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The increasing number of patients with sequenced prostate cancer genomes enables us

to study not only individual oncogenic mutations, but also capture the global burden

of genomic alterations. Here we review the extent of tumor genome mutations and

chromosomal structural variants in various clinical states of prostate cancer, and the

related prognostic information. Next, we discuss the underlying mutational processes

that give rise to these various alterations, and their relationship to the various molecular

subtypes of prostate cancer. Finally, we examine the relationships between the tumor

mutation burden of castration-resistant prostate cancer, DNA repair defects, and

response to immune checkpoint inhibitor therapy.
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INTRODUCTION

Prostate cancer is the second-most common cancer in men worldwide (1), and advanced forms
of the disease cause debilitating bone pain, pathologic fractures, and severe anemia. The era of
profiling patients’ tumors using next generation sequencing (NGS) has yielded both scientific and
clinical advances including: the comprehensive detection of BRCA mutations for PARP inhibitor
therapy; the identification of poorer prognosis RB1 mutations; and the full extent of AR genomic
alterations associated with androgen receptor signaling inhibitor (ARSI) resistance (2–6). Equally
important, NGS profiling has expanded our insight beyond a handful of known loci to capture our
first snapshots of the prostate tumor genome in its entirety. This raises the question: does the global
burden of mutations and chromosomal structural variants reveal information beyond individual
driver mutation analysis?

Here we examine the genomic alteration burden in various states of prostate cancer, a
disease with a heterogenous clinical course. Next, we delve into the various mutational processes
underlying those alterations and highlight associations with molecular subtypes. Finally, we
evaluate how a tumor’s mutation burden may help predict response to certain therapies. There are
several caveats: factors beyond the tumor genome, such as the transcriptome, epigenome, and the
microenvironment are undoubtedly relevant, but beyond the scope of this mini review. Secondly,
the analyzed cohorts are predominantly comprised of patients of European ancestry. Finally, this
review of global genomic alterations is simply designed to augment, not supersede, the relevance of
individual mutations and traditional clinical parameters.
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BURDEN OF GENOMIC ALTERATIONS IN
DIFFERENT CLINICAL STATES

Tumor mutation burden (TMB) (7) is measured differently
among various prostate cancer cohorts. Sometimes, it is reported
as the load of non-synonymous mutations (NS) with a minimum
allele frequency of 0.5–10%. Other times, it is reported as the
load of any single nucleotide variants (SNVs). Some studies
additionally report the rate of indels (8, 9). The TMB of
unselected and usually treatment-naïve locoregional prostate
adenocarcinoma cohorts typically falls between 0.94 and 1.74
NS per megabase (Mb) (Table 1). Average TMB appears to
correlate with the patient’s age at diagnosis (∼0.5 NS/Mb for
those diagnosed in their 40s vs. ∼0.9 NS/Mb in their 60s) (12).
Primary tumor grade is a major clinical feature and described by
the Gleason score (currently being updated to the Grade Group
system) (33). The SNV burden has been reported as 1.5× higher
in intermediate pattern Gleason 7 tumors vs. well-differentiated
pattern Gleason 6 tumors (p = 1.05 × 10−3) (16), consistent
with other reports (12). Interestingly, a small cohort of South
African patients of African ancestry with high-risk locoregional
disease were found to have a roughly 4-fold increase of TMB
(3.0–4.7 SNVs plus indels/Mb) (Table 1) comparedwith a control
cohort of European ancestry (23). On the other hand, a study
of African-American men with primary prostate cancer had a
rate of 0.83 SNVs/Mb, in line with cohorts of predominantly
European-Americans (17).

Prostate cancer that presents as de novo metastases,
or reappears as macro-metastases following definitive
prostatectomy/radiotherapy, is termed metastatic castration-
sensitive prostate cancer (mCSPC) (34–36). Just as the pattern
of individual mutations is similar between locoregional disease
and mCSPC, so is the mean TMB (1.74 vs. 2.08 NS/Mb) (13).
Likewise, a separate study showed that patients presenting with
markedly elevated PSAs (≥15) and a biopsied MRI-positive
primary lesion had no significant TMB difference compared to
those found to have mCSPC disease (20). However, as the disease
advances beyond mCSPC, so too does the TMB. Metastatic
castration-resistant prostate cancer (mCRPC) can no longer be
controlled with androgen ablation and is the most morbid and
lethal clinical state. Several groups have noted that the TMB of
mCRPC is accordingly increased (4.02 vs. 2.08 NS/Mb in mCSPC
in one study) (Table 1) (13, 18, 27, 29, 31).

