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Lung adenocarcinoma (LUAD) is one of the most common cancers and lethal diseases

in the world. Recognition of the undetermined lung nodules at an early stage is useful for

a favorable prognosis. However, there is no good method to identify the undetermined

lung nodules and predict their clinical outcome. DNA methylation alteration is frequently

observed in LUAD and may play important roles in carcinogenesis, diagnosis, and

prediction. This study took advantage of publicly available methylation profiling resources

and a machine learning method to investigate methylation differences between LUAD

and adjacent non-malignant tissue. The prediction panel was first constructed using

338 tissue samples from LUAD patients including 149 non-malignant ones. This model

was then validated with data from The Cancer Genome Atlas database and clinic

samples. As a result, the methylation status of four CpG loci in homeobox A9 (HOXA9),

keratin-associated protein 8-1 (KRTAP8-1), cyclin D1 (CCND1), and tubby-like protein

2 (TULP2) were highlighted as informative markers. A random forest classification

model with an accuracy of 94.57% and kappa of 88.96% was obtained. To evaluate

this panel for LUAD, the methylation levels of four CpG loci in HOXA9, KRTAP8-1,

CCND1, and TULP2 of tumor samples and matched adjacent lung samples from 25

patients with LUAD were tested. In these LUAD patients, the methylation of HOXA9 was

significantly upregulated, whereas the methylation of KRTAP8-1, CCND1, and TULP2

were downregulated obviously in tumor samples compared with adjacent tissues. Our

study demonstrates that the methylation of HOXA9, KRTAP8-1, CCND1, and TULP2 has

great potential for the early recognition of LUAD in the undetermined lung nodules. The

findings also exhibit that the application of improved mathematic algorithms can yield

accurate and particularly robust and widely applicable marker panels. This approach

could greatly facilitate the discovery process of biomarkers in various fields.
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INTRODUCTION

Lung cancer is the leading cause of cancer-related deaths
worldwide. As the most frequent histological subtype of non-
small-cell lung cancer (NSCLC), lung adenocarcinoma (LUAD)
accounts for more than 40% of the incidence of lung cancer.
It is usually diagnosed at an advanced stage. When diagnosed
at an early stage, however, the survival rate is dramatically
prolonged. The 1-year survival rate of stage I NSCLC is 81–
85%, while it is only 15–19% when diagnosed at stage IV (1).
Effective early recognition methods and relevant biomarkers
are urgently needed to reduce the mortality caused by LUAD.
Traditional screen methods for NSCLC include sputum cytology,
chest radiography, and computed tomography (CT). CT, which
is simple and with high sensitivity, has been shown to be
capable of detecting early stage lung cancers and is beneficial
for the treatment and patient outcome. Although high false-
positive rate has been reported to be a major problem in
LUAD by CT, several studies have shown that CT-positive
findings that are largely based on nodule size and/or volume
can reduce false-positive rates and the risk of overdiagnosis
(2). In addition, due to the demand for further optimization of
CT screening in LUAD, there is still a need for other available
biomarkers to support the risk assessment (3). For example, a
number of changes in gene expression (4, 5), somatic mutations
(6), copy number variations (7), differences in methylation
(8) or the abundance of plasma proteins (9), and sequence-
variations in circulating free DNAs (10, 11) have been extensively
studied. In recent years, aberrant changes in DNA methylation
have been observed in various cancers and are considered to
be a cause of tumorigenesis. Global hypomethylation occurs
frequently in repeated DNA sequences and plays an important
role in chromosomal instability. The promoter regions of
tumor suppressor genes are often hypermethylated, leading to
inactivation of corresponding genes in tumors. It has been
reported that p16 (12), APC (13), BCL2 (14), BRCA1, and BRCA2
(15) are hypermethylated in NSCLC, but single methylation
markers and the bias introduced by experiments often caused
these methods to suffer problems of insufficient precision and
specificity. To improve the detection performance of methylation
biomarkers, many panels of multiple loci were studied (16, 17).
DNA methylation is a relatively stable biochemical modification
carried out by DNA methyltransferases and can be detected in
not only DNA molecules from tissue but also the free DNAs in
serum and plasma (18), making it a promising biomarker for the
early recognition of the undetermined lung nodules.

