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Purpose: We aimed to analyze 18F-fluorodeoxyglucose positron emission tomography

(18F-FDG PET) images via the radiomic method to develop a model and validate

the potential value of features reflecting glioma metabolism for predicting isocitrate

dehydrogenase (IDH) genotype and prognosis.

Methods: PET images of 127 patients were retrospectively analyzed. A series of

quantitative features reflecting the metabolic heterogeneity of the tumors were extracted,

and a radiomic signature was generated using the support vector machine method. A

combined model that included clinical characteristics and the radiomic signature was

then constructed by multivariate logistic regression to predict the IDH genotype status,

and the model was evaluated and verified by receiver operating characteristic (ROC)

curves and calibration curves. Finally, Kaplan-Meier curves and log-rank tests were used

to analyze overall survival (OS) according to the predicted result.

Results: The generated radiomic signature was significantly associated with IDH

genotype (p < 0.05) and could achieve large areas under the ROC curve of 0.911

and 0.900 on the training and validation cohorts, respectively, with the incorporation

of age and type of tumor metabolism. The good agreement of the calibration curves in

the validation cohort further validated the efficacy of the constructed model. Moreover,

the predicted results showed a significant difference in OS between high- and low-risk

groups (p < 0.001).

Conclusions: Our results indicate that the 18F-FDG metabolism-related features could

effectively predict the IDH genotype of gliomas and stratify the OS of patients with

different prognoses.
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INTRODUCTION

Glioma is a common type of primary malignant central nervous
system tumor and causes significant morbidity and mortality (1),
with an incidence of 4–5 per 100,000 individuals. The prognosis
of patients is grim; <50% of patients with low-grade glioma
have no recurrence 10 years after diagnosis (2), and the 5-year
survival rate of patients with high-grade glioma is just 5% (3).
Isocitrate dehydrogenase (IDH) is emphasized as a key biomarker
for glioma prediction and prognosis in the 2016 update of the
WHO diagnostic criteria (4), and the overall survival (OS) of
patients with IDH mutants is significantly better than the OS
of those with wild-type IDH (5). The IDH biomarker is also
critical for accurate glioma classification (4), planning of the
scope of surgical resection (6), and guiding of the chemotherapy
regimen (7, 8). Thus, accurate IDH genotype predictionmay have
a positive impact on the individualized treatment plan of patients
with glioma.

The status of IDH mutation is currently mainly detected
through immunohistochemistry, PCR product sequencing, and
other technologies, using surgical or biopsy tumor samples.
However, there is still an unmet clinical need for easily accessible
biomarkers that can be used to acquire the underlying tumor
genotype and achieve patient survival stratification accurately.
Several exploratory studies have tried to use detection and
analysis techniques that use circulating tumor cells, circulating
tumor DNA, and serum/cerebrospinal fluid biomarkers to
identify IDH mutants. Nevertheless, these studies are still at a
relatively early stage (9, 10). At the same time, other studies have
attempted to predict the status of IDH genotypes in patients
with glioma through magnetic resonance (MR) or positron
emission tomography (PET) imaging parameters, including
the apparent diffusion coefficient and relative cerebral-blood-
volume for MR and the tumor-to-brain ratio and time-to-
peak for PET (11, 12). However, the above studies of IDH
genotype identification based on image parameters lacked the
necessary validation data to verify the performance of the
proposed methods.

An emerging radiomic method based on the combination
of artificial intelligence and medical imaging has attracted
wide attention due its potential value for accurate diagnosis
and prognosis assessment (13). The radiomic method aims
to perform non-invasive tumor analysis by extracting a suite
of quantitative features from medical images (14–16). These
features include a variety of gene expression types that provide
a more comprehensive description of tumor characteristics,
enabling researchers to obtain an effective signature to inform
objective clinical decisions (17–19). Some studies have been
carried out based on MR images and radiomic methods and
have demonstrated the potential value of radiomic features
in predicting the gene status of gliomas (20–22). It is well-
known that PET imaging is functional molecular imaging
that uses tracers to visualize biological processes such as
uptake of glucose, consumption of amino acid analogs, cell
proliferation, etc. Specifically, 18F-fluorodeoxyglucose positron
emission tomography (18F-FDG PET) reflects the uptake of
glucose in tumor areas and determines the spatial distribution

of radioactive PET imaging agents quantitatively in vivo, using
elevated metabolism at the molecular level to map tumorigenic
activity (23). This imaging method provides additional insight
beyond MR imaging (MRI) into the biology of gliomas, which
facilitates the analysis of the tumor from the perspective of
glucose metabolism. In glioma research, 18F-FDG PET is widely
applied, for example for tumor grading (24), determination
of tumor extent (25), surgical planning (26), differentiation of
tumor progression and necrosis (27), and prognosis prediction
(28). However, to the best of our knowledge, few studies have
used 18F-FDG PET images and the radiomic method to predict
IDH genotype.

