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Antitumor immunity has emerged as a favorable byproduct of radiation therapy (RT),

whereby tumor-associated antigens released from irradiated cells unleash innate and

adaptive attacks on tumors located both within and outside the radiation field.

RT-induced immune responses further provide actionable targets for overcoming tumor

resistance to RT (R-RT); immunotherapy (IT) with checkpoint inhibitors or Toll-like

receptor (TLR) agonists can markedly improve, if not synergize with, RT in preclinical

models, and several of these drugs are currently investigated as radiosensitizers in

patients. In an unbiased chemical-genetic screen in a zebrafish model of tumor R-RT,

we unexpectedly found that Interleukin 1 Receptor-Associated Kinase 1 (IRAK1), a

core effector of TLR-mediated innate immunity, also functions in live fish and human

cancer models to counter RT-induced cell death mediated by the PIDDosome complex

(PIDD-RAIDD-caspase-2). IRAK1 acting both as a driver of intrinsic tumor R-RT and

as an effector of RT-induced antitumor immunity would, at first glance, pose obvious

therapeutic conundrums. IRAK1 inhibitors would be expected to sensitize the irradiated

tumor to RT but simultaneously thwart RT-induced antitumor immunity as initiated

by stromal dendritic cells. Conversely, TLR agonist-based immunotherapy would be

expected to intensify RT-induced antitumor immunity but at the expense of fueling

IRAK1-mediated cell survival in the irradiated tumor. We discuss how IRAK1’s differential

reliance on catalytic activity in the radiation vs. TLR responses might help overcome

these hurdles, as well as the crucial importance of developing IRAK1 inhibitors that lack

activity against IRAK4, the kinase activity of which is essential for IRAK1 activation in

both pathways.
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IRAK1: A CORE EFFECTOR IN IL-1R/TLR
INNATE IMMUNE SIGNALING

IRAK1 is a conserved death domain (DD)-containing protein
kinase whose Drosophila homolog, pelle, transduces dorso-
ventral patterning and microbial cues recognized by the
transmembrane receptor, Toll (1–6). The discovery of a
Toll-like receptor (TLR) family of proteins in humans
(3), composed of 10 TLRs, was soon followed by the
finding that, as in flies, TLRs are responsible for the
innate response to microbial infection through binding
to pathogen- and damage-associated molecular patterns
(PAMPs and DAMPs) and viral/bacterial nucleic acids
in the intracellular space (endosomal TLRs). These
discoveries were awarded the 2011 Nobel Prize in Physiology
or Medicine (3).

Upon ligation, TLRs and IL-1R receptor (IL-1R/TLR) signal
proinflammatory and cell survival responses, the majority of
which through IRAK1/4 kinases and attendant downstream
signaling cascades such as NF-kB, p38/MAPK, and JNK (3, 7)
(Figure 1A). IRAK1 and IRAK4 are recruited to the ligated
receptor by the Toll/IL-1R homology (TIR) and DD-containing
adaptor protein, Myeloid Differentiation Primary Response
88 (MyD88) (8). MyD88 engages in homotypic TIR:TIR
and DD:DD interactions with IL-1R/TLR and IRAK1/4,
respectively, mobilizing the kinases to the receptor and
resulting in the formation of the “MyDDosome” (9) complex
(MyD88-IRAK4-IRAK1) (10) (Figure 1A). Only once in the
MyDDosome, comprising six MyD88, four IRAK4, and four
IRAK1 subunits (11), can IRAK4 dimerize. This proximity-
induced dimerization of IRAK4 is the key initiating step in
IRAK1 activation, with most (10, 12–16) but not all (17)
models involving trans autophosphorylation of IRAK4 and
ultimately phosphorylation of T209 on IRAK1 by fully active
IRAK4. Once primed for activation by T209 phosphorylation,
IRAK1 autophosphorylates on T387 in its activation loop,
resulting in full activation, dissociation from the complex,
and activation of downstream pathways (Figure 1A) (10, 13).
IRAK1 activation also notably involves the peptidyl prolyl
cis/trans isomerase PIN1, whose binding to IRAK1 is required
for activation within, and dissociation from, the MyDDosome,
and is overall essential for TLR signaling (Figure 1A) (18).
Surprisingly, whether the catalytic activity of IRAK1 is required
at any step for its function remains unclear (5, 17, 19), with
genetic studies involving kinase-dead variants questioning
reliance on catalytic activity (4, 6, 19–23). Consistent with this,
engagement of three major signaling branches downstream
of IRAK1, namely NF-κB, p38/MAPK, and JNK, relies on
physical contact between activated IRAK1 and TNF receptor-
associated factor 6 (TRAF6), independently of IRAK1 catalytic
activity (Figure 1A) (3, 4, 21, 24). The relative importance
of catalytic vs. structural functionalities of IRAK1 is an
important consideration for the development of IRAK1
inhibitors for clinical use, particularly in radioresistant cancer,
and will be discussed in detail in the closing sections of
this review.

