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DNA double-strand breaks (DSBs) are highly deleterious, with a single unrepaired DSB

being sufficient to trigger cell death. Compared to healthy cells, cancer cells have a higher

DSB burden due to oncogene-induced replication stress and acquired defects in DNA

damage response (DDR) mechanisms. Consequently, hyperproliferating cancer cells rely

on efficient DSB repair for their survival. Moreover, augmented DSB repair capacity

is a major cause of radio- and chemoresistance and, ultimately, cancer recurrence.

Although inherited DDR defects can predispose individuals to develop certain cancers,

the very same vulnerability may be therapeutically exploited to preferentially kill tumor

cells. A paradigm for DNA repair targeted therapy has emerged in cancers that exhibit

mutations in BRCA1 or BRCA2 tumor suppressor genes, conferring a strong defect

in homologous recombination, a major and error-free DSB repair pathway. Clinical

validation of such approaches, commonly described as synthetic lethality (SL), has

been provided by the regulatory approval of poly(ADP-ribose) polymerase 1 inhibitors

(PARPi) as monotherapy for BRCA1/2-mutated breast and ovarian tumors. In this

review, we will describe the different DSB repair mechanisms and discuss how their

specific features could be exploited for cancer therapy. A major emphasis is put on

advances in combinatorial treatment modalities and SL approaches arising from DSB

repair pathway interdependencies.

Keywords: DSB repair, homologous recombination (HR), BRCA, alternative end joining (a-EJ), PARP inhibition
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INTRODUCTION

The integrity of our genome is constantly challenged by endogenous and exogenous insults that
can induce DNA damage. To counteract genotoxic threats, cells are equipped with a diverse set of
DNA damage signaling and repair mechanisms, collectively known as the DNA damage response
(DDR) (1). During tumorigenesis, however, precancerous cells frequently acquire loss-of-function
alterations in DDR genes, including core components of selected DNA repair pathways, to
accelerate mutagenesis and become malignant (2). While healthy cells have to deal with a minor
amount of damage and take advantage of the full DNA repair capacity, malignant cells are
frequently equipped with reduced DNA repair functionality to cope with increased replication
stress and elevated levels of endogenous DNA damage (3). Consequently, cancer cells become even
more dependent on DNA repair mechanisms to survive and proliferate. Conventional treatment
modalities such as radiation therapy and certain forms of chemotherapy have been built on the
premise to force DNA damage-induced cell death. In summary, cancer cells are often compromised
in their ability to adequately process DNA damage, which exerts selective pressure to sustain DNA
repair through upregulation of mutagenic pathways, ultimately promoting disease progression and
therapy resistance (4, 5).
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DNA double-strand breaks (DSBs) are considered the
most lethal of all DNA lesions, eliciting the majority of
the cytotoxic effects induced by ionizing radiation (IR) and
certain anti-cancer drugs. Therefore, DSB repair represents a
potent and targetable vulnerability in cancer cells. In healthy
somatic cells two-ended DSBs are mainly repaired by two
pathways: classical non-homologous end joining (c-NHEJ)
and homologous recombination (HR) (Figure 1). Auxiliary
mechanisms of DSB repair include single-strand annealing
(SSA) and alternative end joining (a-EJ) that rely on the
presence of larger repeat sequences and microhomologies at
the breakpoint, respectively [(6, 7); Figure 1]. Importantly,
functional interdependencies between different DNA repair
pathways and within compensatory DSB repair mechanisms
offer therapeutic opportunities to selectively treat DDR-
deficient tumors based on the concept of synthetic lethality
(SL) (3, 5, 8, 9).

