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Objective: The purpose of the current study is to investigate whether texture

analysis-based machine learning algorithms could help devise a non-invasive imaging

biomarker for accurate classification of meningiomas using machine learning algorithms.

Method: The study cohort was established from the hospital database by reviewing the

medical records. Patients were selected if they underwent meningioma resection in the

neurosurgery department between January 2015 and December 2018. A total number

of 40 texture parameters were extracted from pretreatment postcontrast T1-weighted

(T1C) images based on six matrixes. Three feature selection methods were adopted,

namely, distance correlation, least absolute shrinkage and selection operator (LASSO),

and gradient boosting decision tree (GBDT). Multiclass classification methods of linear

discriminant analysis (LDA) and support vector machine (SVM) algorithms were employed

to establish the classification models. The diagnostic performances of models were

evaluated with confusion matrix based on which the areas under the curve, accuracy,

and Kappa value of models were calculated.

Result: Confusion matrix showed that the LDA-based models represented better

diagnostic performances than SVM-based models. The highest accuracy among

LDA-based models was 75.6%, shown in the combination of Lasso + LDA. The optimal

models for SVM-based models was Lasso+SVM, with accuracy of 59.0% in the testing

group. One of the SVM-based models, GBDT+SVM, was overfitting, suggesting that this

model was not suitable for application.

Conclusion: Machine learning algorithms with texture features extracted from T1C

images could potentially serve as the assistant imaging biomarkers for presurgically

grading meningiomas.
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INTRODUCTION

According to the survey conducted by the Central Brain
Tumor Registry of the United States (CBTRUS), meningiomas
are one of the most frequent intracranial tumors in adults,
with an incidence of 8.14/100,000, accounting for 36.8% of
the primary central nervous system tumors (1). In most
cases, meningiomas are histologically recognized as low-grade
meningioma (WHO grade I) with benign behaviors, but
approximately 10–20% of meningiomas are recognized as
high-grade meningioma (WHO grades II and III), exhibiting
aggressive behaviors (2–4). The treatment and prognosis for
meningioma are intimately related to the histopathological
grade (5). Surgical resection is the first-line treatment for all
types of meningiomas, the extent of surgical resection is the
most important prognostic factor for high-grade meningioma
outcomes. According to the previous investigations, adjuvant
radiotherapy is associated with statistically improved overall
survival (OS) and progression-free survival (PFS) outcomes (6–
9). Moreover, the prognoses of different grades of meningiomas
are dramatically different that higher grades meningiomas are
correlated to higher recurrence rate (7–25, 29–52, and 50–94%,
respectively) and poor survival outcomes (5, 10). Given these
differences in treatment and prognosis, the accurate presurgical
assessment on tumor grade is clinically important to facilitate
treatment decisions.

Lacking specific blood biomarkers, magnetic resonance
imaging (MRI) is the most importent imaging technique
in the detection and presurgical assessment of intracranial
meningiomas. Previous studies demonstrated that preoperative
MRI was useful for assessing the grades and evaluating
histopathological characteristics of meningiomas (11–14).
However, the image patterns of different grades of meningiomas
could mimic each other in some cases, resulting in limited
diagnostic accuracy and highlighting the urgency of new
radiological evaluation methods (15). Texture analysis is a subset
of radiomics. With the ability of mathematically converting
medical images into mineable quantitative statistics, it has
been considered as the emerging field providing a non-invasive
assessment on tumor heterogeneity (16). Theoretically, the
texture parameters can objectively calculate the structural and
spectral characteristics of pixel intensities within an area to
extract quantitative metrics that are impossible to assess visually
(17, 18). Compared with traditional visual assessment, texture
analysis can describe the image with quantitative statistics more
sensitively and accurately (19).

Texture analysis has shown promising diagnostic ability

in meningioma grading in previous studies (14, 20–22).