With the advent of big data areas, publicly available databases
such as The Cancer Genome Atlas (TCGA), The Encyclopedia of
DNA Elements, and Gene Expression Omnibus (GEO) contain
many methylation profiles for a variety of tumors and normal
samples. The development of machine learning technology and
its application in the biological fields makes it possible to
select the most inspective detection markers from a massive
number of potential loci and establish prediction models with
better performance.

In this study, we utilized methylation array data from publicly
available databases and tried to explain lung carcinogenesis from

an epigenetic perspective. Because early recognition of LUAD
can benefit patients, we took advantage of machine learning
algorithms to build a concise but robust prediction model using
methylation markers for making predictions on patients with
lung cancer. As a result, the methylation status of four CpG
loci in homeobox A9 (HOXA9), keratin-associated protein 8-
1 (KRTAP8-1), cyclin D1 (CCND1), and tubby-like protein
2 (TULP2) were highlighted as potential biomarkers. Then,
we identified four LUAD-specific methylation biomarkers by
comparing LUAD tumor samples and matched adjacent samples.
The results further confirmed that the hypermethylation of
HOXA9 and the hypomethylation of KRTAP8-1, CCND1, and
TULP2 were observed in LUAD tumor samples. This study could
also pave ways for a more extensive application of non-invasive
cancer detection.

MATERIALS AND METHODS

Patients and Clinical Samples
A total of 25 patients with LUAD were recruited. This study
was carried out in accordance with the 1964 Declaration of
Helsinki and its later amendments with written informed consent
from all subjects. The study was approved by the Institutional
Review Board and the Ethics Committee of the Affiliated
Tumor Hospital of Xiangya Medical School of Central South
University and Xinhua Hospital Affiliated to Shanghai Jiao Tong
University School of Medicine, Chongming Branch. Tumor
samples and matched adjacent lung samples from 25 patients
with LUAD were obtained. None of patients had undergone
ablation, chemotherapy, or radiotherapy before resection. The
clinical and pathological characteristics of 25 patients with LUAD
are summarized in Supplementary Table 1.

Datasets
In the discovery phase, data about 338 LUADs and non-
malignant samples were collected from GEO datasets
that are based on analyses with the Illumina Infinium
HumanMethylation27 BeadChip for DNA methylation
measurements. Detailed dataset descriptions are shown
in Table 1. TCGA LUAD validation cohorts profiled by
both the Illumina Infinium HumanMethylation27 and
HumanMethylation450 platforms were downloaded from
Xena Functional Genomics Explorer. These datasets are
heavily imbalanced. For analyses with the Illumina Infinium

TABLE 1 | Summary of the gene expression omnibus (GEO) datasets.

Sample ID Tumor Normal

GSE32861 59 59

GSE32866 28 27

GSE62948 28 28

GSE63384 35 35

GSE83845 39 0

Total 189 149
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HumanMethylation27 system, there are only 24 normal samples
out of a total of 151 samples, and for the HumanMethylation450
platform, there are only 34 normal samples within the total of
492 analyzed samples.

Identification of Differentially Methylated
Probes
The 338 LUADs and non-malignant samples in the GEO database
profiled by Illumina Infinium HumanMethylation27 BeadChip
were used for differential methylation analysis. The datasets from
the five experiments were combined using R package illuminaio
by common probe IDs. Array data produced by different studies
are confounded by non-biological variables such as different
technicians or the environments. These biases are termed as
“batch effects” and cannot be eliminated unless all the samples
are performed in a single batch. Here, we adjusted the batch
effects by applying gene-wise one-way ANOVA adjustment for
expression values using the pamr.batchadjust function from the
pamr package. Differential methylation analysis was performed
using linear model provided in the limma R package (19).
Probes that were differentially methylated between LUADs and
non-malignant tissues were selected with thresholds of |logFC|
> 1 and adjusted p < 0.05. Gene oncology and Reactome
pathway enrichment analysis were performed using DAVID
version 6.8 (20).