DSB REPAIR PATHWAYS

The decision as to whether a given DSB is processed by c-
NHEJ, HR, or alternative repair pathways is determined by
several factors, including genetic and genomic background, DSB
complexity, chromatin state, and cell cycle phase. For instance,
c-NHEJ operates throughout the cell cycle, whereas HR relies on
the presence of an undamaged sister chromatid and is therefore
restricted to late S/G2 (7, 10). Therefore, HR activation requires
high cyclin-dependent kinase (CDK) activity (11). In addition,
numerous HR genes are found upregulated in S/G2 phase of the
cell cycle (7). At the chromatin level, the appropriate equilibrium
between HR and c-NHEJ is mainly established by BRCA1 and
53BP1, large DDR adaptor proteins that are enriched at DSB
sites (12, 13). Whereas, 53BP1 mediates c-NHEJ events and
is pivotal in repairing programmed DSBs (e.g., during class-
switch recombination), BRCA1 antagonizes 53BP1 to promote
DSB resection and HR [(14, 15); Figure 1]. Importantly, one-
ended DSBs, predominantly induced by fork breakage or collapse
due to high replication stress, lack an adjacent second DNA
end for rejoining and can only be repaired by HR-related
mechanisms (7).

C-NHEJ
C-NHEJ is accountable for the repair of most two-ended
DSBs in mammalian cells (Figure 1). Rapid and high-affinity
binding of the Ku70-Ku80 heterodimer (Ku) to DNA ends
is followed by the recruitment of DNA-dependent protein
kinase catalytic subunit (DNA-PKcs), forming the active DNA-
PK holoenzyme. Key functions of DNA-PK in c-NHEJ are
(i) promoting synapsis of the broken ends, (ii) coordinating
necessary processing of incompatible ends by DNA nucleases
(e.g., Artemis) and polymerases, and (iii) engaging the DNA
ligase complex composed of DNA ligase IV, XRCC4, XLF,
and PAXX (7, 16). Despite rejoining DSBs without the use
of extensive sequence homology, c-NHEJ is often highly
accurate and its core factors therefore considered as genome
“caretakers” (10, 17, 18).

HR
In case c-NHEJ fails or is inappropriate, DSBs are subjected
to extensive 5′-end resection, generating 3′-single-stranded (ss)
DNA overhangs that interfere with Ku loading and promote
high-fidelity repair by HR [(7, 19); Figure 1]. In a first step,
the MRE11-RAD50-NBS1 (MRN) complex in conjunction with
CtIP, also known as RBBP8, coordinates tethering and short-
range nucleolytic degradation of DSB ends (20, 21). MRE11
exhibits a dual endo- and exonuclease activity that is critical for
DNA end resection (22). Following long-range resection carried
out by EXO1 or the BLM-DNA2 ensemble, the 3′ ssDNA tails
are coated by the RPA heterotrimer. In the central step of HR,
BRCA2 with the help of BRCA1 and PALB2 delivers RAD51
monomers to ssDNA, resulting in RPA removal and RAD51
presynaptic filament formation required for strand invasion and
homology search. Interestingly, in G1 phase, BRCA1-PALB2-
BRCA2-RAD51 complex formation is impaired by proteasome-
mediated degradation of PALB2 (7). Mechanistically, PALB2-
interacting protein KEAP1 in complex with cullin-3-RBX1
ubiquitylate PALB2, thereby suppressing PALB2-BRCA1 (23).
HR in somatic cells is mostly completed by synthesis-dependent
strand annealing (SDSA), generating non-crossovers, although
other outcomes are possible (24).

Alternative DSB Repair Pathways
A-EJ is genetically distinct from Ku-dependent c-NHEJ
and RAD51-dependent HR and requires the presence of
microhomology (MH) regions (2–20 bp), which are exposed
following MRN-CtIP-mediated resection [(25, 26); Figure 1].
Importantly, long-range resection impedes a-EJ and favors HR
or SSA (27, 28). DNA polymerase theta (Polθ), a low-fidelity
DNA polymerase-helicase, has been recently identified as
key factor driving a-EJ by limiting RAD51 nucleation onto
ssDNA (29–31). The Polθ-helicase domain displaces RPA from
ssDNA tails, whereas the Polθ-polymerase domain promotes
their synapsis, thereby facilitating MH-mediated annealing
and subsequent gap filling (32, 33). The essential ligation step
during a-EJ is performed by the DNA ligase IIIα-XRCC1
complex (26). Contrary to a-EJ, SSA requires more extensive
DNA end resection followed by RAD52-mediated annealing of
homologous tandem repeat sequences (>20 bp) [(34); Figure 1].
Whether a-EJ and SSA serve primarily as backup pathways in
mammalian cells deficient in either c-NHEJ or HR, or are favored
at specific genomic loci still remains to be established (35).