FIGURE 1 | IRAK1 kinase drives distinct prosurvival responses to microbial

infection and ionizing radiation. (A) Diagram of the TLR signaling cascade

which stimulates immune cell survival and inflammation in response to

pathogen sensing. Ligated TLRs recruit MyD88 to trigger Myddosome

(MyD88-IRAK4-IRAK1) formation, resulting in the activation of IRAK1 and

release of the kinase from the complex. In turn, the activated form of IRAK1

binds TRAF6 to enable TRAF6-mediated activation of multiple pathways

involved in anti-apoptotic and pro-inflammatory signaling. (B) Diagram of the

newly identified IRAK1 signaling pathway triggered by IR, which involves

IRAK4 but not MyD88 and antagonizes apoptosis through a different route

involving inhibition of PIDDosome formation. Note that while IRAK1 catalytic

activity is required in the radiation response (as symbolized by a green glare), it

is dispensable for microbial responses relying on TRAF6 as signaling

intermediate downstream of IRAK1.

IL-1R/TLR SIGNALING CONTRIBUTES TO
RT-INDUCED ANTITUMOR IMMUNITY AND
DEFINES A TARGET FOR RT+IT-BASED
RADIOSENSITIZATION STRATEGIES

While predominantly activated by microbes, IL-1R/TLR
signaling is also notably engaged by stromal dendritic cells (DCs)
and macrophages located in the vicinity of irradiated tumors
(Figures 2A,B). Indeed, many of the molecules released by
irradiated cancer cells (i.e., damaged/apoptotic/necrotic cancer
cells) are bona fide ligands for IL-1R/TLR, including IL-1β
itself and a number of DAMPs such as heat shock proteins,
high mobility group protein 1 (HMGB1) and tumor DNA/RNA
fragments (25–34). In response to IL-1R/TLR ligation, DCs
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FIGURE 2 | “One-two punch” vs. “double-edged sword” scenarios for tumor radiosensitization strategies exploiting IRAK1 inhibitors. (A) Simplified view of

RT-induced antitumor immunity. DAMPs and cytokines (i.e., IL-1β) released by irradiated tumor cells are recognized by cell surface IL-1R/TLRs on surrounding stromal

DCs and macrophages, stimulating their activation, maturation, and antigen presentation activity toward T-cells in lymph nodes, and ultimately unleashing

tumor-specific T-cells against the irradiated tumor (as well as distant tumors not pictured here). TAA, tumor-associated antigen; DAMPs, damage-associated

molecular patterns; IT, immunotherapy; TLRa, toll-like receptor agonist; DC, dendritic cell; ag pres., antigen presentation. *IT (with TLRa) is optional and acts as a

boost for the immune events otherwise described in the figure. (B) Simplified views of the IRAK1-mediated response to RT (left; tumor cell-intrinsic antiapoptotic

response) and DAMP-bound TLRs (right, innate immune response). Note that while IRAK1 catalytic activity is required for the tumor response to RT (illustrated by

green glare), it is largely dispensable for immune IRAK1 signaling. (C) “One-two punch” scenario, as afforded by a highly specific IRAK1 inhibitor with no activity

against IRAK4. Such drugs would be expected to both blunt intrinsic tumor radioresistance (which depends on IRAK1 kinase activity) and spare IRAK1

mediated-antitumor immunity (which is less reliant on IRAK1 catalytic activity), resulting in a “one-two punch” on the tumor. The double-punch is illustrated by two red

dart target symbols on the tumor. (D) “Double-edged sword” scenario, as afforded by a less specific IRAK1i with similar activity against IRAK4. Such IRAK1/4i would

be expected to block both the tumor and immune responses to RT (each of which depends on IRAK4 catalytic activity; see text). Thus, in this scenario, intrinsic tumor

radiosensitization activity would be retained but at the expense of blunting the immune component. A small, residual “punch” from the immune system on the tumor is

indicated to further emphasize the detrimental effects of IRAK1/4i relative to the “one-two punch” effects of specific IRAK1i [compare with (C)]. Figure design by Ni-Ka

Ford, printed with permission from with permission from ©Mount Sinai Health System.

engage in increased proliferation, maturation, and antigen
presentation activity, ultimately triggering T-cell-mediated
attacks of tumors located within and outside the radiation
field (immune attacks of distant tumors are responsible for
the “abscopal” effect of RT long observed in a small subset of
patients). The molecules, immune cell types and mechanisms
believed to underlie RT-induced, IL-1R/TLR-mediated antitumor
immunity are briefly summarized in Figures 2A,B but have been
extensively investigated and reviewed by expert colleagues
(27–29, 31, 34–41).