Building of a Prediction Model
Random forest was chosen as the prediction model because of its
superior performance for classification with binary features. To
make a robust, easy-to-generalize model to predict the sample
status, each of the differentially methylated probes was first
binary assigned. First K-means clustering with two cores was
applied to each probe, and the mean values were calculated
for both clusters. Samples in the high/low mean cluster were
signed as 1 or 0, respectively. In the training phase, the
importance value of each probe to the classification model
was evaluated by recursive feature elimination. According to
descending importance value, the selected CpGs were added one
by one to the random forest model if its Pearson correlation value
with any already existing probe in the model was<0.7. Each time
a new feature was added to the model, the performance of the
model was re-evaluated using 10-fold cross-validation. The final
model was chosen when best accuracy and kappa were achieved.

Model Validation
In the validation phase, four candidate CpGs were validated
using two TCGA cohorts. LUAD methylation status was
profiled by two platforms, namely, theHumanMethylation27 and
HumanMethylation450 systems. Since both platforms contain
all four selected probes, both the above two datasets were used
for model validation. LUAD methylation datasets profiled by
Illumina Infinium HumanMethylation27 platform had a total of
151 samples, with 127 from LUADs and 24 from non-malignant
samples, and the data from the HumanMethylation450 platform
consisted of 492 samples, which contained 458 samples from
tumors and only 34 from normal tissues. Owing to the batch
effect mentioned above, K-means clustering was recalculated for
the four selected CpG probes in the TCGAHumanMethylation27

and HumanMethylation450 datasets, respectively, to reassign the
binary methylation levels for each probe in all samples. For both
datasets, 80% samples were randomly extracted as training set,
while the remaining 20% samples were set aside for performance
testing separately. Because of the heavy imbalance of the datasets,
in the training phase, random oversampling examples (ROSEs)
were applied tomake non-malignant samples accounting for 50%
of the training set to improve the model performance.

DNA Extraction and Methylation Analysis
by Pyrosequencing of Patients’ Samples
QIAamp DNA Mini Kit was used for DNA extraction according
to the manufacturer’s instructions. A total of 500 ng of DNA was
converted using the EZ DNAMethylation-Gold (Zymo Research
Corporation, Irvine, USA) bisulfite conversion kit following the
manufacturer’s recommendations. Specific sets of primers for
polymerase chain reaction (PCR) amplification and sequencing
were designed and synthetized by Sangon Biotech (Shanghai,
China). Primer sequences were designed, when possible, to
hybridize with CpG-free sites to ensuremethylation-independent
amplification. PCR was performed under standard conditions
with biotinylated primers, and the PyroMark Vacuum Prep
Tool (Biotage AB, Uppsala, Sweden) was used to prepare
single-stranded PCR products, according to the manufacturer’s
instructions. Forty microliter of DNA PCR products was added
to a mixture consisting of 0.5µM sequencing primers, Sepharose
beads (GE Healthcare) and binding buffer, and mixed for 5min
at room temperature. A vacuum prep workstation and PyroMark
Gold Q96 system (Qiagen) were used to perform pyrosequencing
reactions according to the manufacturer’s instructions. CpG
site quantification was analyzed with the PyroMark CpG
Software 1.0.11.

Statistical Analysis
All statistical analysis was performed with R version 3.0.2, and the
graphs were generated using GraphPad PRISM 7.0 (GraphPad
Software, Inc., SanDiego, CA, USA). The differential methylation
levels of tumors and non-malignant samples in patients with
LUADs were compared using t test. A p < 0.05 was considered
statistically significant.