Additionally, the quantitative evaluation of texture features

has been applied into machine learning technology to

differentiate high-grade meningiomas from low-grade
meningiomas (20, 21). In the current study, we applied
multiple classification methods to systematically grade
meningiomas. Six models were established and evaluated,
aiming to preliminarily investigate the value of radiomics-based
machine learning technology in in preoperative prediction of
meningioma grades.

MATERIALS AND METHODS

Patient Selection
This retrospective study was led in the neurosurgery department
of our hospital. We viewed the electronic medical records
to search for patients with detailed pathological reports on
meningiomas between January 2015 and December 2018. The
presurgical high-quality MR images of patients were also
exported with standard format through PACS (Picture Archiving
and Communication System). After the initial evaluation on
images and patient profiles, we excluded some patients due
to the following reasons: (1) images with motion artifacts; (2)
relevant tumor treatment history (like radiotherapy or surgery)
in other hospitals; (3) recorded intracranial diseases history,
such as subarachnoid hemorrhage, cerebral infarction, and so
on. Finally, a total number of 150 meningioma patients were
introduced in our study. Clinical information and pathological
reports were also recorded for further analysis. It is worth noting
that pathological grading was corrected based on the 2016 WHO
classification system, adjusted by a senior neuropathologist with
10 years of experience.

The institutional review board approved this retrospective
study. All procedures performed in studies involving human
participants were in accordance with the ethical standards of
the institutional and/or national research committee and with
the 1964 Helsinki declaration and its later amendments or
comparable ethical standards. The obligatory written informed
consent was obtained from participants enrolled in this study
(written informed consent for patients <16 years old was signed
by parents or guardians). The patients agreed to undertake
examination and were informed that the statistics (including
MR image), which could be used for academic purpose in the
future, would be stored in our institutional database. The Ethics
Committee of Sichuan University and neurosurgery department
of our institution have given approval for statistics export and
utilization for this study.

MRI Acquisition
After consulting with senior radiologists and neurosurgeons,
postcontrast T1-weighted (T1C) images were selected for
further analysis due to clear depiction of tumor location and
boundary (Figure 1). The MR scan was conducted in the
MR Research Center of our hospital with 3.0T Siemens Trio
Scanner. High-quality three-dimensional T1-weighted images
were obtained by using a magnetization prepared rapid gradient-
echo (MPRAGE) sequence by the following protocols: TR/TE/TI
= 1,900/2.26/900ms, Flip angle = 9◦, 176 axial slices with
thickness = 1mm, axial FOV = 25.6 × 25.6 cm2, and data
matrix = 256× 256. The contrast-enhanced image was acquired
with gadopentetate dimeglumine (dose: 0.1 mmol/kg) as the
contrast agent.

Texture Features Extraction
The texture analysis was conducted with LIFEx software
by two neurosurgeons following the software instructions
(23). The authors contoured along the tumor tissue slice by
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FIGURE 1 | The magnetic resonance images [postcontrast T1-weighted (T1C)] of a patient with (A) WHO I meningioma, (B) WHO II meningioma, and (C) WHO III

meningioma.

slice to draw the region of interest (ROI), and the three-
dimensional texture features were automatically generated
with default setting. Any disagreement regarding the tumor
location or border of lesions were resolved by consulting senior
neurosurgeons and the senior radiologist. Forty quantified
texture features were extracted, including features from
histogram-based matrix and shape-based matrix from the
first order and features from gray-level co-occurrence matrix
(GLCM), gray-level zone length matrix (GLZLM), neighborhood
gray-level dependence matrix (NGLDM), and gray-level
run length matrix (GLRLM) from second or higher order
(Supplement Material 1). The definitions of texture parameters
were summarized in Supplement Material 2. The association
between texture parameters was evaluated using Pearson
correlation coefficient test.