However, analyzing prostate tumor genomes solely via TMB
misses many alterations, since the disease has a higher burden
than many other cancers of chromosomal structural variants
including insertions, deletions, inversions, translocations, gene-
fusions, and tandem duplications (14, 37, 38). Locoregional
prostate cancer cohorts have a highly variable structural variant
burden, with a median of 19 structural variants per genome
(range between 0 and 499, Table 2) (16). Like TMB, the structural
variant burden correlates with Gleason score (17 in Gleason
6 disease compared to 22 in Gleason 7, p < 0.001) (Table 2)
(16). The mCRPC cohorts have a much higher structural variant
burden than in locoregional disease; median lies between 230
and 337 per study (Table 2), keeping in mind structural variant
measurement is not standardized (9, 28, 29).

At the chromosomal level, mCRPC genomes frequently
demonstrate polyploidy and/or aneuploidy. There are several
NGS studies confirming that roughly ≥40% of mCRPC samples
are triploid or more (9, 27, 43), a status itself associated with
more translocations and SNVs (9). Regarding aneuploidy, about
75% of locoregional prostate cancer genomes have chromosomal
arm-level alterations, and 23% possessed≥5 arm-level alterations
(44). As with TMB and structural variants, the degree of arm-level
alterations correlates with Gleason score: only ∼3% of Gleason
6 tumors have ≥5 arm-level alterations compared to ∼40% of
the very poorly differentiated Gleason 9–10 tumors. Even after
adjusting for Gleason score, the degree of tumor aneuploidy
predicted future lethal prostate cancer risk with a median follow-
up of 15 years: patients with ≥5 arm-level alterations had a odds
ratio for lethality of 5.34 (95%CI 2.18–13.1) compared with those
with no aneuploidy (44).

The majority of NGS-based clinical testing involves targeted
panels, rather than whole genome sequencing (WGS), making
direct detection of some structural variants challenging.
However, copy number alterations (CNA) of individual genes
and genomic regions can be robustly detected, and they are
an indirect measure of unbalanced structural variants and
aneuploidy. The tumor CNA burden (TCB) is reported as the
fraction of the measured genome with broad CNA. The median
TCB of locoregional disease is ∼7% of the genome altered
(12, 13, 45). TCB differs statistically with age at diagnosis and
Gleason score in a similar way to TMB: those diagnosed in their
40s have a median TCB of ∼2% genome altered whereas those
diagnosed in their 60s have ∼9% altered (12). Gleason 6 tumors
have median TCBs of ∼1% genome altered, whereas Gleason
≥8 tumors have ∼13% altered (12), consistent with other
reports (46). The TCB of tumors confers considerable prognostic
information (43, 45, 47, 48): it is significantly associated with
biochemical recurrence (each 1% increase in TCB was associated
with a 5–8% decrease in 5-years relapse-free survival) and future
metastasis (45). This was independently verified (43), even after
adjustment for Gleason score and TMB (47). TCB was also
found to be associated with prostate cancer-specific death after
adjustment for clinical parameters, such as CAPRA (CAncer of
the Prostate Risk Assessment) score (49) or Gleason score (per
5% TCB, HR 1.49; 95% 1.30–1.70) (47). Unlike TMB, median
TCB of mCSPC tumors is higher than locoregional disease
(20–30% genome altered) and even higher in mCRPC tumors
(cohort medians between 23 and ∼38%) (9, 12, 13, 20, 24). TCB
is negatively associated with overall survival in metastatic tumors
in multivariate analysis even after adjustment for TMB (per 5%
TCB, HR= 1.08; 95% CI 1.02–1.15) (47).

There is a subset of prostate cancer that emerges clinically
in the treated mCRPC state, whereby the dominant metastatic
histology is now either small-cell carcinoma or possesses
neuroendocrine features. This treatment-emergent small-
cell/neuroendocrine prostate cancer (t-SCNC) (30, 50) has
both characteristic molecular and aggressive clinical features:
there is an enrichment for RB1/TP53 genomic alterations and
rapidly progressive visceral metastases. In one analysis, there
were no statistically significant differences between TMB, TCB,
or ploidy between t-SCNC vs. mCRPC adenocarcinoma (30).
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TABLE 1 | Tumor mutation burden (TMB) in locoregional, metastatic castration-sensitive (mCSPC), and metastatic castration-resistant (mCRPC) prostate cancer samples.

