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Cancer is the most common cause of death in adult dogs. Many features of

spontaneously developing tumors in pet dogs contribute to their potential utility as a

human disease model. These include similar environmental exposures, similar clonal

evolution as it applies to important factors such as immune avoidance, a favorable body

size for imaging and serial biopsy, and a relatively contracted time course of disease

progression, which makes evaluation of temporal endpoints such as progression free

or overall survival feasible in a comparatively short time frame. These criteria have been

leveraged to evaluate novel local therapies, demonstrate proof of tumor target inhibition

or tumor localization, evaluate potential antimetastatic approaches, and assess the

efficacy, safety and immune effects of a variety of immune-based therapeutics. Some of

these canine proof of concept studies have been instrumental in informing subsequent

human clinical trials. This review will cover key aspects of clinical trials in dogs with

spontaneous neoplasia, with examples of how these studies have contributed to human

cancer therapeutic development.
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INTRODUCTION

Common concerns with regard to the clinical applicability of many murine models of
human cancer include immune status, significantly reduced clonal heterogeneity, relative
tumor burden, tumor location (orthotopic vs. heterotopic), species-specific differences in drug
distribution/metabolism, and differences in in vivo drug concentrations that are achievable, among
others. These contribute to the observation of extremely poor correlation between results of murine
studies and early human clinical trials with anticancer agents (1). More predictive animal models
are clearly needed.

More than 1 million new cases of cancer are thought to occur in dogs each year in the
United States, and in retrospective studies describing canine mortality, cancer is the most
common cause of death with an estimated rate of ∼30% (2–4). This large cancer burden in dogs
indicates a group of spontaneously occurring tumors, many of which are histologically similar to
human tumors. Commonly encountered histotypes include non-Hodgkin lymphoma, malignant
melanoma, osteosarcoma (OSA), bladder carcinoma, andmultiple brain cancer types among others
(2, 5). Client-owned dogs with cancer are being increasingly recognized as a resource for preclinical
interrogation of the tolerability, pharmacology, pharmacodynamic effects, and potential efficacy of
novel anticancer therapies. Thismodel’s potential was discussed in a National Academy ofMedicine
Workshop on Comparative Oncology that occurred in 2015 (http://www.nap.edu/21830) (6).
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Clinical trials in client-owned dogs with spontaneous
cancer are potentially important translational models, owing
to dogs’ relative outbreeding, large size, immunocompetence,
and physiological/biological similarity to humans. Spontaneous
canine tumors naturally develop treatment resistance, as well as
spontaneous recurrence and metastasis. Absolute tumor burdens
in dogs are more similar to humans, which may be informative
with regard to biological factors such as clonal heterogeneity
and hypoxia. The comparatively large size of canine tumors
(vs. rodent tumors) also allows for serial tissue collection and
imaging over time (2, 7). This is due partly to the fact that these
patients are commonly sedated or anesthetized for procedures,
moderating concerns over patient discomfort. While clinical case
management and data collection are of very high quality, the
relative cost of veterinary oncology clinical trials are 10–20% of
what similar trials in physician-based oncology would be.

Dogs may also be more reliable models for assessing
toxicity of novel therapies than are rodents. As in human
patients, canine patients are monitored for hematologic
and biochemical toxicities via routine clinical pathology,
and sophisticated monitoring (e.g., 24 hour continuous
electrocardiographic telemetry, continuous blood pressure
measurement, ophthalmologic monitoring, echocardiography,
gait analysis, advanced imaging) can be performed as-needed.
Unlike in laboratory settings, supportive care (e.g., antiemetics,
antidiarrheals, antibiotics, etc.) is also used in client-owned
animals similarly to its employment in human patients.
Universally accepted grading systems for adverse events from
antineoplastic therapy (8, 9), as well as universally accepted
tumor response criteria (10, 11), are published.