DSB REPAIR PROTEIN DYSFUNCTION IN
CANCER

Only a minor number of human cancers are associated with
downregulation or alterations of core c-NHEJ genes (36). Rare
mutations in LIG4 (encoding DNA ligase IV), XLF, DCLRE1C
(encoding Artemis) or PRKDC (encoding DNA-PKcs) have been
identified in a radiosensitive sub-class of patients with severe
combined immunodeficiency (SCID) and can predispose to
cancer (37, 38). As c-NHEJ is the predominant DSB repair
pathway in human cells, complete loss-of-function is likely to
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FIGURE 1 | DSB repair pathways in mammalian cells. Two-ended DSBs are preferably repaired by two major competing pathways: classical non-homologous end

joining (c-NHEJ) and homologous recombination (HR). In addition, DSBs can be subjected to alternative end joining [a-EJ, also referred to as DNA polymerase

theta-mediated end joining (TMEJ)] or single-strand annealing (SSA). BRCA1 and 53BP1 are placed at the center of DSB repair pathway choice. Whereas, chromatin

recruitment of 53BP1 drives c-NHEJ, BRCA1 antagonizes 53BP1 to channel DSB repair into HR. (i) C-NHEJ begins with Ku70-Ku80 (Ku) binding to DSB ends,

followed by the recruitment of DNA-dependent protein kinase catalytic subunit (DNA-PKcs), forming the DNA-PK holoenzyme implicated in DNA synapsis. If

necessary, DNA-PK coordinates limited processing of incompatible or chemically modified DNA ends by nucleases (e.g., Artemis) and other enzymes. The DNA ligase

IV (LigIV)-XRCC4-XLF-PAXX complex executes the final ligation step. DNA end resection interferes with the default engagement of c-NHEJ by removing Ku from DNA

ends, which is a critical step for initiating HR (ii). First, the MRE11-RAD50-NBS1 (MRN) complex senses the DSB and with the help of BRCA1 and CtIP promotes

limited resection of the 5′ strand. Next, more extensive 5′-3′ resection by exonuclease 1 (EXO1), or by the Bloom’s syndrome (BLM) helicase together with the DNA2

nuclease, generates long 3′ ssDNA overhangs that become rapidly coated with the RPA heterotrimer. The BRCA1-PALB2-BRCA2 complex disassembles RAD51

heptamers and loads monomeric RAD51 onto ssDNA, promoting RAD51 filament assembly. Template-dependent strand extension is followed by

“synthesis-dependent strand annealing” (SDSA), resulting in a non-crossover gene conversion. Alternatively, capture of the second ssDNA by the D-loop forms a

double Holliday junction intermediate, which can be resolved either as a non-crossover or as a crossover. (iii) SSA requires at least 20–25 base pairs (bp) of DNA

sequence homology, which are typically found between repetitive elements (indicated as green boxes) in the genome. Subsequently, RAD52 promotes annealing of

complementary ssDNA and leftover non-homologous flaps of the 3′ overhangs are cleaved by XPF-ERCC1. The factors that promote gap filling and ligation during