Clinical state TMB (mutations per Mb

or sample)

Method of

sequencing

Algorithm for somatic

mutation calling

Cohort (number of

samples)a
References

Locoregional 0.94 NS/Mbb WES MuTect (10) TCGA, Cell 2015 (n = 333) (11)

1.36 NS/Mbc WES MuTect (10) MSKCC/DFCI, Nature

Genetics 2018 (n = 1013)

(12)

1.74 NS/Mbc Gene panel

(MSK-IMPACT)d
MuTect (10) MSKCC, JCO Precis Oncol

2017 (n = 504)

(13)

33 NS/samplec,e WGS MuTect (10) Broad/Cornell, Cell 2013

(n = 57)

(14)

0.53 SNVs/Mbb WGS SomaticSniper (15) CPC-GENE, Nature 2017

(n = 477)

(16)

0.83 SNVs/Mbb WES MuTect (10) Cornell/Karmanos, Cancer

Discov 2017 (n = 102)

(17)

0.93 SNVs/Mbc WES Used own method MCTP, Nature 2012 (n = 61) (18)

0.93 SNVs/Mbb WES VarScan (19) PROGENY Study, Ann

Oncol 2017 (n = 49)

(20)

1.4 SNVs/Mbb WES MuTect (10) Broad/Cornell, Nat Genet

2012 (n = 112)

(21)

3.0–4.7 SNVs plus

indels/Mb

WGS MuTect, Strelka, VarScan

(10, 19, 22)

SAPCS, Cancer Res 2018

(n = 15)

(23)

mCSPC 2.08 NS/Mbc Gene panel

(MSK-IMPACT)e
MuTect (10) MSKCC, JCO Precis Oncol

2017 (n = 504)

(13)

mCRPC 4.02 NS/Mbc Gene panel

(MSK-IMPACT)e
MuTect (10) MSKCC, JCO Precis Oncol

2017 (n = 504)

(13)

4.1 NS/Mbb WGS MuTect, Strelka (10, 22) SU2C/PCF Dream Team,

Cell 2018 (n = 101)

(9)

44 NS/samplec,e WES Used Own Method Fred Hutchinson CRC, Nat

Med 2016 (n = 176)

(24)

2.00 SNVs/Mbc WES Used Own Method MCTP, Nature 2012 (n = 61) (18)

2.3 SNVs/Mbb,d WGS Freebayes, Pindel (25, 26) UMichigan, Cell 2018

(n = 360)

(27)

3.6 SNVs/Mbc WGS MuTect (10) MSKCC/DFCI, SU2C/PCF

Dream Team, Cell 2018

(n = 23)

(28)

4.4 SNVs/Mbc WES MuTect (10) SU2C/PCF Dream Team,

Cell 2015 (n = 150)

(29)

41 SNVs/sampleb,e,f WES MuTect (10) Multi-Institute, Nat Med

2016 (n = 114)

(30)

98 SNVs/samplec,e WGS CaVEMan (31) PELICAN Study, Nature

2015 (n = 10)

(31)

aTCGA, The Cancer Genome Atlas; MSKCC, Memorial Sloan Kettering Cancer Center; DFCI, Dana-Farber Cancer Institute; PROGENY, PROstate cancer GENomic heterogeneitY;

CPC-GENE, Canadian Prostate Cancer Genome Network; SAPCS, Southern African Prostate Cancer Study; MCTP, Medicaid Cancer Treatment Program; SU2C, Stand Up to Cancer;

PCF, Prostate Cancer Foundation; CRC, Cancer Research Center; PELICAN, Project to ELIminate lethal CANcer.
bThese are median values as reported.
cThese are mean values as reported.
dMemorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets (MSK-IMPACT) is a targeted panel (32).
eThe human genome is ∼3 Gb. The exome is about 1% of the genome, or ∼30 Mb.
fMany samples in this cohort are neuroendocrine prostate cancer, rather than prostate adenocarcinoma.