The Comparative Oncology Trials Consortium
(COTC: https://ccr.cancer.gov/Comparative-Oncology-
Program/sponsors/consortium) is a network of more than
20 academic veterinary oncology centers, centrally managed
by the Comparative Oncology Program, housed within the
NIH-NCI-Center for Cancer Research. Its central goal is to
plan and perform clinical trials in dogs with cancer to evaluated
novel potential therapies for human cancer, with the goal
of answering biological questions to inform development
for future human clinical trials. COTC sponsored trials are
usually pharmacokinetically/pharmacodynamically intensive,
with the results incorporated into the design of future human
studies. The launch of this network has improved the ability
of potential sponsors and collaborators to access a national
cooperative group for the conduct of proof of concept studies
in dogs. Potential sponsors work with COTC management
to iteratively develop a clinical protocol to address a specific
drug development question/questions, which is then put out to
the membership for potential participation. COTC sites have
the opportunity to participate or decline based on capacity,
specialized equipment/techniques that may be required, and/or
competing trials at the institution. Trial conduct is governed by a
single memorandum of understanding between the participating
sites, which streamlines the contractual process.

These important attributes have allowed the preclinical
evaluation of novel cancer therapeutics that fall into several
broad categories: (1) Local therapy approaches such as surgery,

radiation therapy and locally-delivered drug therapy; (2) Proof of
target inhibition and proof of tumor targeting; (3) Studies in the
minimal residual disease setting; (4) Immunotherapy studies.

LOCAL THERAPY APPROACHES

As a result of dogs’ comparatively large body size and the relative
size of their tumors, tumor-bearing dogs can be a unique and
informative model for the evaluation of novel local therapies.
Surgical and radiation therapy (RT) related studies can utilize
the same techniques and equipment as would be used in human
patients, without the need for the significant adaptation or
miniaturization which could be required for rodents. As stated
above, the comparatively similar size and growth rate of dog
tumors results in similarities in important microenvironmental
parameters such as oxygenation, pH, and interstitial fluid
pressure (12–18), and the large tumor size facilitates serial biopsy
and measurement of intratumoral parameters over time. As a
result, tumor-bearing dogs have been utilized in translational
studies of novel surgical approaches, RT, hyperthermia, and
regionally-delivered drug therapy.

Translational Surgical Studies
National Cancer Institute sponsored work by Withrow et al.
in the 1980’s pioneered surgical protocols for cortical allografts
for limb-salvage in bone sarcoma patients. These procedures
were co-developed by veterinary and human surgical oncologists
and refined in a large number of dogs with spontaneous OSA,
mostly of the distal radius. Effects of neoadjuvant RT and
chemotherapy on surgical outcome and allograft incorporation
were also assessed (19–21). These observations and subsequent
refinements developed in dogs led directly to the use of these
approaches in human limb-sparing surgery (22). An observation
was made regarding the postoperative development of bacterial
osteomyelitis and improved metastasis-free and overall survival
times in dogs (23). This was subsequently observed in at least one
study of humans with OSA (24). Further study of this observation
in a murine syngeneic OSAmodel suggested NK- andmonocyte-
mediated angiogenesis inhibition as a putative mechanism of
action (25).

Radiation Therapy
Studies of radiation by Gillette et al. in the 1970’s and 1980’s in
both normal and tumor-bearing dogs established many normal
tissue RT dose constraints still in use today in human patients (19,
26–37). More recently, studies in tumor-bearing dogs provided
critical proof of concept for accurate dosimetry and conformal
avoidance during the development of helical tomotherapy, a
slice-by-slice image-guided intensity modulated RT strategy that
is now commercially available (38, 39).

Translational Studies of Hyperthermia and
Radiation Therapy
A substantial body of literature documents pioneering NCI-
funded work by Dewhirst et al. evaluating the effects of
hyperthermia and hyperthermia/RT combinations on the tumor
microenvironment in canine tumors, especially soft-tissue
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sarcomas. As a result of their common subcutaneous location
and the relative ease with which procedures such as serial biopsy
and interstitial probe placement can be performed, meaningful
insights into thermal dosimetry, alterations in tumor perfusion
and tumor oxygenation, and predictors of clinical response were
identified (36, 40–42).

