pediatric tumors. Kaplan-Meier plots were generated using the “R2: Genomics

Analysis and Visualization Platform” software. Patient samples were split according to high (above median) or low (below median) PVT1 expression levels from the

following datasets: Wilm’s tumor (n = 148, R2 ID:ps_avgpres_wilmsocga148_u133a), neuroblastoma (n = 476, GSE45547), mantle cell lymphoma (n = 122,

GSE93291), Ewing’s sarcoma (n = 52, GSE17679), osteosarcoma (n = 88, GSE42352), and pediatric glioma (n = 47, SE19578).

PTV1 as a potential biomarker. CircRNA are uncapped RNA
molecules characterized by a covalently closed loop structure
without a 3′ polyadenylated tail (111). Kun-Peng et al. found
circPVT1 to be upregulated in OS tumors compared with
normal tissues. Moreover, higher circPVT1 levels were found
in chemoresistant tumors and, furthermore, high levels of
circPVT1 were associated with poor overall survival. Finally,
those authors demonstrated that the expression of circPVT1
in serum had better sensitivity and specificity than currently-
used OS markers such as alkaline phosphatase (112). Concurring
with these observations, high levels of circPVT1 (but not total
PVT1) were found to be overexpressed in acute lymphoblastic
leukemia (ALL) compared to normal bone marrow samples
(113); however, their potential to predict patient outcome
remains to be determined.

PVT1 as a ceRNA in Pediatric Tumors
The most common oncogenic attribute of lncRNA is their
capacity to sequester tumor-suppressive miRNA. Some examples
of PVT1 have already been described in adult and pediatric
malignancies (Table 1). For example, Song et al. showed that
PVT1 acts as a sponge to repress miR-497-5p in osteosarcoma
cells. In fact, silencing PVT1 resulted in upregulation of miR-
497-5p levels which, in turn, target hexokinase 2 (HK2),
a key metabolic enzyme that regulates glucose metabolism.
Conversely, overexpression of PVT1 reduced miR-497-5p levels
and HK2 was upregulated, thereby contributing to enhanced
glycolysis, proliferation and motility (97). Similar observations
were reported for the interaction of miR-195-5p and PVT1 also in
osteosarcoma. In that case, the authors demonstrated that PVT1
silencing resulted in increased migration, invasion potential and
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cell survival, effects that were partially mediated by miR-195-
5p (95). Interestingly, miR-195-5p and miR-497-5p are in the
same cluster and belong to the same family, i.e., are potentially
regulators of the same biological processes.

Finally, a recent study identified PVT1 as an important
contributor to resistance to gemcitabine, a nucleoside analog
currently used for the treatment of osteosarcoma. Sun et al.
showed that PVT1 interacts and inhibits the function of miR-
152-3p, thereby promoting increased resistance to gemcitabine
by enhancing the activation of C-MET/PI3K/AKT pathway (96).

These first examples are just the tip of the iceberg, since PVT1
can potentially bind to many more miRNA and should therefore
be considered in future studies. Indeed, mining the data available
at the experimentally-validated miRNA-LnRNA interactions of
the LncBASE (114), revealed that more than 30 different miRNAs
are able to interact with PVT1.

Potential Use of PVT1 as a Therapeutic
Target in Pediatric Cancer
RNA-based therapies are an emerging alternative to conventional
treatments owing, in part, to their potential to target all
the transcriptome, thereby expanding the number of potential
targets. Indeed, proof of concept experiments which silence
PVT1, such as those mentioned previously [i.e., osteosarcoma
(97) and ALL (113)] have already shown that targeting PVT1
yielded an anti-tumoral response. RNA interference (RNAi),
antisense oligonucleotides (ASO) and genome editing (i.e.,
CRISPR/Cas9 system) are the only currently-available tools to
silence lncRNAs [reviewed in (115, 116)]. Furthermore, the
function of PVT1 that needs to be targeted will depend on its
subcellular distribution. For example, cytosolic PVT1 could be
sensitive to siRNA or shRNA-based strategies, whereas nuclear
PVT1 would be more sensitive to ASO. One of the examples
in which targeting PVT1 could be a new therapeutic strategy
was reported recently. Wu et al. showed that siRNA-mediated
silencing of PVT1 caused a marked reduction in cell viability
in retinoblastoma cell lines. Furthermore, shRNA-mediated loss
of PVT1 function also resulted in a reduced tumor growth
in vivo (105).

In addition to, or instead of, targeting the whole PVT1
molecule, targeting single components of PVT1 may be
necessary. For example, in a tumor context where the miRNA
encoded within PVT1 participate in disease progression, the
use of anti-miR would be recommended. Alternatively, if the
oncogenic function of PVT1 is related to its capacity to bind and
sequester miRNA, miRNA restoration therapies using miRNA
mimetics would be the best approach (117).

CONCLUSIONS AND FUTURE
PERSPECTIVES

Several indicators suggest that PVT1 could be a future
prognostic and therapeutic target for some pediatric tumors.
First of all, PVT1 is a necessary element for the correct
embryonic development and differentiation of certain cellular
lineages. Aberrant PVT1 expression may account for the
“undifferentiated” state observed in almost all pediatric
malignancies. Second, the mutational burden of pediatric tumors
is ∼14 times lower than adult tumors (118), which suggests
that epigenetic alterations are more likely to participate in
tumorigenesis or tumor progression than in adult tumors.
Third, the fact that PVT1 has the capacity to bind and modulate
the function of multiple tumor-suppressive miRNA, places
PVT1 as a master regulator of several biological processes
regulated by these miRNA. Further safety studies analyzing
the impact of a systemic PVT1 loss of function and finding
an appropriate clinical formulation to administer small RNA
molecules targeting PVT1, are the next steps in implementing
the use of PVT1-based therapies for the treatment of tumors of
childhood and adolescence.
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