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Rhabdomyosarcomas are the most common pediatric soft tissue sarcoma and are a

major cause of death from cancer in young patients requiring new treatment options to

improve outcomes. High-risk patients include those with metastatic or relapsed disease

and tumors with PAX3-FOXO1 fusion genes that encode a potent transcription factor

that drives tumourigenesis through transcriptional reprogramming. Polo-Like Kinase-1

(PLK1) is a serine/threonine kinase that phosphorylates a wide range of target substrates

and alters their activity. PLK1 functions as a pleiotropic master regulator of mitosis and

regulates DNA replication after stress. Taken together with high levels of expression

that correlate with poor outcomes in many cancers, including rhabdomyosarcomas, it

is an attractive therapeutic target. This is supported in rhabdomyosarcoma models by

characterization of molecular and phenotypic effects of reducing and inhibiting PLK1,

including changes to the PAX3-FOXO1 fusion protein. However, as tumor re-growth

has been observed, combination strategies are required. Here we review preclinical

evidence and consider biological rationale for PLK1 inhibition in combination with drugs

that promote apoptosis, interfere with activity of PAX3-FOXO1 and are synergistic with

microtubule-destabilizing drugs such as vincristine. The preclinical effects of low doses

of the PLK1 inhibitor volasertib in combination with vincristine, which is widely used

in rhabdomyosarcoma treatment, show particular promise in light of recent clinical

data in the pediatric setting that support achievable volasertib doses predicted to be

effective. Further development of novel therapeutic strategies including PLK1 inhibition

may ultimately benefit young patients with rhabdomyosarcoma and other cancers.
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INTRODUCTION

Rhabdomyosarcomas (RMS) are the most common pediatric
soft tissue sarcoma and are a major cause of death from
cancer in young patients. There are two main histological
subtypes of pediatric RMS; embryonal RMS accounting for
∼70% of cases and alveolar RMS ∼ 30% of RMS. Similar to
other pediatric cancer, RMS has low levels of somatic genetic
aberrations compared to most adult cancers (1). Embryonal RMS
is associated with aneuploidy, particularly gain of chromosomes
8, 12, and 2, loss of heterozygosity or imprinting around the
insulin growth factor 2 (IGF2) locus and mutations in genes
encoding proteins involved in RAS pathway signaling. The
majority of cases with alveolar histology are characterized by
gene fusions between the PAX3 or PAX7 and FOXO1 genes
(2, 3). The PAX3-FOXO1 fusion gene encodes a novel and
potent transcription factor that drives tumourigenesis through
transcriptional reprogramming, including upregulation of the
transcription factor MYCN and receptor tyrosine kinases (4–6).
Furthermore, the fusion protein in a complex with bromodomain
containing protein 4 (BRD4) has been shown to establish
super-enhancer regions associated with changes to histone
modifications that markedly affect expression levels of particular
genes (7).

Fusion gene positive RMS tends to be more aggressive and a
higher proportion of cases present with metastatic disease than
fusion negative RMS. Furthermore, the presence of the fusion
gene has been identified in both retrospective and prospective
analyses as a molecular marker of poor patient outcome that is
superior to using histological classification for risk stratification
(8–11). Based on these observations and similarities in gene
expression profiling data (9, 12), fusion gene status has been
incorporated into risk stratification in the current US protocol
and will replace histology in the new protocol for RMS in Europe.

Current treatment for RMS is based on conventional
chemotherapy, surgical resection, and radiotherapy. Despite
treatment intensification, improvement in outcome has been
disappointing with overall survival rates of 70% (www.ncin.org.
uk/databriefings) and patients with metastatic or relapsed disease
having dismal outcomes (13, 14). Treatments are associated with
short and long-term side effects, which can be severe (15, 16).
There is a clear unmet clinical need for novel, more effective and
less toxic therapeutic strategies, especially for higher-risk RMS
patients which includes all fusion gene positive cases. Potential
therapeutic strategies centered on the role of the fusion protein
are reviewed in detail elsewhere (17, 18). Here we focus on the
identification, molecular understanding and effects of inhibiting
Polo-Like Kinase-1 (PLK1) as a promising molecular target for
therapy of RMS. PLK1 inhibitors both alone and in combination
with other agents are considered, including the effects targeting
PLK1 has on the PAX3-FOXO1 fusion protein.