RESULTS

Datasets and Differential Methylation
Analysis
Four GEO datasets produced on Illumina Infinium
HumanMethylation27 BeadChips for LUAD methylation
profiling with a total of 338 samples (189 tumor samples and
149 matched adjacent lung samples) were included in our
study. The analysis identified 62 probes that were differentially
methylated between LUADs and adjacent non-malignant lung
tissues. Among them, only 3 were hypomethylated in tumor
samples, while all other 59 probes showed a hypermethylated
status (Table 2).

Gene oncology (GO) and Reactome pathway enrichment
analysis were carried out using DAVID24 (adjusted p < 0.05,
Table 3). GO enrichment results identified items related to
transcription factor activity, indicating that methylation can
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TABLE 2 | Differentially methylated probes detected in the Gene Expression Omnibus (GEO) datasets.

ID Symbol logFC Adjusted p-value ID Symbol logFC Adjusted p-value

cg26521404 HOXA9 1.41 7.07E−24 cg04490714 SLC6A2 1.03 3.67E−17

cg01354473 HOXA9 1.12 6.87E−23 cg01009664 TRH 1.08 4.21E−17

cg25720804 TLX3 1.42 8.39E−23 cg25875213 ZNF781 1.37 1.05E−16

cg15540820 EOMES 1.04 2.58E−20 cg01295203 PRDM14 1.04 1.28E−16

cg22660578 LHX1 1.10 3.78E−20 cg14458834 HOXB4 1.32 1.80E−16

cg01381846 HOXA9 1.01 4.57E−20 cg07307078 TUBB6 1.07 3.09E−16

cg12374721 PRAC1 1.17 4.57E−20 cg12680609 ZFP41 1.02 5.88E−16

cg08089301 HOXB4 1.55 6.89E−20 cg06151165 VSX1 1.07 6.28E−16

cg23290344 NEFM 1.28 7.04E−20 cg05436658 PRKCB 1.29 1.00E−15

cg07533148 TRIM58 1.54 7.04E−20 cg17619823 ADRB3 1.09 1.85E−15

cg12880658 CDO1 1.29 7.96E−20 cg26963271 PDE4B 1.04 2.25E−15

cg19456540 SIX6 1.42 2.06E−19 cg21529533 HLA–G 1.06 3.08E−15

cg13323752 SLC2A14 1.34 2.31E−19 cg10303487 DPYS 1.13 3.28E−15

cg04534765 GALR1 1.23 2.50E−19 cg25691167 FERD3L 1.14 3.31E−15

cg08118311 SALL3 1.19 2.67E−19 cg26721264 GALR1 1.05 3.40E−15

cg02164046 SST 1.02 2.92E−19 cg21546671 HOXB4 1.16 3.76E−15

cg14859460 GRM6 1.09 3.29E−19 cg25574024 NA 1.02 4.55E−15

cg02008154 TBX20 1.00 3.96E−19 cg15520279 HOXD8 1.04 1.38E−14

cg18952647 BNC1 1.30 4.06E−19 cg00949442 ABCA3 1.02 2.37E−14

cg07778029 HOXA9 1.05 4.13E−19 cg09516965 PTGDR 1.26 2.91E−14

cg20959866 AJAP1 1.05 1.32E−18 cg16731240 ZNF577 1.04 3.74E−14

cg22471346 GAS7 1.36 2.02E−18 cg10883303 HOXA13 1.03 4.78E−14

cg14991487 HOXD9 1.21 4.14E−18 cg13912117 ADCY8 1.05 5.27E−14

cg22881914 NID2 1.42 4.55E−18 cg00848728 DAB1 1.09 5.27E−14

cg24423088 KRTAP8-1 −1.07 4.72E−18 cg21790626 ZNF154 1.13 1.20E−13

cg23432345 HOXA7 1.20 4.72E−18 cg01805540 CACNB2 1.01 3.98E−12

cg06760035 HOXB4 1.40 5.67E−18 cg09229912 CUX2 1.06 4.84E−12

cg18722841 PHOX2A 1.04 5.68E−18 cg18349835 VIPR2 1.10 6.70E−12

cg15191648 SALL3 1.04 6.75E−18 cg00062776 TULP2 −1.00 2.08E−11

cg04048259 EDN3 1.10 1.32E−17 cg19332710 RIMS4 1.00 1.67E−10

cg17525406 AJAP1 1.22 1.90E−17 cg02723533 CCND1 −1.04 2.70E−10

change gene expression in tumor samples by modulating the
activities of transcription factors. Both GO and pathway analysis
showed the enrichment in G-protein-coupled receptor signaling
pathway, which is often dysregulated in tumor cells to facilitate
their proliferation, invasion, and immune system escape.

Feature Selection and Construction of the
Prediction Panel
To establish a robust prediction model to identify LUADs, we