Locally/Regionally Delivered Therapeutics
Multiple studies of inhaled/pulmonary delivered therapeutics
have evaluated safety and provided preliminary evidence
of antitumor efficacy in support of human trials. These
include evaluation of inhaled doxorubicin, paclitaxel and
gemcitabine for the treatment of measurable primary or
metastatic pulmonary tumors (43, 44), and nebulized inhaled
interleukin-2 (IL-2) containing liposomes for treatment of
pulmonary metastatic OSA (45). In addition to the observed
objective antitumor responses, the latter study included serially
collected bronchoalveolar lavage (BAL) fluid to characterize the
local leukocyte population before and after IL-2 therapy. Post-
IL-2 BAL samples contained a more than four-fold increase
in lymphocytes, with a shifted CD4:CD8 ratio and increased
cytolytic activity ex vivo (45).

Various intratumor treatments have been evaluated in tumor-
bearing dog models. These include attenuated Clostridium spores
(46), and various intralesional gene therapy approaches (47–50).
In many of these studies, serial biopsy was performed to evaluate
and characterize immune infiltrates and/or confirm transgene
expression. Several novel intralesional chemotherapy approaches
(± other local treatments such as RT or hyperthermia)
have likewise been evaluated, demonstrating tolerability and
preliminary evidence of efficacy (50–55).

PROOF OF TARGET INHIBITION OR
PROOF OF TUMOR
TARGETING/ACCUMULATION

Owing again to the relative ease of serial biopsy, as well as
comparably favorable pharmacokinetic parameters in dogs such
as organ-specific blood flow and hepatic enzyme homologies,
canine tumors can serve as very useful translational models
for evaluation of pharmacokinetic/pharmacodynamic (PK/PD)
relationships, demonstration of target inhibition, and/or
demonstration of tumor targeting. In these cases, substantial
preliminary in vitro work is often necessary to confirm target
expression, demonstrate similar drug behavior in canine and
human tumor cells, and potentially validate reagents and
protocols necessary for PD assessment. Importantly, there are
certain situations where molecular targets may be present in
canine tumors that are histologically very different from human
tumors expressing the same target. Examples include expression
of mutant KIT protein in canine mast cell tumors (MCT) with
a similar mutation expressed in human gastrointestinal stromal
tumors (56), and expression of the V600E BRAF mutation,
commonly expressed in human melanomas, in canine bladder
cancer (57, 58).

Proof of Drug Target Inhibition
An early example of successful evaluation of a novel targeted
agent in dogs with spontaneous neoplasia involves the preclinical
evaluation of the “split kinase” inhibitor SU11654 (toceranib
phosphate, PalladiaTM), in dogs with MCT. SU11654 is a
structural analog of the human multi-kinase inhibitor sunitinib
(SutentTM) with very similar physicochemical properties and
IC50’s against their intended targets, which include KIT, VEGFR2
and PDGFR-alpha. After initial in vitro studies demonstrating
canine MCT growth inhibition, apoptosis induction and
inhibition of KIT phosphorylation (59), pilot studies were
performed in tumor-bearing dogs demonstrating achievement
of likely therapeutic drug concentrations in plasma with good
tolerability and evidence of antitumor activity (60). Furthermore,
inhibition of KIT activation and downstream signaling was
demonstrated in biopsy samples prior to and 8 h following the
first dose of drug (61). These data provided critical information
in support of the human development of sunitinib, which is now
approved by the U.S. Food and Drug Administration (FDA) for
human renal cell carcinoma, pancreatic neuroendocrine tumors,
and gastrointestinal stromal tumors, and led to the FDA approval
of toceranib for the treatment of canine MCT (62).

A similar “next to lead” approach has been taken with the
selective inhibitor of nuclear export verdinexor (KPT-335), which
was evaluated in vitro for activity in canine tumor cells, then in
tumor-bearing dogs to provide supporting data for development
of the human analog selinexor (KPT-330, XpovioTM) (63), now
approved by the FDA for the treatment of human multiple
myeloma. Verdinexor is now in clinical development as a canine
cancer therapeutic.