PLK1 FUNCTION

PLK1 is the most extensively studied of five members of the
polo-like family of serine/threonine kinases and has a wide
range of target substrates that it phosphorylates. It is primarily

known for operating as a pleiotropic master regulator of the
cell cycle from entry into mitosis to the initiation of cytokinesis.
This includes regulating the activity of proteins involved in
establishing centromeres, initiating spindle checkpoint signaling
and coordinating the activity of the spindle checkpoint, as
reviewed in detail elsewhere (19, 20). High levels of PLK1
expression are generally restricted to rapidly dividing cells
such as those during embryogenesis and in hair follicles.
Significantly, many types of cancer, including pediatric tumors,
also express high PLK1 levels. Overexpression is correlated with
poor prognosis in several tumor types and reduction of PLK1
expression or its inhibition results in a failure of cell cycle
regulatory mechanisms that can lead to subsequent apoptosis
of cancer cell lines and xenograft models, including those of
pediatric solid tumors (21–24).

In addition to the peak activation of PLK1 in the G2/M
phase of the cell cycle, expression and basal activity starts early
in S phase with PLK1 regulating DNA replication, notably
under stress. Phosphorylation of ORC2 by PLK1 is reported to
promote DNA replication (25) and is associated with resistance
to gemcitabine (an inhibitor of DNA replication) in pancreatic
tumor cells (26). PLK1 activity is also reported to be involved
with resistance to doxorubicin (21). The CDK-PLK1 axis targets
RAD9, a DNA checkpoint sensor protein, that minimizes
checkpoint response (27). Therefore, PLK1 functions by complex
mechanisms to regulate DNA replication after stress as well as
mitosis, in ways that may be relevant to responses to cancer
treatment and tumor development, including in RMS.

PLK1 IN RMS

The levels of expression of PLK1 in pediatric cancers and RMS
are comparable to high levels seen in many adult cancers and
are even higher in pediatric cancer cell lines, including those
representing RMS (28). The highest levels in primary alveolar
RMS assessed by immunohistochemistry correlated with poor
event and overall survival (n = 49). High PLK1 levels also
correlated with the expression of a downstream target of PAX3-
FOXO1, AP2beta, but not MIB1, a marker of proliferation (29).

A genome wide RNA interference screen reducing expression
levels of kinases in RMS, Ewing sarcoma, and neuroblastoma cell
lines identified PLK1 as one of the most important kinases for cell
proliferation and survival (22). In cancer cell lines and xenograft
models including fusion positive RMS it has been noted that
reduction of PLK1 expression or its inhibition leads to mitotic
arrest which can lead to apoptosis (22–24).

It has been known for some time that the PAX3-FOXO1
fusion protein can be phosphorylated by kinases and that
phosphorylation contributes to DNA binding, transcriptional
and oncogenic activity (30, 31). To identify druggable upstream
regulatory kinases of the PAX3-FOXO1 fusion protein a system
to read out activity of the fusion protein was combined with
a double screening strategy (29). A luciferase-based reporter
system was constructed using the AP2beta promotor fragment,
as AP2beta is a transcriptional target of PAX3-FOXO1, and
introduced into a fusion positive cell line (RH4). These cells were
subjected to siRNA and small molecule libraries representative

Frontiers in Oncology | www.frontiersin.org 2 November 2019 | Volume 9 | Article 1271

www.ncin.org.uk/databriefings
www.ncin.org.uk/databriefings
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Gatz et al. PLK1 and Rhabdomyosarcomas

of the kinome to identify upstream regulators of the fusion
protein. Reducing PLK1 transcription and treatment with the
PLK1 inhibitor BI2536 were key hits that were validated in
two further cell lines and shown to impact on PAX3-FOXO1
activity through assessment of additional known downstream
target genes of PAX3-FOXO1 (PIPOX, FGFR4, and CDH3).
In addition, expression of AP2beta significantly correlated
with expression of PLK1 in primary RMS, consistent with
PLK1 levels affecting levels and/or activity of PAX3-FOXO1 in
patients (29). Co-immunoprecipitation experiments established
direct interaction between PAX3-FOXO1 and PLK1. Further
experiments, including use of expression mutant c wild-type
PAX3-FOXO1 in a fusion-negative cell line, demonstrated that
serine 503 in the PAX3-FOXO1 fusion protein, corresponding
to serine 322 in the FOXO1 protein, is a PLK1 specific
phosphorylation site. As this phosphorylation site in FOXO1 is
also present in PAX7-FOXO1 it is expected that PLK1 inhibition
will also affect this fusion protein. Furthermore, PLK1 inhibition
has been shown to result in decreased expression of the MYCN
oncogene (29). This may be via PAX3-FOXO1 transcriptionally
regulating MYCN expression (4, 29) and/or PLK1 regulating the
stability of MYCN, which itself is upregulated by MYCN (32).
Reduction of MYCN in RMS has been shown to result in reduced
cell proliferation and apoptosis (6) and therefore effects of PLK1
inhibition could uniquely include those from targeting MYCN
and the PAX-FOXO1 fusion protein in addition to impacting on
the cell cycle.