Machine Learning Classification
The classification models were built with different combinations
of three selection methods [distance correlation, least absolute
shrinkage and selection operator (LASSO), and gradient
boosting decision tree (GBDT)] and two multiclass classification
algorithms [linear discriminant analysis (LDA) and support

vector machine (SVM)]. The feature selection was essential
to the diagnostic performance given that diagnostic values
on all features were discrepant, and that optimal features can
statistically eliminate overfitting. Moreover, it can contribute
to decreased running time and increased accuracy of the
models. With selected features retrieved from different methods,
the statistics were employed into algorithms separately.
Two multiple classification algorithms were adopted in the
current study, including LDA and SVM, representing the
linear classifier and non-linear classifier, respectively. The
patients were randomly separated into two parts in the
proportion of 4:1 as the training group and the testing group.
Confusion matrixes and areas under the curve (AUC) of
each model were calculated to evaluate the performance
of the models. The algorithms deployment procedure was
repeated 100 times to obtain the realistic distribution of
classification accuracies.

The regular statistical analyses in this study were conducted
using SPSS software (version 21; IBM, Chicago), including
Mann-Whitney U-test and Pearson correlation coefficient. The
machine learning algorithms were programmed using Python
Programming Language and scikit-learn package.
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RESULTS

Characteristics of the Study Cohort
A total number of 150 patients were involved in the current study,
among whom 61 were diagnosed with WHO I meningioma, 59
withWHO II meningiomas, and 30 withWHO III meningiomas.
The mean ages of patients were 49.38, 54.41, and 56.93
years, respectively. The gender ratio for patients was 62:88
(male:female). The clinical characteristics of patients and tumors
were summarized in Table 1.

Characteristics of Texture Parameters
The results of Mann-Whitney suggested that there was no
statistically significant difference among the parameters extracted
by two neurosurgeons, implying that the results could be
considered reliable and reproducible (Supplement Material 3).
The Pearson correlation coefficient suggested that most texture
features were correlated with each other rather than independent
(Figure 2).

Diagnostic Performance of Models
In the feature selection, somemutual features were selected when
using different methods, suggesting that they were the most
significant features in discrimination (Table 2). Generally, the
LDA-based models represented better performance than SVM-
based models. The accuracy rates for the LDA-based models
were 73.0, 75.6, and 73.3 in the testing group whereas for
the SVM-based models were 57.6 and 59.0%. Overfitting was
observed in one model, SVM+GBDT, suggesting that this model
was inappropriate in application. The AUC, Kappa value, and
accuracy of each model were represented in Table 3.

Figure 3 illustrated the performance of the LDA-basedmodels
in terms of the distribution of the canonical functions for one
of the 100 independent training cycles. Figure 4 illustrated the
examples of distributions of the LDA function determined for the
lesions for one cycle.

TABLE 1 | Characteristics of patients and lesions.

Low-grade

meningioma

High-grade meningioma

WHO I

meningioma

WHO II

meningioma

WHO III

meningioma

Number 61 59 30

Age 49.38 54.41 56.93

Gender (n, %)

Male 16 (26.23%) 32 (54.24%) 14 (46.67%)

Female 45 (73.77%) 27 (45.76%) 16 (53.33%)

Maximum diameter (cm) 4.06 ± 1.53 5.75 ± 1.50 6.93 ± 2.03

Location (n, %)

Cerebral convexity 32 (52.46%) 40 (67.80%) 21 (70.00%)

Falx 11 (18.03%) 8 (13.56%) 2 (6.67%)

Skull base 18 (29.51%) 11 (18.64%) 7 (23.33%)

Days between MR scan and

surgery

8.7 days 7.2 days 6.7 days

DISCUSSION

The prediction of the histopathological meningioma grade is
important because it is closely related to survival outcomes
and treatment strategies. According to the instructions of the
National Comprehensive Cancer Network (NCCN) guideline,
the recommended treatment for WHO grade I meningioma was
surgical resection or observation; forWHOgrade IImeningioma,
it was gross total resection combined with/without radiotherapy;
and for aWHO grade III meningioma, it was radical surgery with
radiotherapy (24). Therefore, the accurate preoperative diagnosis
should assist clinicians in making a personalized treatment plan
to improve the quality of life. In the current study, we investigated
the diagnostic value of texture analysis-based machine learning
technology in meningioma grade. The texture features adopted
into the classifiers were extracted from T1C images, which
brought the possibility to utilize the technology in standard
routine care imaging analyses.