Rather than evaluating a structural analog to generate
preclinical data in tumor-bearing dogs in support of a human
clinical candidate, another recent study evaluated PCI-32765

(ibrutinib, Imbruvica
TM

), a first-in-class inhibitor of the Bruton
tyrosine kinase (Btk), in dogs with spontaneous B-cell lymphoma
prior to first-in-in-human studies (64). Goals of the study were 2-
fold: (1) To validate a PD assay to be used in subsequent human
trials; (2) To generate preliminary evidence of efficacy, since
reliable murine B-cell lymphoma models demonstrating intact B
cell receptor signaling were not available. Btk receptor occupancy
following ibrutinib treatment was similar in lymphoma tissue
and peripheral blood following treatment, providing support
that measurement in blood alone would likely be accurate in
humans. Furthermore, major antitumor responses were observed
in three of eight dogs treated, providing strong impetus to
accelerate human clinical development of ibrutinib. Ibrutinib
now has FDA approval in humans for the treatment of certain
B cell lymphoma subtypes, chronic lymphocytic leukemia,
Waldenstrom’s macroglobulinemia and graft-vs.-host disease.

Proof of Tumor Targeting
Canine tumors have been utilized to confirm tumor-specific
targeting and/or tumor accumulation of therapeutics.
The inaugural COTC trial evaluated a tumor vasculature
targeted adeno-associated virus phage vector targeted to
alphaV integrins expressed on tumor endothelium and
delivering tumor necrosis factor (TNF), in preparation
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for human trials. Selective targeting of tumor (vs. normal)
vasculature was documented through serial biopsy of tumor
and proximate normal tissues after intravenous infusion,
and tumor-directed expression of TNF was documented.
Furthermore, objective antitumor responses were noted in 2 of
14 dogs (65).

Certain bacteria, especially facultative anaerobes, demonstrate
tropism for tumor tissues. VNP20009 is a Salmonella
typhimurium strain that was attenuated through deletion of
the MsbB gene, contributing to endotoxin production, and the
PurI gene, requiring an exogenous source of purines for survival.
These deletions reduce toxicity and further restrict colonization
to tumor tissues in vivo, while diminishing or eliminating
survival in the environment. Intravenous infusion of VNP20009
was evaluated in tumor-bearing dogs for safety and evidence of
tumor colonization (66). While blood cultures were uniformly
negative 7 days following infusion, the organism was isolated
from tumor tissue in 42% of dogs. The objective response rate
was 15% (10% complete responses). These data supported
an NCI-sponsored clinical trial of VNP20009 in human
metastatic melanoma (67). No objective antitumor responses
were observed in the human melanoma study, however; this
could be due to selection of melanoma as the sole human
tumor type for study, or due to differences in either tolerability
or host (e.g., immune, vascular) response to the bacterium
between dog and human. Strategies for geographically targeted
cytotoxic drug delivery via hyperthermia and thermosensitive
liposomes have also been investigated in canine soft tissue
sarcomas (68).

Proof of Tumor Drug Accumulation
A recent canine clinical trial of the autophagy modulating agent
hydroxychloroquine (HCQ), which was published concurrently
with a series of human clinical trials, was the first to document
substantial accumulation (∼100-fold) of HCQ in tumor tissue
when compared with plasma, and to demonstrate that there
was no correlation between drug concentrations or changes
in autophagy in the two compartments. This suggested that
peripheral blood is not a good surrogate for tumor HCQ
concentration or autophagy-modulatory activity, and that future
clinical trials should aim to identify more accurate surrogates of
HCQ activity (69).

Another large COTC trial evaluated a series of three distinct
indenoisoquinolone-class topoisomerase I inhibitors in dogs
with spontaneous lymphoma. Eighty-four dogs with lymphoma
were allocated to receive one of three drugs. Tolerability,
pharmacokinetics, target engagement and antitumor effects were
evaluated. One of the three drugs, LMP744, demonstrated
significantly increased accumulation in tumor tissue vs. the
other two drugs, and enhanced antitumor activity was ascribed
to this increased tumor accumulation (70). Although LMP744
was not originally selected for further human development, the
unexpected positive results of the canine trial encouraged the
NCI to evaluate LMP744 in humans (ClinicalTrials.gov identifier
NCT03030417). This human trial is currently accruing and thus
human safety/efficacy data are not currently available.