This is consistent with the postulation that neuroendocrine
transdifferentiation may be driven substantially by epigenetic
mechanisms (51).

Longitudinal analysis of prostate tumor genomes reveals
further complexity in interpreting TMB and TCB, since
mutational processes are dynamic, interrelated, can arise in a
multi-focal setting, and evolve with different degrees of clonality
(13, 31, 46, 52). One study reports that 40% of primary

prostate tumors appear to be monoclonal i.e., one dominant
clone is detected (46). The remaining 60% of primary tumors
demonstrate subclonal populations (78% biclonal, 20% triclonal)
originating from an ancestral clone. These polyclonal tumors
have inferior clinical outcomes with respect to biochemical
relapse following definitive prostatectomy/radiotherapy (HR
2.64; CI 1.36–5.15), and persisting after adjustment for standard
clinical parameters and TCB (46). The polyclonality-related
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TABLE 2 | Structural variant burden (SVB) in locoregional and mCRPC samples.

Clinical state Structural variant burden

(SVs per sample)

Method of determining SVs Cohorta References

Locoregional 19 SVs/sampleb,c Delly v0.5.5 (39) CPC-GENE, Nature 2017

(n = 477)

(16)

mCRPC 230 SVs/samplec,d SvABA (40); GROC-SVS (41); Long

Ranger v2.1.2 (https://support.

10xgenomics.com/genome-exome/

software/pipelines/latest/using/wgs)

MSKCC/DFCI, SU2C/PCF

Dream Team, Cell 2018

(n = 23)

(28)

337 SVs/sampleb,c Manta v1.1.1 (42) SU2C/PCF Dream Team,

Cell 2018 (n = 101)

(9)

aCPC-GENE, Canadian Prostate Cancer Genome Network; MSKCC, Memorial Sloan Kettering Cancer Center; DFCI, Dana-Farber Cancer Institute; SU2C, Stand Up to Cancer; PCF,

Prostate Cancer Foundation.
bThese are median values as reported.
cThe human genome is ∼3 Gb, of which the exome is about 1%, or ∼30 Mb.
dThese are mean values as reported.

risk appears to be additive to those derived from the
combination of TMB and TCB. Interestingly, triclonal tumors
have a higher median PSA level at diagnosis (9.7 vs. ∼7 for
monoclonal/biclonal; p < 0.01), and polyclonal primary tumors
are also more likely to develop metastases later on (OR = 4.01;
p < 0.05). In polyclonal primary tumors, most of the TMB
is truncal (median 87% of total SNVs) whereas the TCB is
more evenly distributed between being truncal (55%) vs. branch-
specific (45%). Moreover, the individual truncal CNAs are larger
(median 11.5 vs. 6.5Mb for branch-specific CNAs) and biased
toward deletions (84% of all deletions are truncal). CNAs are
also observed at chromosome ends, and the median telomere
length of polyclonal tumors is 500 bp shorter than monoclonal
tumors (46).

Altogether, the burden of genomic alterations correlates with
key clinical information for prostate cancer patients. The TMB,
structural variants, and TCB all tend to increase with advancing
clinical state, Gleason score, and age. However, clonality analysis
hints that how these mutational processes combine during tumor
evolution is quite complex.

MUTATIONAL PROCESSES UNDERLYING
PROSTATE CANCER GENOMIC
ALTERATIONS

Next, we examine the biologic processes that generate these
genomic alterations, starting with SNVs. Comparison of tumor-
derived patterns of SNVs within their trinucleotide context to
pre-defined signatures (53) can suggest the underlying etiology;
for example, cancers with known exogenous risk factors reveal
robust signatures associated with tobacco or UV exposure.
However, the majority of mCRPC tumors with intact DNA repair
pathways reveal a robust signature that is endogenous, age-
related and likely results from deamination of 5-methylcytosine
to thymine at mCpG dinucleotides (COSMIC signature 1) (12,
54). If not repaired before DNA replication, this results in a
permanent C > T transition. This signature is contributory
in most cancer types and the frequency of associated SNVs

correlates with the age at diagnosis in pan-cancer analysis,
although not necessarily meeting statistical significance when
analyzing each tissue individually (54). Nevertheless, the rate
of prostate cancer SNVs attributed to this age-related signature
loosely fits a slope of ∼6 SNVs/Gb/year and may contribute to
the increased TMB of patients diagnosed at older ages. Clonality
analysis reveals that this age-related signature is most dominant
early in prostate tumor evolution (46).