In addition, PLK1 is known to activate other proteins in AML
and ALL including PI3K and mTOR (33). The PI3K/AKT/mTOR
pathway has been shown to be highly active and to play a
critical role in maintaining fusion positive and negative RMS cell
proliferation (34), although a link with PLK1 activity has not yet
been demonstrated in RMS.

PRECLINICAL DATA FOR PLK1
INHIBITORS IN RMS

Volasertib (BI6727), is a derivative of BI2536, and is a highly
potent ATP competitive PLK1 inhibitor. Two different studies
have investigated the impact of volasertib on pediatric cancer
cell lines in 2D culture (28, 35). Data indicate that overall,
pediatric cancer cell lines show some but variable sensitivities
to PLK1 inhibition. Between 4 and 6 cell lines representing
acute lymphocytic leukaemias (ALL), medulloblastomas,
osteosarcomas, Ewing sarcomas, neuroblastomas and RMS
showed GI50s in the range of 4–40 nM in the majority of cell
lines tested (28, 35). The lowest GI50s in both studies were
in PAX3-FOXO1 positive RMS cell lines which had values
(Supplementary Table 1) less than those seen in acute myeloid
leukemia (AML) cell line models (in vitro GI50s ranging from
9 to 36nM) (36, 37). These and other data for AML supported
clinical trials of volasertib in leukemia [as reviewed in (38)].

The degradation of the fusion protein and reduction in
transcription of targets of the fusion protein have been noted
by treatment of fusion positive RMS cells with 15 nM BI2536
or 20 nM volasertib (29) and could contribute to the growth

inhibitory effects of PLK1 inhibition and antitumorigenic effects
of PAX3-FOXO1. However, Abbou et al. (28) also assessed LC50
(Lethal Concentration to kill 50% of cells) and demonstrated
that whilst all ALL had LC50s <80 nM, most osteosarcoma
had LC50s >2,500 nM and the other tumor specific cell lines,
including RMS had examples of both low and high LC50s
(Supplementary Table 1).

In vivo, one of four fusion gene positive RMS cell line
xenografts (RH30R) showed complete remission after 30 mg/kg
volasertib treatments (35). Volasertib also resulted in complete
and partial tumor regressions of established xenograft tumors
of the fusion positive RMS-01 cell line in another study (28).
In vivo treatment of the cell line xenografts RH4 and RH13 with
the PLK1 inhibitor BI2536 also led to regression of established
xenograft tumors in mice that were shown to express less of
the fusion-protein target proteins AP2beta and P-Cadherin vs.
untreated tumors, consistent with suppression of fusion protein
activity (29). However, the effects observed in mice are at higher
doses of volasertib than tolerated in humans (35, 36). To achieve
cell death at lower doses and counter the prospect of resistant
cells arising, including the potential indicated for RMS to evolve
independence from the fusion proteins (39, 40), PLK1 inhibition
alone seems unlikely to be curative for RMS patients. Therefore,
strategies for combining a PLK1 inhibitor with chemotherapy
or a novel agent are required and preclinical work on potential
combinations have already been published (as summarized
in Table 1).

COMBINATION STRATEGIES WITH PLK1
INHIBITION FOR RMS TREATMENT

As the data suggest that single agent PLK1 inhibition may be
inadequate to treat RMS, it is important to consider combinations
based on biological rationale. The potential contribution of
targeting the fusion protein via PLK1 inhibition is consistent
with the known effects of modulating PAX3-FOXO1 expression
levels on growth arrest, myogenic differentiation, migration and
invasion as well as potentially apoptosis (17). NOXA expression
in PAX3-FOXO1 expressing cells has been associated with
susceptibility to apoptosis through BH3 mimetic treatment (43).
Similarly, we have recently identified NOXA as a mediator
of apoptosis that is induced by downregulation of PAX3-
FOXO1creating sensitivity to the inhibitor navitoclax that targets
BCL-XL and other members of the BCL-2 family of proteins
(44). High levels of the anti-apoptotic protein BCL-XL have
been noted in glioma stem cells resistant to volasertib (45).
This and related apoptotic mechanisms may contribute to
the variable responses in the growth and death of RMS cells
to volasertib (Supplementary Table 1) and be amenable to
therapeutic exploitation with drugs such as navitoclax.