binarily assigned each differentially methylated probe using K-
means clustering algorithms. Recursive feature elimination was
applied to evaluate the discriminative power of methylation
loci to ensure that only the most informative features could
be included in the final prediction model. The correlation
assessment between loci was also used when adding loci one
by one during model construction to ensure that the loci
with relatively small effect were set by removing possible
redundant information. Each time a new probe was added to

the model, the prediction performance was updated with 10-
fold cross-validation. The eventual model was chosen based on
both accuracy and kappa values (Figure 1). Finally, a random
forest classification model with an accuracy of 94.57% and a
kappa of 88.96% was obtained. The methylation status of four
CpG loci of the genes of homeobox A9 (HOXA9), KRTAP8-
1, CCND1, and TULP2 were highlighted as predictors in the
final model. Methylation levels of the selected probes between
adenocarcinomas and normal tissues are shown in Figure 2.

Validation of the Prediction Model
This model was then validated in two independent TCGA LUAD
methylation datasets profiled on both the Illumina Infinium
HumanMethylation27 platform and HumanMethylation450
platform. Themethylation patterns of the four selected probes are
the same between the GEO and TCGA datasets (Figure 3). There
are 151 samples in the TCGA LUAD HumanMethylation27
dataset, with 127 from LUADs and 24 from adjacent non-
malignant lung tissues. Imbalanced datasets in which the sample
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TABLE 3 | Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway enrichment results of differentially methylated genes.

Term Count Benjamini

BIOLOGICAL PROCESS

Negative regulation of transcription from RNA

polymerase II promoter

10 2.90E−02

Transcription, DNA-templated 17 3.60E−02

Adenylate cyclase-activating G-protein coupled receptor

signaling pathway

4 4.40E−02

CELL COMPONENT

Nucleus 28 2.80E−02

MOLECULAR FUNCTION

Sequence-specific DNA binding 11 2.10E−04

RNA polymerase II regulatory region sequence-specific

DNA binding

8 1.20E−04

Transcription factor activity, sequence-specific DNA

binding

12 2.80E−03

REACTOME PATHWAYS

G alpha (s) signaling events 5 3.00E−02

FIGURE 1 | Relationship between the model performance and the feature

numbers based on both accuracy and kappa value.

number in one class outnumbers the other class by a large
proportion often yield a prediction model of reduced overall
accuracy and particularly bias performance with respect to
the minority group. Here, we used ROSE to generate an
artificially balanced training dataset based on sampling methods
and smoothed bootstrap approach. By randomly sampling 80%
samples as training dataset, the random forest predication model
with the selected four CpG loci can achieve an accuracy of
96.55% and kappa of 86.88%. As all the four selected loci are
also covered by the HumanMethylation450 platform, we checked
the prediction power of the above probes in the TCGA LUAD
HumanMethylation450 dataset. There are 492 samples in this
dataset, among which 458 are from LUADs.We used ROSE again
to generate a balanced training set with 80% of all samples and
tested the model performance with the remaining 20% samples.
This model achieved an accuracy of 94.85% and kappa of 63.99%.