The notion that RT acts as a trigger for IL-1R/TLR signaling
is at the root of emerging RT+IT combination strategies
making use of TLR agonists (TLRa) as adjuvant or neoadjuvant
therapies (Figure 2A). TLRa such as CpG oligodeoxynucleotides
(CpG-ODN, TLR9a) and various imidazoquinolines and
nucleoside analogs (TLR7a; e.g., imiquimod/Aldara/R-837,

resiquimod/R-848, DSR-6434, DSR-29133, 3M-011/854A) have
demonstrated substantial efficacy, if not outright synergy,
when combined with RT in mouse spontaneous or xenograft
models of fibrosarcoma (38, 39), lymphoma (37), colorectal
cancer (35, 36, 40), sarcoma (35), breast cancer (42), renal
cell carcinoma (36), lung adenocarcinoma (43), pancreatic
cancer (40), and metastatic osteosarcoma (36). Success with
these preclinical studies has spurred a number of clinical
trials of CpG-ODNs in combination with diverse chemo-
RT treatment regimens (34, 44–46). Such trials initiated
between 2015 and 2018 include NCT03410901, NCT01745354,
NCT02254772, and NCT02266147 for the treatment lymphoma;
NCT02927964 for the treatment of follicular lymphoma;
NCT03322384 for the treatment of advanced solid tumors and
lymphoma; and NCT03007732 for the treatment of prostate
carcinoma [reviewed in (44)]. Despite mixed results so far,
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favorable clinical responses observed in patient subsets warrant
further testing (34, 44–46).

IRAK1 ALSO ANCHORS AN
ANTIAPOPTOTIC RESPONSE TO RT
DISTINCT FROM IRAK1 IMMUNE
SIGNALING

As discussed in Introduction, while mammalian IRAK1 is a
genuine protein kinase and is a central transducer in IL-
1R/TLR signaling, its catalytic activity appears largely dispensable
for innate immunity. TLR/IL-1R-independent roles for IRAK1
might explain this paradox, yet until recently no such non-
immune IRAK1 function had been reported in vertebrates.
In a screen for small molecules that restore RT-induced
cell death in otherwise radioresistant p53 mutant zebrafish
(47, 48), we identified the microtubule inhibitor, oxfendazole
(47). Surprisingly, target discovery identified IRAK1, and not
tubulin, as the key target whose inhibition by oxfendazole was
responsible for cell death recovery in irradiated fish (47). The
requirement of IRAK1 for cell survival after RT was conserved
in multiple human cancer cell lines tested in vitro or as tumor
xenografts in vivo, regardless of p53 genotype. Overexpression
of IRAK1 was sufficient to force cell survival after RT in
otherwise radiosensitive cells, in a manner that completely relied
on its catalytic activity. Likewise, kinase-dead IRAK1 failed to
complement IRAK1 deficiency in both human and fish models
(47). Rather than promoting survival through NF-κB and other
attendant pathways, we found that IRAK1 acts to deny RT-
induced apoptosis mediated by the PIDDosome complex (PIDD-
RAIDD-caspase-2) (47, 49, 50). These observations identified
an essential role for IRAK1 outside of innate immunity as a
gene required for the survival of irradiated vertebrate cells.
IRAK1’s reliance on its catalytic activity and engagement of
a distinct antiapoptotic cascade were first clues that it might
function in a pathway distinct from the canonical IL-1R/TLR
axis (Figure 1B) (47).

Further evidence for IRAK1 functioning in a novel pathway
came when we asked whether its known upstream proximal
regulators, MyD88, IRAK4, and PIN1, were also required for
the survival of irradiated cells. While IRAK4 and PIN1 clearly
were, MyD88 clearlywas not, whether in human cells or zebrafish
embryos (47). Likewise, while IRAK4 and PIN1 were required for
IRAK1 activation after RT, as assessed by T209 phosphorylation,
MyD88 was not (47). In summary, RT-induced IRAK1 signaling
differs from its canonical counterpart in three fundamental
ways: (1) It fully relies on its kinase activity; (2) it acts
through distinct downstream antiapoptotic mechanisms; and (3)
it does not require MyD88 for activation by IRAK4 and PIN1
(Figure 1B vs. Figure 1A).