The roles of PLK1 in regulating key aspects of mitosis means
that inhibition leads to defective chromosome segregation that
can cause DNA damage and a DNA damage response (46).
Consistent with this, volasertib is known to induce DNA damage
and consequent activation of the ATM-CHK1/CHK2 checkpoint
pathway and G2/M arrest, for example in small cell lung cancer
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TABLE 1 | Summary of rhabdomyosarcoma (RMS) preclinical studies for PLK1 inhibitors combined with other drugs.

PLK1 inhibitor Combination

partner

RMS cell line models Result

(CI = Combination Index)

References

BI2536 Vincristine In vitro

RD, TE381.T (fusion-negative)

Primary RMS cells (fusion-negative)

CI < 1.0 and synergy in various

assays

(41)

Rh30 (fusion-positive) CI < 1.0 (41)

Volasertib Vincristine RD, TE381.T CI < 1.0 (41)

Volasertib Vincristine RMS1 (fusion-positive) CI< 1.0 (28)

BI2536 Vincristine in vivo RD cells grown in

chorioallantoic membrane model

At least additive effects (41)

Volasertib Vincristine RD xenograft s.c. in mice At least additive effects (41)

BI2536 Vinblastine/vinorelbine RD (fusion-negative) CI < 1.0 (41)

BI2536 Eribulin RD, TE381.T (fusion-negative),

patient-derived fusion negative cells

CI < 1.0, synergy in several assays (42)

Rh30 (fusion-positive) CI > 1.0 (42)

BI2536 Paclitaxel RD (fusion-negative) CI > 1.0 (41)

BI2536 Doxorubicin RD, TE381.T (fusion-negative), Rh30

(fusion-positive)

CI > 1.0 (41)

Volasertib Etoposide RMS1 (fusion-positive) CI > 1.0 (28)

(47). Enhancing volasertib induced G2/M arrest with additional
DNA damage through radiation led to apoptosis in glioma stem
cells. However, the combination of volasertib and etoposide
(a topoisomerase II inhibitor) or BI2536 and doxorubicin (a
topoisomerase II inhibitor as well as alkylating agent) in RMS
cells were antagonistic potentially due to etoposide/ doxorubicin
induced G2 arrest prior to realization of the effects of volasertib
on mitosis (28, 41, 48) (Table 1). Treating with etoposide
after volasertib reduced antagonism and highlights the need to
consider how best to schedule drugs (28).

The recruitment of BRD4 into a complex with the PAX3-
FOXO1 protein in RMS is essential for high transcriptional
activity at super-enhancers in collaboration with other
transcription factors known to be critical in RMS (such as
MYCN, MYOD1, and MYOG) and creates a dependency
on BRD4 activity associated with vulnerability to BET
inhibitors in fusion positive RMS (7). In addition, the BET
inhibitor JQ1 is reported to impact on angiogenesis in pediatric
sarcomas including RMS (49). However, low sub-micromolar
concentrations of the BET inhibitor JQ1 had little effect on
cell death of fusion positive and negative RMS cells although
combination strategies may be beneficial (50). Interestingly,
synergistic activity has been reported in AML with the BET
inhibitor BI894999 and volasertib, both in vitro and in vivo (37).
The effectiveness of this combination has also been recently
indicated for RMS (51).

PLK1 inhibition (volasertib and BI2536) has been shown
in several studies to be synergistic with the microtubule-
destabilizing drugs vincristine, vinblastine, vinorelbine, and
eribulin) in RMS (28, 41, 42) although synergy was not found
using paclitaxel, possibly due to its different mode of action (41,
52). In vitro data with combination indices below 0.9 document
synergy between volasertib and vincristine in fusion gene positive
cell lines (28, 41). Fusion negative RMS cell lines and a patient
derived cell line model, also showed synergy when treated with

BI2536 or volasertib in combination with vincristine in vitro and
at least additive effects in vivo (28, 41) (Table 1). The volasertib
dose used by Hugle et al., was very low compared to the other
published xenograft data (5 mg/kg once per week for 5 weeks
vs. 30mg or 40 mg//kg/week for 3 or 5 weeks (28, 41). This
effectiveness at a low dose holds promise to be achievable in
patients based on pharmacokinetic data (53).