To evaluate the relevance of this prediction model further,
DNA methylation analysis of these four selected probes was
performed in 25 paired samples, including LUAD and matched
non-malignant tissues, from patients with LUAD collected by two
hospitals using pyrosequencing (Figure 4). Although the sample
size in this study was limited, the analysis revealed congruence
with the GEO and TCGA data. The methylation level of HOXA9
in tumors was upregulated compared to non-malignant samples
(29.96 ± 15.89% vs. 13.64 ± 5.89%, p = 0.00007). On the other
hand, the methylation level of KRTAP8-1 (63.40 ± 17.62% vs.
82.76 ± 4.32%, p = 0.00002), TULP2 (81.68 ± 14.63% vs. 90.56
± 3.19%, p = 0.00837), and CCND1 (75.52 ± 24.55% vs. 93.36%
± 3.89%, p = 0.00012) were downregulated in tumors than that
in normal samples.

DISCUSSION

Epigenetic markers such as DNA methylation and histone
modifications may be used as candidate biomarkers for
classifying individuals with respect to their disease risk. Along
with the wide application of high-throughput epigenomic
measurement technologies and the resulting publicly available
databases, more and more big data-based biomarkers have been
proposed. Recently, the incidence of small nodules in the lungs
stays high worldwide. How to distinguish between benign and
malignant nodules is a clinical problem that needs to be solved
urgently. To develop a reliable recognition panel utilizing DNA
methylation signals, we selected training samples of tumors
and non-malignant tissues from the GEO dataset to build a
predication model for LUAD and tested our prediction model
in two validation sets derived from the TCGA database. In
this study, we systematically analyzed the DNA methylation
data of LUAD and found that the hypermethylation of HOXA9
and the hypomethylation of KRTAP8-1, CCND1, and TULP2
were observed in LUAD tumor samples. This study identified
that the methylation levels of HOXA9, KRTAP8-1, CCND1, and
TULP2 may be helpful as LUAD-specific diagnostic panel in
undetermined lung nodules.

Researchers have worked in the field of identifying
methylation panels, which combine multiple genes for cancer
detection as well as prognosis prediction. Ooki et al. proposed a
methylation panel of six genes (CDO1, HOXA9, AJAP1, PTGDR,
UNCX, and MARCH11) with a prediction accuracy of 92.2%
in the training cohort and 93.0% in an independent testing
cohort of stage IA primary NSCLC (21). Another study showed
that hypermethylation of five genes (HIST1H4F, PCDHGB6,
NPBWR1, ALX1, and HOXA9) was significantly associated with
shorter relapse-free survival in stage I NSCLC (22). However,
these studies mainly followed the path of directly combining
altered methylation loci with known biological functions related
to cancer. Such approach ignores the potential correlations
between selected features, which will in turn result in marker
redundancy. In addition, directly using methylation values as
model input makes the model both vulnerable and difficult to
generalize. As more and more extensive applications of machine
learning techniques enter the fields of biomarker discovery and
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FIGURE 2 | Methylation level (beta value) for the four selected probes in lung adenocarcinomas and non-malignant samples from GEO dataset measured by Illumina

Infinium HumanMethylation27 BeadChip.

FIGURE 3 | Analysis of the methylation level of the four selected probes. (A) The beta value for the four selected probes was calculated from the TCGA dataset

representing lung adenocarcinomas and non-malignant samples, with the measurements being done on the Illumina Infinium HumanMethylation27 BeadChip

platform. (B) Analysis of the TCGA data generated on the Illumina Infinium HumanMethylation450 BeadChip platform.

prediction model building, we took advantage of unsupervised
clustering method for a binary feature transforming and
recursive feature elimination to select the most concise but

simultaneously informative methylation marker set. The
random forest machine learning model, which shows superior
performance in the tasks of binary classification, was applied in
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the present study for model construction. Random forest is a
useful algorithm, which can select featured genes differentially
expressed among different samples. The advantage of random
forest is that it can avoid overfitting effectively although the
mechanism is not currently clear (23). In addition, we used a
value of bagged trees sufficiently large to further settle down the
error rate in the present study. In this study, we have identified a
candidate prediction panel of four CpG loci located in HOXA9,
KRTAP8-1, CCND1, and TULP2, which achieves an accuracy
of 94.57%. The prediction panel could be validated in three
independent testing cohorts, including two large datasets from
TCGA and one experimental dataset. Remarkably, the results
were similar among different datasets and were not affected by
the platform used in the analysis. The results demonstrated that
the application of random forest machine learning model could
greatly improve the ability to discovery cancer biomarkers.