Therefore, in this study, we performed a comprehensive
analysis and developed a combined model based on 18F-
FDG PET radiomic signatures and the preoperative clinical
characteristics of patients for non-invasive prediction of glioma
IDH genotype status. We hypothesized that this radiomic
analysis may identify differences in 18F-FDG metabolism
between tumors with different IDH genotypes and thereby help
to assess patient IDH genotype and prognosis.

MATERIALS AND METHODS

Patients
For this retrospective study, we used database records of patients
who were diagnosed with primary glioma between 2010 and
2017 at the Peking Union Medical College Hospital, Beijing,
China. A total of 127 consecutive cases were included in this
study according to the inclusion and exclusion criteria presented
in Supplementary Methods 1 and Supplementary Figure 1. The
design and protocol of the study were conducted in accordance
with the Declaration of Helsinki and were approved by the
Ethics Committee of Peking Union Medical College Hospital,
with all requirements for informed patient consent waived. These
patients were randomly divided into two groups, two-thirds (N
= 84) in the training cohort and one-third (N = 43) in the
validation cohort.

IDH Mutant Detection
IDH1 and IDH2 mutations were detected postoperatively in
patient tumor tissue using direct sequencing, as described by
Horbinski et al. (29). DNA was isolated from formalin-fixed,
paraffin-embedded tumor tissue using the Simplex OUP R©FFPE
DNA extraction kit (TIB, China), and the quantity was assessed
by spectrophotometry using a NanoDrop 2000 (Thermo Fisher,
US). Polymerase chain reaction (PCR) was accomplished with
IDH1 primer (IDH1-F) 5′-TGATGAGAAGAGGGTTGAG-
3′, (IDH1-R) 5′-TTACTTGATCCCCATAAGCC-3′, and
IDH2 primer (IDH2-F) 5′-GACCCCCGTCTGGCTGTG-3′,
(IDH2-R) 5′-CAAGAGGATGGCTAGGCGAG-3′ using the
DRR007 kit (Takara, Japan) and a Verity 96-Well Thermal
Cycler (Thermo Fisher, US) to amplify the fragment that
contains two mutation hotspots. PCR products were treated
with Exonuclease I and Antarctic Phosphatase (New England
Biolabs, UK) and sequenced using a Genetic Analyzers 3500
(Thermo Fisher, US).
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18F-FDG PET Data Acquisition and Tumor
Segmentation
18F-FDG was produced in situ using an RDS-111 Cyclotron
(CTI, US). After a fast of at least 4 h, patient blood glucose
level was tested and confirmed as not exceeding the normal
limit (6.4mM). A dose of 5.55 MBq (0.15 mCi) 18F-FDG per kg
of body weight was injected intravenously under standardized
conditions in a quiet, dark room with the patient’s eyes
closed. An 18F-FDG PET/CT scan was performed 40–60min
after the 18F-FDG injection using a Biograph 64 TruePoint
TrueV PET system (Siemens Medical Solutions, Germany). The
reconstruction of PET imaging used a 336 × 336 pixel matrix,
corresponding to a voxel size of 1 × 1mm with a 3mm
slice thickness.

The three-dimensional region of interest (ROI) of every
tumor was manually segmented within each slice using ITK-
SNAP software (http://www.itksnap.org) by two neurosurgeons
with >10 years’ experience in neuro-oncology and neuro-PET,
respectively, who were blinded to the final pathological result.
The result of each segmentation was reviewed by a senior
nuclear medicine physician with over 20 years’ experience in
this field. If the divergence between segmentations by the two
neurosurgeons was <5%, the final ROI was determined as the
overlapping region of the two ROIs, and if the divergence was
more than 5%, the senior nuclear medicine physician made the
final decision.