IR-INDUCED IRAK1 SIGNALING AS A
DRIVER OF INTRINSIC TUMOR R-RT

Thus far, the case for IR-induced IRAK1 signaling acting as
a driver of intrinsic tumor R-RT is four-fold. (i) IRAK1 and

PIN1 are both sufficient to force R-RT in otherwise radiosensitive
tumor cells (47). (ii) IRAK1 and PIN1 enzymatic activities are
required for R-RT in cancer cell lines derived from multiple
tumor types including HNSCC, breast cancer, colorectal cancer,
and glioblastoma. These requirements for R-RT were verified
in vivo in a mouse xenograft model of radioresistant HNSCC
(47). (iii) IR-induced activation of IRAK1, as assessed by
T209 phosphorylation, systematically correlated with tumor cell
line sensitivity to RT+IRAK1i (47). (iv) Patients with high-
risk HNSCC (HPVneg, mutant TP53) whose tumors resisted
post-operative RT (51) show evidence of pathway activation,
whereby elevated PIN1 expression levels strongly associate with
locoregional recurrence (LRR; P = 0.006) and reduced overall
survival (OS; P = 0.007) (47). Notably, PIN1 overexpression
did not otherwise correlate with metastatic potential, arguing
against the notion that PIN1 levels merely reflected an aggressive
tumor subtype. While upregulation of IRAK1 itself failed to
correlate with R-RT in this cohort, this is not unexpected given
the upstream role played by PIN1 in the pathway (see above;
Figure 1B). Upregulation of PIN1 would in fact be expected to
alleviate selective pressure to overexpress IRAK1 in this context.
Deregulation/amplification at the IRAK1 locus might also not
be a mechanism of choice via which tumors upregulate IRAK1
activity, though IRAK1 overexpression has been detected in
several tumor types (4, 19), with particularly convincing evidence
for causality in triple-negative breast cancer (52). Alternative
routes to IRAK1 activation include upregulation of upstream
positive regulators, such as seen with PIN1 (see above) as well as
S100A-7/9 proteins in breast cancers with 1q21.3 amplification
(53); mutational inactivation or downregulation of negative
regulators such as miR-146a, as seen in del(5q) acute myeloid
leukemia (54); and likely additional mechanisms [reviewed in
(4, 19)]. Complementing our microarray analyses with that
of exome sequence datasets from radioresistant tumors across
tumor spectra will further clarify the extent to which IR-induced
IRAK1 signaling drives R-RT in human cancer.

TARGETING IRAK1 IN RADIORESISTANT
CANCER

As discussed earlier, IRAK1 inhibitors (IRAK1i) were highly
effective at suppressing R-RT in live p53 mutant zebrafish and
human cancer cell lines assayed in vitro or as mouse xenografts in
vivo (47). Remarkably, effective doses of IRAK1i in these models
caused little to no cell death in non-irradiated controls. This
was in stark contrast with the traditional radiosensitizer cisplatin,
which failed to overcome R-RT at maximal tolerable doses (47).
This data, combined with the previously established viability of
Irak1−/− mice (55), suggests that systemic IRAK1i could restore
RT sensitivity in patients without affecting healthy tissues outside
of the radiation field.

While our work thus outlines a strong rationale for targeting
IRAK1 in radioresistant tumors, as based on the projected
efficacy and safety of such treatments, the strategy poses an
immediate conundrum. Wouldn’t systemic inhibition of the
kinase simultaneously thwart the patient’s immune attack on
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the irradiated tumor or the enhancement thereof by means
of TLRa-based IT? Our tumor xenograft experiments, which
were performed in immunodeficient mice, left this key question
unanswered. Neoadjuvant administration of the TLRa (i.e., prior
to RT+IRAK1i) or post-treatment delivery thereof might help
circumvent the issue. However, our studies indicate that the
window for IRAK1i radiosensitizing efficacy is limited to within a
few hours of RT (47), and such treatments would thus be expected
to come at the cost of blunting any acute immune contribution to
the overall tumor response to RT.