Of the four selected methylation markers, HOXA9 and
CCND1 have previously been reported to participate in the
occurrence and development of tumors. Nelson et al. identified
a 10.3-fold higher level of methylation of HOXA9 in lung tumor
than that in the adjacent normal tissues in 146 sample pairs
(24). Other studies including 40 pairs of primary lung cancer
and normal tissues as well as 185 induced sputum specimens
also found that methylation of HOXA9 in lung cancer tissues
was significantly higher compared with normal tissues. Further
investigation discovered that the HOXA9 gene in lung cancer
patients were significantly more hypermethylated compared with
patients with benign lung diseases and the healthy group (25).
In addition to HOXA9, the methylation of HOXB4, HOXD8, and
HOXD9 were also different between tumor and adjacent normal
tissues in lung cancer (Table 2). HOX genes play crucial roles
in a wide range of processes, including in lung development
and are expressed in the normal adult lungs. Hence, abnormal
expression or methylation levels of HOX gene might cause lung
cancer (26). In addition to HOXA9, CCND1 has long been
described as a prognosis maker for NSCLC. It plays key roles in
G1/S phase transition and can promote tumor cell proliferation.
Studies on 69 resected NSCLC samples between stages I and IIIA
showed that overexpression of CCND1 is significantly positively
correlated with lymph nodes metastasis, advanced pathological
stages, and poor survival (27). As opposed to HOXA9 and
CCND1, there is no report on changes in themethylation status in
cancers of KRTAP8-1 and TULP2. The underlying mechanisms,
by which methylation of these two genes changes the biology in
tumors, need further investigation.

Although the prediction panel demonstrates high accuracy in
both TCGA datasets, the present study still has some limitations.
First, all data used were from methylation arrays. Nowadays,
more and more high-throughput methylation detection methods
such as reduced representation bisulfite sequencing (28) and
methyl-sensitive cut counting technique (29) have been applied
to both scientific and clinical examinations. An adjustment of our
model for fitting a wider range of applications may be required.
Second, we only studied our model in LUAD tumors and non-
malignant tissues. Thus, further analysis that aims to validate
this prediction panel in the body fluids such as blood samples
from lung cancer patients for non-invasive diagnostics will be

FIGURE 4 | The methylation level (%) for the four selected probes of the

tumors and non-malignant samples validated in 25 patients with LUAD using

pyrosequencing (**p < 0.001, ***p < 0.0001).

required. Third, markers or marker panels for a more accurate
prediction of NSCLC subtypes are also in urgent need to provide
guidance for more personal and precise treatment and prognosis.
Lastly, the prediction panel in this study was only validated in
patients with LUAD. However, standard validation should be
performed in the clinical setting of an intended-to-use cohort (3).
Therefore, the efficacy of the prediction panel will be investigated
in multiple cohorts such as patients with undetermined lung
nodules in the future study. In summary, this study presents a
process by which robust and accurate diagnostic panels can be
obtained. It was applied to methylation data from lung cancer
patients and relevant control samples. The study demonstrated
the effectiveness of the procedure, which could be applied to
different sample cohorts and diseases other than cancer, thereby
greatly facilitating the discovery process of biomarkers in various
fields. For lung cancer, it was shown that the methylation
levels of HOXA9, KRTAP8-1, CCND1, and TULP2 have great
potential for the early recognition of LUAD in the undetermined
lung nodules. Their suitability for liquid biopsy still needs to
be demonstrated.
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