Radiomic Feature Extraction and Feature
Selection
The radiomic analysis workflow of our study is illustrated
in Figure 1. Calculations for all radiomics features were
implemented from a standard uptake value (SUV) image
using the open-source PyRadiomics package (https://github.
com/Radiomics/pyradiomics) in Python (30). The PET image
normalization method is detailed in Supplementary Method 2.
Ninety-nine quantitative radiomics features were calculated
from the ROI within each original SUV image, comprising
13 shape and size features, 18 first-order statistical features,
and 68 texture features (22 gray-level co-occurrence matrix,
14 gray-level dependence matrix, 16-gray level run length
matrix, and 16 gray-level size zone matrix features) (31). By
applying eight different decomposition level wavelet filters,
688 first-order statistical and texture radiomics features were
obtained. A total of 774 first-order statistical and texture
features were calculated after applying the “logarithm, square,
exponential, gradient, squareroot, lbp” filter. Filter descriptions
and mathematical definitions for the computed radiomics
features are described at (http://pyradiomics.readthedocs.io/
en/latest/features.html). After applying different filters, the
same number of features was extracted, including 18 first-
order statistical features and 68 texture features (22 gray-
level co-occurrence matrix, 14 gray-level dependence matrix,
16 gray-level run length matrix, and 16 gray-level size zone
matrix features).

In order to facilitate the construction of the radiomic signature
and control the feature coefficients, all radiomic feature values

were normalized to between 0 and 1 according to the maximum
and minimum value for the subsequent analysis. The method
of feature selection with the elastic net is considered as an
extension of the least absolute shrinkage and selection operator,
which is appropriate in situations where the number of predictors
exceeds the number of cases. With the elastic net method, which
is considered an extension of the least absolute shrinkage and
selection operator (32, 33) and is appropriate in situations where
the number of predictors exceeds the number of cases (34).
In this study, the key IDH-associated radiomics features were
selected first, and then the final feature set was determined
according to the greatest area under curve (AUC) value of 10-
fold cross-validation. The p-value, based on univariate analysis,
was used to assess the potential impact of clinical characteristics
(Supplementary Table 1) on IDH genotype prediction.

Model Construction and Validation
With these selected key radiomic features, a support vector
machine model with a radial basis function kernel was then
used to construct a radiomic signature for IDH genotype
prediction in the training cohort with 10-fold cross-validation.
Details of the model are provided in Supplementary Method 3.
Training cohort data and the radiomic signature generated
together with selected clinical features were used to establish
a multiple logistic regression model for predicting the patient’s
IDH genotype.

The accuracy of the IDH status predictions using the above
methods was assessed using the receiver operating characteristic
(ROC) curve and the AUC values in the training cohort and
a completely independent validation cohort. The most valuable
IDH genotype prediction model was determined by comparing
the predicted performance indicator values and the ROC curves
(Delong’s test) of the three models in the training cohort
and the validation cohort and was evaluated based on the
calibration curve and Hosmer-Lemeshow test (35). Decision
curve analysis was used to manifest the clinical usefulness of
the model by quantifying the net benefit at different threshold
probabilities (36).

Survival Analysis
Furthermore, the patients in the training and validation cohorts
were divided into high- and low-risk groups according to the
predicted result of the optimal model developed. The Kaplan-
Meier curve was used to stratify the survival trend between
patients in the two risk groups. The log-rank test was then used
to verify whether there were statistical differences in survival
between the two groups.

Statistical Analysis
The differences between features were assessed using Pearson’s
Chi-Square tests or Fisher’s exact tests for categorical variables
and Student’s t-tests or Mann-Whitney U-tests for continuous
variables, as appropriate. The above statistical analyses
were performed with SPSS Statistics software, version 18.0
(Chicago, IL, USA) or R software, version 3.4.1 (www.R-project.
org). The two-tailed threshold of p < 0.05 was considered
statistically significant.
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FIGURE 1 | Workflow of the proposed radiomic analysis for non-invasively predicting isocitrate dehydrogenase (IDH) genotype and prognosis in glioma patients.
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TABLE 1 | Clinical characteristics of patients in the training cohort and validation cohort.