In prostate tumors possessing DNA repair defects, SNVs are
associated with different dominant signatures. A recent NGS
analysis of one cohort revealed 3% of genomes possess somatic
DNA mismatch repair defects (MMRD) (55) caused by loss-of-
function mutations in the canonical genesMLH1,MSH2,MSH6,
or PMS2, and consistent with other cohorts (56–58). If one of
the allelic mutations is germline, the patient has Lynch syndrome
and possesses increased lifetime risk for several cancer types
including prostate cancer (59, 60). These tumor genomes are 10-
to 100-fold less likely to repair base pair substitutions prior to
DNA replication, and their TMB is elevated (20–80 SNVs/Mb
in mCRPC) although not necessarily as high as other MMRD
cancer types (29). Analysis as above reveals dominant SNV
signatures associated with MMRD, as expected (9, 27, 55, 61).
MMRD tumors also possess high rates of indels (9), leading
to higher instability of DNA microsatellite lengths, a way in
which such tumors can be detected (55). MMRD tumors have
distinct genomes from those that are MMR proficient: they are
usually diploid, and have the lowest TCB (27). We further discuss
MMRD tumors in the next section.

A third class of SNVs is observed in tumors with homologous
recombination deficiency (HRD) from 6 to 20% of patients with
either somatic or germline alterations of BRCA1 or BRCA2,
frequently biallelic (9, 13, 27, 29, 62). Since DNA homologous
recombination coordinates the repair of double stranded DNA
breaks, HRD not only results in a high TCB, but also a reliance on
alternative error-prone DNA repair pathways (63) and a distinct
dominant group of SNV signatures (9, 27). Accordingly, BRCA-
mutant tumors in mCRPC possess the highest SNV rate among
MMR proficient tumors (7.0 muts/Mb), in addition to higher
TCB (9).
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There are other SNV signatures observed to varying degrees in
prostate tumors, some of which have not yet been associated with
an etiology (27, 53). Moreover, SNVs are not evenly distributed
throughout a given tumor’s genome, but rather dependent on
many interrelated factors, including the underlying mutational
process, the timing of the locus within DNA replication, as well
as whether the locus affects transcription and/or translation. The
phenomenon of localized regions of SNV-based hypermutation
is called kataegis, and is found in 23% of primary tumors (16); it
is coincident with genomic instability, likely altered DNA repair
(64), and enriched for deletions of the chromatin remodeler
CHD1 (33% of kataegis-positive tumors compared with only
11% of kataegis-null tumors) (16). Kataegis is associated with
increasing Gleason score, and present in 40% of Gleason 4 +

3 tumors.
Just as specific processes lead to increased TMB, others lead

to increased TCB. For example, BRCA-mutant tumors have
markedly higher frequencies of copy number deletions as well
as classic genomic “scars” due to their HRD (9). On the other
hand, specifically in HR proficient tumors, chromothripsis can
occur: evidence of “shattering” of regions in one or a few
chromosomes followed by intrachromosomal reassembly in a
stochastic manner, resulting in large numbers of both deletions
and inversions (9). It is found in 20% of non-indolent primary
prostate cancer samples (16) and 23% of mCRPC samples (9).
Although the exact mechanism is unknown, there are some
clear correlations: chromothripsis positive genomes are enriched
for biallelic TP53 loss (83% of chromothripsis positive tumors
vs. 35% of chromothripsis null tumors), although this event
is not likely sufficient to cause chromothripsis (9, 16). Others
have noted a correlation between genomic loss of CHD1 and
chromothripsis (14). From a clinical standpoint, chromothripsis
is associated with the primary tumor T-stage, but was not found
to differ by age or Gleason grade (16).