SSA remain largely elusive. (iv) In contrast to SSA, a-EJ (or TMEJ) utilizes short microhomologies (MHs) of 2–20 bp (indicated as red boxes) to join the two DNA

strands. PARP1 has been implicated in promoting DNA end synapsis and recruiting the specialized DNA polymerase θ (Polθ) to DSBs. Polθ stabilizes MH-mediated

joints between the two DNA ends serving as primers for fill-in synthesis. 3′ flaps extending from the joints are removed by XPF/ERCC1. Flap endonuclease 1 (FEN1)

has recently been implicated in the removal of 5′ flaps generated by Polθ-mediated strand displacement, while the DNA Ligase III (LigIII)-XRCC1 complex is essential

for the final ligation step. Inset, bottom left: DSB repair pathway-specific inhibitors. Inhibition of c-NHEJ has so far been mainly achieved by targeting DNA-PK using

different small molecule inhibitors. Strategies to inhibit a-EJ and SSA focus on targeting their respective DNA annealing factors Polθ and RAD52, while the primary

target to disrupt HR is RAD51 (see text for more details).

drive cell death due to an unreasonably high DSB burden (36).
Elevated DNA-PKcs levels were implicated in the progression of
various types of tumors such as prostate cancer and melanoma

(36). Noteworthy, PRKDC is with 2.1% the sixth most frequently
mutated DNA repair gene in all cancers and considered a
potential oncogene, exhibiting frequent copy number gains (39).
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A comprehensive analysis of somatic DDR gene alterations
delineates HR as the most frequently altered DNA repair
pathway across 33 cancer types, most notably ovarian cancer
(40). Mutational signatures associated with robust HR deficiency
(HRD) primarily included alterations affecting BRCA1, BRCA2,
two canonical RAD51 paralog genes (RAD51B, RAD51C), BLM,
and RAD50 (40). Large-scale molecular profiling of solid tumor
samples across 21 cancer lineages detected pathogenic HR gene
mutations with an overall frequency of 17.4%. Here, again,
BRCA2 (3%) and BRCA1 (2.8%) were the most commonly
mutated bona fide HR genes and predominantly seen in ovarian
and breast cancers (41). Heterozygous germline mutations in
BRCA1 and BRCA2 are responsible for the majority of hereditary
breast and ovarian cancer (HBOC) syndrome patients. However,
only ∼20–25% of HBOC families have BRCA mutations
and other low-to-moderate penetrance HBOC susceptibility
genes involved in HR have been identified, including BRIP1,
RAD51C, and PALB2 (42). Moreover, revisiting whole-exome
sequencing datasets of non-BRCA1/2 familial breast cancer
patients confirmed the existence of likely pathogenic germline
variants in MRE11A, RAD50, and NBN, encoding components
of the MRN complex (43, 44). Lord and Ashworth have
coined the term “BRCAness” to denote HRD tumors that
share molecular features of BRCA1/2-mutant tumors and are
therefore expected to effectively respond to the same treatment
modalities (45). Remarkably, however, a recent study indicated
that most somatic BRCA1/2 alterations in non-BRCA associated
cancer types may be incidental findings unrelated to tumor
pathogenesis, rendering them therapeutically irrelevant (46).
In contrast to the situation encountered for BRCA1/2, no
inactivating mutations of RAD51 have been reported in tumors.
Paradoxically, RAD51 is frequently found overexpressed and
has been associated with poor prognosis in patients with solid
malignancies, thus potentially acting as a driver of aberrant
HR (47).

Similarly, elevated MRN expression has been correlated
with tumor progression and poor survival in patients with
rectal and gastric carcinomas and prostate cancer (48–50).
However, with the exception of a positive relationship between
MRN deficiency and microsatellite instable (MSI) colorectal
cancers, large scale studies will be required to substantiate its
relevance in clinical settings (51). Like MRN, CtIP also has
rather oncogenic potential at the cellular level, most likely
by facilitating a-EJ-dependent chromosomal instability (52–
54). Accordingly, mice heterozygous for a null Ctip allele did
not display increased tumor susceptibility, meanwhile CtIP
inactivation suppressed mammary tumorigenesis caused by p53
deficiency (55). Although still far from being fully characterized,
a-EJ is intrinsically mutagenic, typically generating deletions at
the repair junction, and suggested to be a major driving force
of genomic instability in human cancers (56–58). In particular,
a-EJ reliant on Polθ, also referred to as theta mediated end
joining (TMEJ, see Figure 1), has emerged as a distinct DSB
repair pathway acting predominantly in HRD tumors or on
breaks incompatible with c-NHEJ and HR (59). Consistently,
depletion of BRCA1/2 resulted in increased usage of TMEJ
using reporter assays in human cells (25). Elevated POLQ