ANTIMETASTATIC EFFICACY

Another potential advantage of canine clinical cancer research is
the relatively compressed time line for tumor progression and
the spontaneous development of local recurrence, metastasis,
and drug resistance. These characteristics allow surgical adjuvant
studies against “microscopic residual disease,” with temporal
endpoints such as progression free or overall survival, to be
conducted relatively expediently. This may be useful especially
for agents designed primarily as antimetastatic therapies. Several
candidate human therapies have been investigated in this context
in tumor-bearing dogs.

Extensive work by Macewen, Kurzman et al. with
the peptidoglycan recognition protein agonist and non-
specific immune stimulant liposome muramyl tripeptide
phosphatidylethanolamine (L-MTP-PE) was performed in
dogs with hemangiosarcoma (HSA) and OSA. Randomized
placebo controlled trials demonstrated meaningful delays in
metastasis and prolongation of overall survival times when
surgery and chemotherapy were combined with L-MTP-PE
(71, 72). Furthermore, bronchoalveolar lavage performed
before and after L-MTP-PE indicated significant enhancement of
activation status and ex vivo antitumor cytotoxicity in pulmonary
alveolar macrophages (73). This work provided critical proof of
principle showing delay of metastasis in OSA, which led directly
to the performance of a randomized, placebo-controlled trial
of surgery, chemotherapy ± L-MTP-PE in human OSA (74).

Subsequently, L-MTP-PE (mifamurtide, Mepact
TM

) was granted
regulatory approval by the European Medicines Agency for
treatment of human OSA.

Another randomized, multicenter surgical adjuvant study
compared standard-of-care therapy with carboplatin to
treatment with the novel liposomal cisplatin drug SPI-77 in dogs
with appendicular OSA. Despite SPI-77’s capacity to deliver
five times more cisplatin vs. the maximum tolerated dose of
free cisplatin, there were no improvements in progression free
survival time or overall survival time when compared with
conventionally dosed carboplatin. These results, combined with
other factors, contributed significantly to the decision to suspend
SPI-77’s clinical development (75).

In a recent study, dogs with splenic HSA were treated
after splenectomy with a combination of doxorubicin and
an epidermal growth factor receptor- and urokinase-targeted
Pseudomonas exotoxin, referred to as eBAT. These targets appear
to be conserved in certain human sarcomas, and thus canine
HSA may be a valuable translational model despite the distinct
histotype and rareness of its human homolog. In addition to very
good tolerability, there was the suggestion of improved outcome
when eBAT-treated patients were compared with historical
canine patients receiving doxorubicin alone (76). The human
development path for eBAT is not currently known.

IMMUNOTHERAPY

In addition to the advantages discussed above, a unique
advantage of spontaneous canine tumors that has been somewhat
overlooked is that these tumors have evolved, by necessity,
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TABLE 1 | Immunotherapy approaches investigated in canine cancer trials.

Category Therapy type References

Passive,

nonspecific

BCG/other bacterial

products

(46, 66, 96–100)

L-MTP-PE (71–73, 101)

Recombinant cytokines (45, 101–107)

Intralesional immuno/gene

therapy

(47, 48, 108–110)

Passive, specific Tumor-targeting antibodies (111, 112)

Checkpoint inhibitors (113)

Whole cell vaccines (114–119)

Gene/peptide vaccines (120–124)

Active, nonspecific Activated T cells (125, 126)

Oncolytic virotherapy (127, 128)

Active, specific CAR-T cells (129)

immune-avoidance strategies that are very similar to those
utilized by human cancers. This is in stark contrast to syngeneic
murine tumor models, where immune tolerance does not
evolve similarly. These immune-avoidance strategies include
upregulation of immune-suppressive cytokines such as IL-8,
IL-10, and transforming growth factor beta (77–80), cooptation
of innate immune-suppressive cells such as regulatory T cells
(81–83), myeloid-derived suppressor cells (84–86), and “steady
state” macrophages (87–90), and upregulation of immune
checkpoint molecules such as PD-L1 and B7x (91–95). Thus,
successful cancer immunotherapy in dogs requires overcoming
of these conserved immune-avoidance strategies just as is
required in humans.