Characteristics Training cohort (n = 84) Validation cohort (n = 43) p

IDH-mt (n = 38) IDH-wt (n = 46) IDH-mt (n = 13) IDH-wt (n = 30)

Age (years) 43.84 ± 11.11 51.30 ± 15.33 41.85 ± 9.60 50.10 ± 20.43 0.92

Sex 0.26

Male 21 25 7 21

Female 17 21 6 9

Weight (kg) 67.99 ± 11.78 66.44 ± 14.72 69.00 ± 12.18 67.83 ± 13.38 0.67

Metabolism 0.42

Cystic 31 24 10 15

Solid 7 22 3 15

SUVmax 10.32 ± 5.54 10.24 ± 5.12 10.09 ± 5.53 9.03 ± 4.02 0.33

SUVmean 4.48 ± 2.38 4.54 ± 1.86 3.80 ± 1.99 3.89 ± 1.89 0.09

IDH, isocitrate dehydrogenase; IDH-mt, IDH mutant; IDH-wt, IDH wild-type; SUV, standard uptake value.

Chi-Square or Fisher’s exact tests, as appropriate, were used to compare the differences in categorical variables, while independent sample t-tests or Mann-Whitney U-tests were used

to compare the differences in continuous variables.

Age, Weight, SUVmax„ and SUVmean are represented as (mean ± standard deviation).

RESULTS

Clinical Characteristics
All patients underwent surgery to remove tumors, and their IDH
genotype status was assessed. Of the 84 patients in the training
cohort, 38 were identified as having an IDH mutant and 46
as having the IDH wild-type gene. Of the 43 patients in the
independent validation cohort, 13 had an IDH mutant and 30
had the IDH wild-type gene. The baseline characteristics of the
training and validation cohorts are shown in Table 1 and showed
no significant differences between the two groups (p = 0.09–
0.92), which justified their applicability as training and validation
cohorts. The baseline information of patients with different IDH
phenotypes is shown in Supplementary Table 2.

Radiomic Feature Extraction and Feature
Selection
In total, 1,561 radiomic features were computed in our study.
After applying the elastic net method, 11 key radiomic features
were selected from the training cohort for generating the
radiomic signature (Figure 2), all of which showed significant
differences (independent t-test p < 0.05) between IDH mutant
and IDH wild-type cases (feature details are shown in Figure 2).
These key radiomic features included 1 shape, 7 texture, and
3 first-order statistical features. The results of the univariate
analysis of clinical characteristics revealed age and the type
of tumor metabolism as significant predictors (p < 0.05), as
presented in detail in Supplementary Table 1.

Model Construction and Validation
IDH genotype prediction using the above radiomic signature
achieved a noteworthy result, producing AUCs of 0.904 [95%
confidence interval (CI), 0.886–0.923] and 0.890 (95% CI, 0.861–
0.919) in the training and validation cohorts, respectively. The
predictive potential of the selected clinical characteristics was
assessed by establishing and evaluating the clinical model,

obtaining AUCs of 0.705 (95% CI, 0.673–0.738) and 0.664
(95% CI, 0.634–0.695) in the training and validation cohorts,
respectively. A multivariable combined model was developed
through the combination of age, type of tumor metabolism, and
radiomic signature, which was visualized through a nomogram
(Supplementary Figure 2). Detailed information such as the
feature coefficients and predicted probability calculation method
of the combined model are indicated in Supplementary Table 3.
The combined model achieved the best result, with AUCs of
0.911 (95% CI, 0.895–0.931) for the training cohort and 0.900
(95% CI, 0.877–0.923) for the validation cohort. Figure 3 shows
the ROC curves and the probability distribution of the predicted
IDH mutants in the training and validation cohorts for the three
models. More details on the predictive indicators obtained by
these models are given in Table 2. The predictive performance of
the combined model in the training and validation cohorts is also
depicted by the barplots in Figure 4. Subgroup analysis shows
that our model can also show good predictive performance with
different glioma grades. The AUC was 0.88 and 0.93 in lower-
grade tumors (WHO II and WHO III) and glioblastoma (WHO
IV), respectively. Details are shown in Supplementary Figure 3.