Texture analysis provides information on the heterogeneity of
tumor imaging, such as tumor cellularity, degenerative changes,
and neovascularization, which are hard to assess visually. By
analyzing the spectral distribution of pixels, abnormal tumor
microenvironment and pathology could be represented as a
series of statistics (25). It has been reported that an imaging
technology extends beyond radiology to histopathology, like
prediction on gene mutation and tumor grading (26–32). As for
the different grade meningiomas, the characteristics of enhanced
pattern have been reported in previous researches. Specifically,
MRI features, such as positive capsular enhancement, indistinct
tumor–brain interface, and heterogeneous tumor enhancement,
were suggested to be related to a higher tumor grade (33,
34). These MRI features could be reflected in GLZLM_ZLNU,
one of the mutual selected features in our study. This feature
calculates the non-uniformity of the gray-levels or the length
of the homogeneous zones, reflecting the heterogeneity within
the delineated area. Fluctuance on value of features from
second or higher order represented irregular changes in the
gray pixels of aggressive meningiomas due to the heterogeneous
structure inside tumor tissue (11). Therefore, it is reasonable
to consider that this MRI feature was closely correlated to
this texture feature. Another mutual feature, SHAPE_Volume
(ml), suggested that the tumor volume was also in relation to
grade, according to the differences in tumor diameter. However,
it is worthy to note that most features were correlated with
each other; the specific reason is still unclear that is why
GLZLM_ZLNU was selected as the strongest correlated feature
while others were not. Future researches are required to explore
this question.

The value of radiomics-based machine learning in
meningioma grading has been explored before. Retrieved
parameters, feature selection method, sample size, and
classification algorithms determined the performance of
models. However, all of these studies, as well as this study, was
seriously limited by the small sample size due to the rather
low incidents of grade III meningioma. Therefore, most of
them simply classified them into low-grade and high-grade
(21, 35). Only one study explored the multiple classification
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FIGURE 2 | The heat map of relationship among texture analysis parameters.

TABLE 2 | Selected features using distance correlation, LASSO, and GBDT.

Selection

method

Selected features

Distance

Correlation

HISTO_Kurtosis, HISTO_Entropy, HISTO_Energy, SHAPE_Volume,

GLCM_Energy, GLCM_Entropy_log10, NGLDM_Contrast,

GLZLM_ZLNU

LASSO minValue, meanValue, stdValue, SHAPE_Volume (ml),

GLCM_Contrast, GLRLM_HGRE, GLRLM_LRHGE,

GLRLM_GLNU, GLRLM_RLNU, GLZLM_LZE, GLZLM_HGZE,

GLZLM_SZHGE, GLZLM_LZHGE, GLZLM_GLNU, GLZLM_ZLNU

GBDT minValue, HISTO_Skewness, SHAPE_Volume (ml),

GLCM_Homogeneity, GLCM_Energy, GLCM_Correlation,

GLCM_Entropy_log10, GLCM_Dissimilarity, GLRLM_LRLGE,

GLRLM_RLNU, NGLDM_Contrast, GLZLM_SZE, GLZLM_LZHGE,

GLZLM_ZLNU

LASSO, least absolute shrinkage and selection operator; GBDT, gradient boosting

decision tree.

models in discrimination, which established models with
the parameters extracted from ADC map and decision
trees algorithms, demonstrating the equivalent diagnostic
performance of machine learning technology compared to
experienced neuroradiologists (accuracy = 79.51%, Kappa value
= 0.6393) (14). As for this study, we employed different multiple

classification algorithms and texture features from different

sequences. However, we should note that the differences between

the models were not strong enough to select the optimal one,

specifically considering that the investigated models seemed to

perform quite comparably and that the variance in AUC might

be partially attributed to the small sample size. Therefore, our

results could only be regarded as a hypothesis and need to be

verified in future studies.
LDA and SVM were employed as classification algorithms

in the current study. Both of them are considered state-of-
the-art in pattern recognition technology, representing two
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TABLE 3 | Diagnostic performance of classification models.