However, such a “double-edged sword”-like tradeoff in
efficacy is likely to be avoided by virtue of a critical, differential
reliance of IRAK1 on catalytic activity when operating in
response to IL-1R/TLR vs. when operating in response to RT
(Figures 1A,B). As outlined earlier, kinase activity is essential for
IRAK1 signaling in response to RT in all settings tested, both
in zebrafish embryos and human cancer cells (47). In contrast,
similar experiments making use of kinase dead IRAK1 variants
in human cells (D340N, K239A) or knock-in mice (D359A) have
indicated that catalytic activity is largely dispensable for IRAK1
function in IL-1R/TLR signaling (21–23, 56). Specifically, kinase
dead IRAK1 retained full NF-κB inducing activity in all tested
settings, presumably reflecting the protein’s strict structural
role when engaging TRAF6 (4, 24, 57). IL-1R/TLR-induced
secretion of IL-6, TNFα, and IL-10 were likewise unaffected
in bone marrow-derived macrophages from Irak1D359A knockin
mice (22). Thus, RT+IRAK1i-based radiosensitization strategies,
whether alone or in combination with TLRa-based IT, would be
expected to largely spare IL-1R/TLR-initiated immune attacks on
the tumor, leading to an effective “one-two punch” both from
within and outside the irradiated tumor (Figure 2C). It should
be noted, however, that IRAK1 catalytic activity might not be
entirely dispensable for all forms of IL-1R/TLR signaling. In the
TLR7/9-IRF7 signaling branch, for instance, an intact IRAK1
kinase domain appears required for the transcriptional activation
of IRF7 as well as for the timely induction of interferons by
TLR7/9 (56), as further evidenced by a significant delay in IFN-
β production by plasmacytoid DCs derived from Irak1D359A mice
(22). The relative contributions of the IL-1R/TLR-NF-κB (kinase-
independent branch) vs. IL-1R/TLR-NF-α/β (partially kinase-
dependent branch) to RT-induced antitumor immunity have not
been rigorously explored to date and is an important topic for
future studies.

The “one-two punch” hypothesis that IRAK1i will both
intrinsically sensitize tumor cells to RT while also allowing
for RT-induced antitumor immunity to proceed (Figure 2C) is
further contingent on the use of IRAK1i that are highly specific
to IRAK1. Indeed, unlike IRAK1, the catalytic activity of the sister
kinase IRAK4 is essential for IRAK1 signaling in both the RT and

IL-1R/TLR response pathways, in which IRAK4 acts to activate
IRAK1 via direct phosphorylation on T209 (4, 13, 47). Thus,
any IRAK1i with significant off-target activity against IRAK4
would be expected to radiosensitize the tumor proper but at
the expense of affecting its immunogenic attack (Figure 2D).
We recently confirmed the essential role of IRAK4 in RT-
induced IRAK1 signaling in vivo, whereby (i) irak4-depleted
p53MK/MK zebrafish embryos recover RT-induced cell death as
efficiently as irak1-depleted embryos (Liu and Sidi, unpublished
observations); and (ii) irak1-depleted embryos reconstituted with
T209A human IRAK1mRNA fail to resist RT-induced cell death,
as opposed to embryos complemented with WT IRAK1 mRNA
(Li and Sidi, unpublished observations). Thus, IRAK1i used for
radiosentization purposes should, at the very least, demonstrate
marked selectivity for IRAK1 over IRAK4 (Figures 2C,D).

Of the many IRAK1i developed so far [reviewed in (19)],
only one, pacritinib (58), combines clinical efficacy, acceptable
safety, and selectivity for IRAK1 over IRAK4. This selectivity
is only moderate, however, with IC50s of 6 and 177 nM vs.
IRAK1 and IRAK4, respectively (19). In spite of IRAK1 and
IRAK4 kinase domains sharing >90% amino-acid sequence
identity within the ATP binding pocket as well as identical
gatekeeper tyrosine residues, the selectivity—albeit moderate—of
pacritinib for IRAK1 indicates that developing a highly specific
IRAK1i is feasible in principle. The crystal structure of the
human IRAK1 kinase domain bound to a small molecule was
recently reported (10), which together with the known structure
of the IRAK4 kinase domain (15) should help develop such
selective IRAK1i. A very first example of such a compound
was recently reported by Buhrlage, Treon, Gray and colleagues
(59). The drug, Jh-X-119-01, labels IRAK1 at C302 and shows
irreversible inhibition with an IC50 of 9.3 nM against IRAK1
vs. >10µM vs. IRAK4. Disclosure of the structure of Jh-X-199-
01 should spur future efforts to develop IRAK1i suited for use
as radiosensitizers.
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