Mechanistically, the combination of BI2536 and vincristine
triggered mitotic arrest with subsequent mitochondrial apoptosis
induced via inactivation of anti-apoptotic BCL2 proteins and
caspase dependent and independent pathways. The key molecule
of the caspase dependent pathway was identified as Myeloid Cell
Leukemia−1 (MCL-1) (41). These data indicate an important
fusion gene independent, cooperative effect of the volasertib-
vincristine combination treatment on tumor growth. Vincristine
is a highly active drug currently used in standard first line
combination chemotherapy for RMS and is also frequently
reused in the relapse setting (54, 55). Clinical testing by adding
a PLK1 inhibitor to vincristine treatment of patients therefore
represents an attractive strategy, as summarized in Figure 1.

CLINICAL TRANSLATION AND
CONCLUDING COMMENTS

The preclinical data reviewed here, with the notable exception
of inclusion of a patient derived xenograft in one study
(41), use long-established cell lines which have been shown
to express higher levels of PLK1 than primary tumors (28).
This highlights the need to test model systems that better
recapitulate primary tumors in preclinical testing, including
use of 3D in vitro modeling and patient derived xenografts.
Whilst the mechanistic effects of targeting PLK1 on the fusion
protein are attractive, the preclinical RMS data reviewed here
for volasertib and BI2536 as single agents with tumor re-growth
and innate as well as potentially emerging resistance to cell
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FIGURE 1 | Model for the effects of the combination of PLK1 inhibitors BI2536 or BI6727 (volasertib) plus the microtubule disrupter vincristine (VCR) on

rhabdomyosarcoma cells. Inhibition of PLK1 and vincristine disrupts mitosis which in combination can synergistically lead to apoptosis. PLK1 inhibition also affects the

phosphorylation of the PAX3-FOXO1 (P3F) protein and MYCN either indirectly via P3F loss and/or directly via its phosphorylation status, and may additionally

contribute to the effects of these inhibitors in fusion positive rhabdomyosarcomas. Dashed and solid lines, represent proven and plausible links and effects in

rhabdomyosarcoma models, respectively.

death, indicates that combination approaches are necessary.
Mechanistic considerations of the effects of agent combinations
and the doses and their timings are critical, particularly with
targets like PLK1 that are involved in mitotic regulation.

Volasertib has been tested in the clinic for years as single
agent in different combinations in adult patients with acute
myeloid leukemia (the aimed licensing indication for volasertib
development) as well as in various solid tumors, and although
exceptional responses have been seen, overall results were
disappointing (38). Moreover, the phase III POLO-AML-2 trial
(NCT01721876) in elderly patients which investigated low dose
cytarabine plus placebo vs. low dose cytarabine plus volasertib,
did not show an objective response rate that was not statistically
significant in the volasertib arm and there were toxicity issues
that led to a trend toward inferior overall survival (38). Whilst
the studies in adult leukemia and solid tumors focused on the
specific role of PLK1 inhibition on mitotic function (36), here
describe new mechanisms of actions for this class of inhibitors
that likely contribute to the specific sensitivity of RMS models.
Importantly, volasertib has recently successfully completed Phase
I as single agent in children with leukemia and refractory solid
tumors (NCT01971476) (53) and a recommended Phase II dose
(RP2D) was identified that lies above the RP2D for adult patients.
In this clinical study, comparable with adult studies, the main
toxicity was myelotoxicity manifesting as thrombocytopenia,
neutropenia and febrile neutropenia and, also consistent with the
data in adult patients, the pharmacokinetic data suggest plasma
levels are in the dose range used to investigate synergy with
vincristine in preclinical RMS models (28, 41).

The preclinical effects of vincristine in combination with
volasertib observed in fusion negative RMS models at low

volasertib/ BI2536 doses appear strong. Whilst the molecular
mechanism affecting the fusion protein are striking with single
agent BI2536/volasertib, testing fusion gene positive RMSmodels
with the volasertib/vincristine combination has been limited and
requires further assessment (Table 1). However, taken together
with widespread use of vincristine in the treatment of newly
diagnosed and relapsed RMS and the likely non-overlapping
toxicities of vincristine and volasertib, this combination looks
feasible and holds particular immediate promise to clinically
assess in both fusion gene positive and negative RMS. If limited
proof-of-concept clinical testing demonstrates tolerability of
doses and activity, more intensive backbone chemotherapy
and/or other targeted agents may subsequently be investigated
that ultimately lead to improving outcomes for RMS patients.
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