Based on the results shown in Table 2 and
Supplementary Table 4, the radiomic signature and the
combined model showed significantly better discrimination
performance (p < 0.05) than the clinical model alone according
to the AUCs in the training and validation cohorts. Here,
our results also confirm that the combined model, with more
incorporated information, had the highest AUC value and
showed more obvious differences in the predicted probability
distribution trends of patients with different genotypes in
the two cohorts. The combined model calibration curve
displayed good agreement between prediction and observation
in the training and validation cohorts, and the Hosmer-
Lemeshow test did not show a significant difference (p >

0.05), demonstrating a good fit in both cohorts (Figure 5). As
shown in Supplementary Figure 4, decision curves were used
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FIGURE 2 | Forest plot of the 11 selected radiomic features. All features yielded significant differences in IDH mutant and IDH wild-type patients (independent t-test,

p < 0.05).

to demonstrate the benefits of the combined model. We found
that if the threshold probability of clinical decision was >0%
or >8% in training or validation cohorts, then patients would
benefit more from the combined model than if genotype was
not predicted.

Survival Analysis
Our results suggest that the combined model not only has
great potential for predicting IDH genotypes but can also help
to stratify the OS of patients through Kaplan-Meier analysis
(Figure 6). The predicted value of the combined model divided

patients into high-risk (predicted probability <0.5) and low-
risk (predicted probability ≥0.5) groups. Meanwhile, our results
indicated significant statistical differences in the OS of patients,
using a log-rank test between the two groups in the training and
validation cohorts (p < 0.05).

DISCUSSION

In this study, we obtained 11 metabolism-related radiomic
features that could reflect significant differences in different
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FIGURE 3 | The diagnostic performance of these different models in predicting IDH genotype. The first row depicts the receiver operating characteristic (ROC) curves

of the three models. The second row depicts the distribution of the IDH mutant probabilities predicted by the three models, where the horizontal dash lines are the

quartiles. Subgraph (A–C) show the performance of clinical model, radiomic signature and combined model to predict IDH genotype, respectively.

TABLE 2 | Diagnostic performance of the radiomic signature, clinical model, and combined model.

Method Cohort AUC (95% CI) ACC (95% CI) SEN (95% CI) SPE (95% CI)

Radiomic signature Training cohort 0.904 (0.886, 0.923) 82.1% (79.8, 84.5) 86.8.1% (83.6, 90.0) 78.3% (74.9, 81.5)

Validation cohort 0.890 (0.871, 0.924) 81.4% (79.6, 83.9) 92.3% (89.4, 95.3) 80.0% (77.2, 82.9)

Clinical model Training cohort 0.705 (0.673, 0.738) 66.7% (63.8, 69.5) 71.1% (66.8, 75.3) 63.0% (59.2, 67.0)

Validation cohort 0.664 (0.631, 0.695) 65.1% (62.1, 68.0) 61.5% (56.1, 67.2) 66.7% (63.0, 70.1)

Combined model Training cohort 0.911 (0.895, 0.931) 79.8% (77.2, 82.3) 78.9% (75.2, 82.7) 80.4% (77.0, 83.9)

Validation cohort 0.900 (0.877, 0.923) 83.7% (81.5, 86.0) 92.3% (89.3, 95.3) 80.0% (77.1, 82.9)

95% CI, 95% confidence interval; AUC, area under the curve; ACC, accuracy; SEN, sensitivity; SPE, specificity.

IDH genotypes of gliomas. Specifically, we developed a
combined model that links the above metabolic features and
clinical information to predict the IDH genotype of a glioma
effectively. Moreover, our results also demonstrate that there is
a significant correlation between the probabilities predicted with
the combined model and patient prognosis.

Our study extended previous radiomic studies on predicting
IDH genotypes in patients with glioma, which predominantly
linked quantitative features based on MR images to predict
glioma patient IDH genotype. Yu et al. (20) showed that
a radiomic study based on 110 T2-FLAIR MR images was
potentially useful for non-invasive prediction of IDH genotype
in grade II gliomas. Zhang et al. (21) used a combination of
radiomic features based on multiparameter MRI and clinical
features to predict IDH genotype in 120 high-grade gliomas.
Lu et al. (22) used 214 MR images from The Cancer Image

Archive and 70 collected preoperative MR images to predict
the IDH mutant in low-grade gliomas. However, these studies
do not fully reflect the advantages of non-invasive prediction
because they all used knowledge of pathological tumor grade
to select patients. The difference is that our study extracts
quantitative features based on PET images that reflect tumor
FDG metabolic information. Moreover, the combined model is
a promising method for predicting a patient’s IDH genotype
and does not require prior selection of the patients based on
pathological grade. Figure 7 illustrates a comparison of two
representative patient cases with similar image and clinical
representation; the combined model effectively distinguished
between the individual with an IDH mutant and the IDH
wild-type patient.