About 5% of mCRPC cases have a significantly higher number
of genomic tandem duplications, and 90% of these genomes
have biallelic CDK12 alterations (27, 28). In such cases there
is a median of 150 tandem duplications per sample with a
median duplicated region size of 1.3Mb (28). Accordingly, such
tumors possess large numbers of focal CNAs, and also have
the highest gene-fusion burden (100 per tumor vs. 25 in other
tumors), due directly to the genomic duplication phenomenon
(27).CDK12-mutant tumors are usually diploid and trend toward
mutual exclusivity from HRD biallelic BRCA-mutant tumors
(9). Clonality analysis reveals that CDK12 alterations are usually
truncal; in these samples, the accompanying SNVs aremore likely
to occur after tandem duplication than before, and in many
cases in branch-specific subclones (28). It is unknown whether
CDK12 alterations directly cause the tandem duplications, or are
merely associated with it, but there is evidence to support the
former (28).

Finally, some mutational processes occur without directly
affecting TMB or TCB. The most common gene fusions in
prostate cancer occur between androgen-driven upstream
elements of genes like TMPRSS2, and oncogenic ETS
transcription factors like ERG, and are present in up to
50–60% of men of European descent (65). The underlying

chromosomal rearrangements that cause such gene fusions
are initially balanced, frequently complex and involve multiple
chromosomes in a phenomenon termed chromoplexy (14).
Some degree of chromoplexy is present in 50–90% prostate
tumors (9, 14). Moreover, in tumors possessing ETS gene
fusions, the chromoplexy has more than double the number of
interchromosomal rearrangements compared to ETS fusion-
null tumors (14). There is evidence of successive rounds of
chromoplexy occurring, for example initially leading to ETS
fusion formation, and then subsequently to inactivation of tumor
suppressor genes. It is not known exactly how chromoplexy
occurs; there is no enrichment for TP53 mutations in such
tumors, but the process may be related to androgen-related
chromatin configuration (9, 14). Notably, the small cohort of
South Africanmen possessed lower frequencies of larger genomic
rearrangements, such as chromothripsis and chromoplexy, and
lower frequencies of ETS gene fusions, than the comparable
cohort with European ancestry (23).

In summary, we have just begun to understand the processes
that contribute to the burden of prostate cancer genomic
alterations. SNVs possess distinct mutational signatures
including those associated with aging and DNA repair
defects; moreover, many tumor genomes have localized
hypermutated regions. Complex chromosomal alterations, such
as chromothripsis, tandem duplication, and chromoplexy tend
to stratify by specific alterations in TP53, CHD1, CDK12, and
BRCA1/2 and underlie many CNAs and fusion events, such as
the canonical TMPRSS2-ERG fusion.

PROSTATE TUMOR MUTATION BURDEN,
DNA REPAIR DEFECTS, AND
THERAPEUTIC RESPONSE

The initial trials of immune checkpoint inhibitors in unselected
prostate cancer patients (66–68) demonstrated no global clinical
benefit in prostate cancer. Nevertheless, interest in such therapies
remained strong, given case reports of impressive and durable
responses among individual prostate cancer patients (69, 70).
Experiences from other tumor types illuminated patient subtypes
that may derive clinical benefit from existing therapies. Efforts to
identify a specific predictive biomarker, such as PD-L1 expression
have been challenging (71, 72); however, the association with
global genomic processes has been clear. Patients with non-
small cell lung cancers (73), bladder cancers (74), and melanoma
(75–77) that have a high TMB derive increased clinical benefit
to immune checkpoint inhibitors compared to those with low
TMB. There are markedly different numerical thresholds of
what constitutes a high TMB, with the highest quintile within
a given histology usually being associated with longer overall
survival when treated with immune checkpoint inhibitors (78).
Increased non-synonymous mutations and indel frameshifts
lead to increased neoepitopes within MHC Class I-loaded
peptides and it is hypothesized these serve as neoantigens in
the context of immunotherapy (79–84). Ongoing prostate cancer
immunotherapy trials are now beginning to incorporate TMB
analyses (85).

Frontiers in Oncology | www.frontiersin.org 5 November 2019 | Volume 9 | Article 1287

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ryan and Bose Prostate Cancer Genomic Alteration Burden