(encoding for Polθ) expression has been described in numerous
cancer types, including breast and ovarian cancer (29, 59–61).
Overall, CtIP and Polθ may drive tumorigenesis through a-EJ
in defined biological contexts and therefore represent promising
therapeutic targets.

DSB REPAIR PROTEINS AS DRUG
TARGETS

As outlined above, DSB repair constitutes an Achilles’ heel of
cancer cells and there is a continuous search for compounds
specifically targeting DSB repair components to exploit this
key vulnerability.

Combinatorial Treatment Regimens
Involving DSB Repair Inhibitors
DNA repair targeted therapy was first considered most beneficial
in combination with conventional DNA-damaging agents (62,
63). In recent years, mainly thanks to the development of
PARPi, additional treatment strategies including DDR inhibitor
combinations have been implemented in clinical trials (3,
64, 65). Furthermore, DDR-targeting drugs were found to
enhance the effectiveness of immunotherapy by fostering
increased immunogenic surveillance and restricted tumor
growth (66, 67). An elevated mutation load was shown to
increase neoantigen levels in cancer cells thereby promoting
tumor immunogenicity (68). Here, we will mainly focus on
available DSB repair pathway inhibitors and their synergistic
effect in combination with standard chemo- or radiotherapy.
Moreover, existing PARPi-based combination strategies will also
be highlighted.

Pharmacological Targeting of c-NHEJ

Restraining c-NHEJ capacity has been primarily achieved
by targeting DNA-PK (Figure 1). Conceptually, compounds
blocking c-NHEJ are thought of as being most effective when
used in combination with radiation therapy, as c-NHEJ is
taking care of roughly 80% of IR-induced DSBs (69). Whereas,
numerous DNA-PKcs small-molecule inhibitors (DNA-PKi)
have been developed over the last 20 years, only one specific
agent is known to target the Ku heterodimer (70). Weterings
et al. identified a compound interfering with the binding of Ku
to DNA and sensitizing human cell lines to IR (71). Similarly,
the majority of DNA-PKi displayed synergistic effects with IR
and chemotherapeutics including etoposide and cisplatin (72).
For example, VX-984 induced radiosensitivity of glioblastoma
cells grown as orthotopic xenografts (73), whereas combination
of the DNA-PKi KU-0060648 with ATR inhibitor AZD6738
potentiated radiosensitization of head and neck squamous cell
carcinoma cell lines (74). The most potent DNA-PKi (M3814,
CC-115 and CC-122) are currently being investigated in several
clinical trials (72). Of particular interest, a dose escalation phase I
clinical trial combines M3814 with Avelumab (NCT03724890), a
human monoclonal antibody targeting the protein programmed
death-ligand 1 (PD-L1). Remarkably, CC-115, a dual inhibitor
targeting DNA-PK and the structurally related mammalian target
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of rapamycin kinase (TORK), was shown to induce caspase-
dependent cell death in primary chronic lymphocytic leukemia
(CLL) cells and to be clinically effective in CLL patients with
an ATM mutation (75, 76). However, it remains an open
question of whether DNA-PKi act solely by impairing DSB repair,
as other cellular functions of DNA-PKcs have been reported,
including cell cycle progression, transcription and telomere
maintenance (70).