In addition to the approaches mentioned in previous sections,
a variety of immunotherapy strategies have been investigated
in dogs over decades. These range from passive non-specific
immunotherapy approaches to early studies with canine chimeric
antigen receptor-engineered T (CAR-T) cells. A partial list of
immunotherapy approaches investigated in dogs with cancer
is provided in Table 1. An exhaustive discussion of these
approaches is beyond the scope of this review; however, this
issue contains a dedicated article discussing canine tumor
immunology and immunotherapy. Several of the approaches
outlined in the Table have led to human clinical trials
(74, 130, 131).

CONCLUSIONS AND FUTURE
DIRECTIONS

In conclusion, there is great potential for studies in dogs with
spontaneous cancer to inform development of novel human
therapeutics and diagnostics. In general, these studies have a
higher potential for success when there is a focused, a priori
question that canine studies seek to answer, and a plan for
utilization of the data generated is in place prior to study
commencement. Additionally, utilizing the strengths of the
model, especially vis a vis the ability to repeatedly sample tumor
tissue, to generate robust PK/PD related data is value-added.

These types of data are perhaps more critical in answering
questions regarding why a treatment did not work than in
supporting how a treatment did work. Was it an issue of
insufficient drug exposure? Was there adequate exposure in
plasma but not tumor? Was the target appropriately inhibited
despite a lack of antitumor activity?

Additionally, successful implementation of studies in dogs
generally requires some amount of preclinical work for validation
of target expression, validation of drug activity against the
canine analog of the target, and selection/validation of PD
endpoints to be implemented in subsequent canine clinical trials.
A lack of canine-specific reagents often requires some legwork
for the validation of cross-reactive antibodies for these types
of applications.

Ongoing foundational work has the potential to significantly
expand the molecular underpinnings of canine cancer, and
facilitate comparisons with human cancer. A number of 1
year administrative supplements to existing NIH P30 grants
were recently approved, with the goals of utilizing next-gen
sequencing (whole-exome sequencing, RNASeq) to characterize
a variety of canine tumor types for quantification of mutational
load, identification of driver mutations, and characterization of
potential neoantigens for MHC binding. Furthermore, a series
of U01 grants were recently funded by the NIH to explore novel
immunotherapy approaches in canine cancer to inform human
cancer immunotherapy studies. These studies have the potential
to expand understanding of the molecular drivers of canine
cancer and uncover novel shared molecular targets and pathways
for future study.

Several ongoing large-scale longitudinal studies are taking
advantage of dogs’ foreshortened life spans to answer a variety
of questions about life style, environment, aging and cancer
incidence, as well as evaluating novel interventions. The Golden
Retriever Lifetime Health Study (www.morrisanimalfoundation.
org/golden-retriever-lifetime-study) is following 3,000 US
golden retrievers from young adulthood to death, to identify
environmental, nutritional, genetic, and lifestyle risk factors for
cancer and other diseases in dogs. The University of Washington
Dog Aging Project (https://dogagingproject.org) seeks to profile
and follow up to 10,000 dogs to determine incidence and risk
factors for a variety of age-related diseases, as well as pursuing
smaller-scale trials with novel anti-aging (and potentially anti-
cancer) interventions. The Vaccination Against Canine Cancer
Study (www.vaccs.org) is an 800-dog, randomized, placebo-
controlled, prospective, multi-center clinical trial seeking to
evaluate the evaluate the ability of a multivalent frameshift
vaccine to delay or prevent cancer development in healthy
older dogs. These three long-term studies have the potential to
shed significant light on genetic, environmental, lifestyle, and
immunologic risk factors for cancer that may have significant
translatability. The results are eagerly anticipated.
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