As described above, the prostate tumors with the highest TMB
are those with MMRD. A series of trials treating patients with
MMRD tumors with pembrolizumab, regardless of histology,
reported a 53% objective radiographic response rate, and a 21%
complete response rate (86). This led to the FDA approval of
pembrolizumab for any MMRD metastatic/unresectable solid
tumors and reinforces the importance of testing such prostate
cancer patients for MMRD. In a recent study of mCRPC patients
with MMRD tumors and treated with immune checkpoint
inhibitors, 55% achieved a PSA response >50%, and 45%
of patients had durable clinical benefit (55). A smaller study
revealed that three out of four patients with MMRD tumors
achieved soft tissue tumor responses upon treatment with
immune checkpoint inhibitors (56). In a separate large analysis of
mCRPC samples, MMRD tumors were predicted to have median
neoantigen burdens of ∼10,000 vs. 1,000 in MMR proficient
tumors (27). Approximately 10% of these are further predicted
to be “strong binders” of MHC Class I. MMRD prostate tumors
were also found to have high degrees of immune infiltration
(20, 27), the highest number of T-cell clonotypes, and the
highest percent of expanded T-cell clones (27). Other studies have
showed a complex relationship between predicted neoantigen
load with immune infiltration (20), as well as considerable
heterogeneity of tumor T-cell infiltration in MMRD cases (87).
The exact mechanism of how predicted neoantigens stimulate
a clinically-relevant immunologic response, and how this might
inform the next generation of immunotherapies remains an
active area of study (77).

Prostate tumors with MMRD may have other unique
molecular and biological features, compared to MMR proficient
disease. One case series reported an enrichment of MMRD
among ductal adenocarcinoma of the prostate, a rare aggressive
subtype of prostate adenocarcinoma (about 3% incidence,
compared to the common acinar adenocarcinoma) with
poor prognosis (56, 57, 88). Ultimately, it is important to
understand the natural history of prostate cancer patients
with MMRD tumors, particularly prior to any potential
treatment with immune checkpoint inhibitors. One study of
patients with recurrent disease reports a longer progression
free survival following androgen-deprivation therapy when
MMRD is detected (median 66 months compared to only
27 months in MMR proficient cases), as well as longer
responses to first-line ARSI agents when used (56). On the
other hand, among patients with clinically aggressive tumors
(56% having metastatic disease at diagnosis), a different
retrospective study of clinically aggressive CRPC noted the
median overall survival for the MMRD cases was significantly
shorter (3.8 years from androgen ablation) than MMR proficient
groups (7.0 years), in both univariate and multivariate analysis
(87). The studies above cannot be directly compared, but
perhaps the biologic context is key to interpreting the clinical
relevance of MMRD.

Beyond MMRD, prostate cancers with other DNA damage
repair defects are being explored for their responses to
immunotherapies. Because CDK12-mutant tumors have

increased rates of gene fusions, they possess higher predicted
neoantigen burdens (median ∼2,000) than other MMR
proficient tumors (27). They may also possess high degrees of T
cell infiltration and expanded T cell clones. These findings have
led to a Phase II trial evaluating the efficiency of combination
nivolumab plus ipilimumab in mCRPC patients with CDK12-
mutant tumors (89). There are also several immune checkpoint
inhibitor therapy combinations being explored, such as one
in which the second agent, a PARP inhibitor, alters how the
genome repairs itself (90). Interestingly, a recent phase Ib/2 study
showed some interesting clinical responses to the combination
of pembrolizumab and olaparib, despite no BRCA mutations
being detected in the biopsies tested (91). Whether this clinical
response is due undetected HRD, or whether the PARP inhibitor
synergizes with the immune checkpoint inhibitor by altering the
presented neoepitopes or an unknown mechanism remains to
be determined.

While high TMB, particularly in the context of altered DNA
repair, is important regarding successful immune checkpoint
therapy in prostate cancer, it is certainly not the whole
story. Roughly half of MMRD prostate tumors do not exhibit
substantial clinical responses to such therapy despite relatively
high TMB (55). Moreover, when clinical responses are observed,
the TMB is often lower compared to that observed in other
MMRD cancer types e.g., in a preplanned interim analysis
of a small phase II mCRPC study of combination nivolumab
plus ipilimumab, responses were observed in tumors above a
modest TMB threshold (85). Identifying other genomic factors
that modify response to immune checkpoint inhibitors and
determining whether they map to specific genes and/or global
processes, remains an active area of investigation. Due to
NGS-based analysis of patients’ tumors, we are just beginning
to obtain a comprehensive snapshot of the prostate tumor
genome in differing clinical states. A deeper understanding
whether and how global genomic measures, such as TMB,
TCB, gene-fusion burden and clonality affect responses to
targeted and immuno-therapies will help us shape future prostate
cancer investigations.
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