PET imaging is widely used in clinical tumor therapy
and can non-invasively provide information related to tumor
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FIGURE 4 | Barplots depicting the predictive performance of the combined model. A blue bar with a predicted probability value > cutoff (0.5) indicates that the model

successfully identifies the IDH mutant patients; a blue bar with a predicted value < cutoff indicates that the signature fails to identify the IDH mutant patients. For the

green bars, the opposite applies.

FIGURE 5 | Calibration curves of the combined model in the training and

validation cohorts.

metabolism, predicting the progression and recurrence of glioma
more effectively than MRI (37). 18F-FDG PET imaging can show
alterations in the tumor microenvironment glucose metabolism,
also known as the oncological Warburg effect (38). The

differences in metabolic microenvironments between the two
genotypes of glioma were reflected by the radiomic signature that
combined 11 prominent high-dimensional radiomic features.
The results show that the combined model has extraordinary
predictive potential and can combine more information to
enhance and perfect the predictive ability for IDH genotype; thus,
as an indicator parameter, it may provide important predictive
power for future IDH prediction. Until now, radiomic studies
using 18F-FDG PET images for IDH genotype classification of
gliomas have not been well-described in the literature. Our
study clarifies the association between the radiomic features
of 18F-FDG metabolism and IDH genotypes and has achieved
noteworthy predictive and prognostic performance.

Our findings were in line with previous radiomic studies
showing that features of PET images are potentially useful for
solving clinical problems (39, 40). For example, the radiomic
feature sphericity is a measure of how spherical tumors are
and, here, shows the metabolic shape of the tumor. A recent
radiomic study demonstrated that the sphericity feature based
on 18F-FDG PET is associated with low therapeutic benefit and
survival in colorectal cancer (40). Results from our study suggest
that there are also significant differences in the shape feature
based on 18F-FDG PET images in gliomas with different IDH
genotypes (p = 0.016, Student’s t-test). The sphericity of IDH-
mutant glioma is lower than that of the IDH wild-type. These
conclusions indicate that radiomic features based on 18F-FDG
PET images play an important role, have robust applicability in
solid tumor analysis, andmay serve as valuable indicators to assist
clinicians in making decisions.
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FIGURE 6 | Kaplan-Meier analysis of overall survival according to the actual IDH status and the IDH status predicted by the combined model in the training and

validation cohorts.

FIGURE 7 | 18F-fluorodeoxyglucose positron emission tomography images of two patients with IDH mutant and IDH wild-type status. The red boundaries in the

images were manually delineated as the region of interest. All the clinical characteristics and predicted probabilities of the combined model are presented in the

center table.

Furthermore, the prognostic value of 18F-FDG PET textural
features before treatment has been confirmed in several types
of extracranial tumors (41, 42). It is well-known that patients
with gliomas of different IDH genotypes differ in their survival
times. According to follow-up information on patients, our
study found that the survival curves predicted by the combined

model achieved similar performance to the survival curves
of patients with actual IDH genotypes, which could be used
to effectively stratify the prognosis of patients (see Figure 6).
Therefore, the predicted outcome of the combined model
we developed was proved to be an independent risk factor
for prognosis, providing a new method for predicting the
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prognosis of patients with glioma and showing promise as a
prognostic biomarker.

Nevertheless, our study has several limitations. We used
retrospective data and did not combine our analysis with baseline
CT and MRI features. As this was a single-center study, larger
data sets from multiple centers should be interrogated to assess
the potential clinical utility of our model further. Moreover, large
datasets based on multi-modal imaging may be used for refining
the model to improve its predictive performance. Furthermore,
although our PET-based imaging method had good predictive
performance, the clinical implications of these radiomic features
are currently difficult to interpret.

In summary, our results confirm that the radiomic analysis
of PET images reflecting glucose metabolism in gliomas could
reveal metabolic differences among gliomas with different
IDH genotypes, which provides the possibility of non-invasive
identification of IDH genotypes in patients. Moreover, we found
a strong association between the predicted probabilities and the
OS of patients, which further proved the prognostic value of the
combined model.
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