Models Training group Validation group

WHO Grade

I

WHO Grade

II

WHO Grade

III

Kappa value WHO Grade

I

WHO Grade

II

WHO Grade

III

Kappa value

LDA Distance

Correlation

0.928 0.865 0.882 0.578

(Accuracy = 75.4%)

0.884 0.820 0.846 0.563

(Accuracy = 73.0%)

LASSO 0.955 0.914 0.915 0.693

(Accuracy = 80.8%)

0.934 0.846 0.783 0.603

(Accuracy = 75.6%)

GBDT 0.928 0.950 0.908 0.570

(Accuracy = 73%)

0.886 0.854 0.887 0.572

(Accuracy = 73.3%)

SVM Distance

Correlation

0.870 0.831 0.876 0.356

(Accuracy = 61.1%)

0.845 0.798 0.845 0.274

(Accuracy = 57.6%)

LASSO 0.898 0.806 0.877 0.373

(Accuracy = 62.0%)

0.840 0.772 0.833 0.298

(Accuracy = 59.0%)

GBDT

(Overfitting)

– – – – – – –

LDA, Linear Discriminate Analysis; SVM, Support Vector Machine; LASSO, Least absolute shrinkage and selection operator; GBDT, gradient boosting decision tree.

FIGURE 3 | Distribution of the discriminant functions of LDA models. (A) Distance correlation + LDA; (B) least absolute shrinkage and selection operator (LASSO) +

LDA; and (C) gradient boosting decision tree (GBDT) + LDA.

different types of classifiers (36). LDA is the linear classifier,
consisting of the shape of the decision boundary of straight
line in the first case and straight line in second, whereas SVM
is the non-linear classifier, of which the shape of the decision
boundary is a plane in the first case and a plane in the second
(36, 37). Computational time and complexity usually increase
together when trying to improve the performance. Therefore,
the importance on the trade-off between computational burden
and performance has been highlighted to require a suitable
selection method. Previous studies performed feature selection
with Friedman test or Mann-Whitney U-test to choose the most
significant features into classifiers, suggesting that the selected
features could improve the classifier performances (11, 14, 35).
The results of our study showed that all LDA-based models
represented better performances than SVM-based models, and
that the improvement using different selected models was
limited. It seemed that the algorithms have more priority
than the selection method in the improvement of diagnostic
performances. Therefore, in futures studies, researchers should
focus on the algorithm selection, and novel algorithms should
be investigated.

There were some limitations in the current study. First, this is
a single-institution retrospective study that enrolled 150 patients.
The patient sample was relatively small, and the selection
bias was inevitable. Second, the texture features into classifiers
were extracted from T1C sequence, while the value of features
from other sequences was unclear. Given that the research
using parameters extracted from ADC images represented better
performance, future researches were required to investigate
whether the diagnostic performance could be improved when
combined with features from other sequences and advanced
MR technology. Third, novel radiomics parameters have been
identified in recent years, while our studies only involved
traditional texture parameters. Compared to many other studies
in the same field, the number of radiomics features (n = 40)
is fairly small. Fourth, we did not perform comparison to the
performance of a human reader with classifiers. Fifth, only few
classification algorithms were evaluated in our study. Machine
learning has been developed rapidly in recent years, and new
algorithms are being programmed. Sixth, we did not verify the
efficacy of machine learning-based models in external datasets.
We tried to search the public datasets, but all of them were
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FIGURE 4 | Example of distributions of the linear discriminant analysis (LDA)-based models determined for the lesions for one cycle. (A) Distance correlation + LDA;

(B) least absolute shrinkage and selection operator (LASSO) + LDA; and (C) gradient boosting decision tree (GBDT) + LDA.

for gliomas. The software used to extract texture parameters

and package to perform machine learning is the open-source

package, providing a potential for other researchers to reproduce

our researches.
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