Pharmacological Targeting of HR

MRE11 harbors endo- and exonuclease activity essential for
DNA end resection, thereby channeling DSBs into homology-
directed repair pathways (22). A forward chemical genetic
screen identified mirin as the first MRE11 inhibitor targeting
its exonuclease activity and preventing ATM activation (77). In
addition, structure-guided nuclease-specific MRE11 inhibitors
revealed that endonuclease inhibition promotes c-NHEJ in lieu
of HR, whereas exonuclease inhibition caused a more profound
DSB repair defect (78, 79). CtIP’s role in DSB resection has
been mostly attributed to its interaction with and stimulation
of MRE11, although intrinsic CtIP endonuclease activities have
also been demonstrated (80–83). Intriguingly, CtIP-specific
inhibitors have not been reported yet. However, inhibition of
Bromodomain-containing protein 4 (BRD4) was found to induce
an HRD signature by decreasing transcriptional activity of the
CtIP promoter and enhancer (84). Reduced CtIP protein levels
correlated with increased PARPi sensitivity, potentially qualifying
CtIP as a predictive marker for PARPi response. Consistently,
different BRD4 inhibitors (e.g., JQ1 and AZD5153) sensitized a
broad range of tumor types to PARPi in multiple in vitro and in
vivomodels (85).

BRCA1 and BRCA2 represent challenging targets for
structure-based drug discovery, as they are both large proteins
made up of short, functional domains, serving as hubs for
multiple protein-protein interactions, interspersed by long,
intrinsically disordered linkers (86). In this regard, Pessetto
et al. identified a cell permeable peptide ablating phosphoprotein
binding by the BRCA1 tandem BRCT domains and enhancing
PARPi sensitivity of cancer cells (87). Similarly, a BRCA2-
mimetic cell-penetrating peptide disrupting BRCA2-RAD51
interaction conferred PARPi sensitivity in cancer cell lines (88).
Small molecules selectively targeting BRCA1’s ubiquitin ligase
activity, which is mediated by the N-terminal RING domain and
required for efficient DSB resection (89), might also offer a valid
alternative to inhibit HR.

Chemical inhibitors of RAD51 (e.g., B02, IBR2, RI-1/2) have
been reported to either interfere with RAD51 oligomerization,
filament formation or DNA binding, and, ultimately, to induce
HR deficiency [(78, 90–94); Figure 1]. Triple combination of
B02, the PARPi veliparib and a p38 MAPkinase inhibitor
(LY2228820) significantly reduced primary tumor growth in
an orthotopic triple negative breast cancer (TNBC) mammary
xenograft model (95). Similarly, cancer cell proliferation in a
breast cancer xenograft model and in a chronic myelogenous
leukemia model bearing the BCR-ABLT315I mutation was
significantly slowed upon IBR2 treatment (94). RI-1 potentiated
the effect of the alkylating agent Iomustine on a glioma

xenograft model, reduced growth of cervical cancer xenografts
and hindered TNBC growth in vivo when combined with
veliparib (96–98). Based on these preclinical findings, RAD51i
were proposed as potential candidates for a novel class
of broad-spectrum therapeutics for difficult-to-treat cancers.
Interestingly, Cyteir Therapeutics is currently recruiting patients
for a phase 1/2 study with CYT-0851, an oral RAD51i
designed to reduce the ability of RAD51 to migrate to and
from sites of excessive DNA damage (NCT03997968). In
addition to direct RAD51 inhibition, inactivation of RAD51
can also be achieved by indirect mechanisms, including
tyrosine kinase inhibitors (93). For example, it was recently
reported that cediranib (AZD-2171), a potent inhibitor of
vascular endothelial growth factor (VEGF) tyrosine kinases,
constrains HR through transcriptional repression of RAD51 and
BRCA1/2 (99). Accordingly, combination of the PARPi olaparib
with cediranib showed superior progression-free and overall
survival outcomes in relapsed ovarian cancer patients without
documented BRCA1/2mutations (100).

Even though drugs inhibiting c-NHEJ or HR have proven
highly effective in combinatorial treatment strategies, they
usually lack tumor specificity and receiving patients often suffer
from toxic side effects, resulting in a narrow therapeutic window.
Nowadays, SL-based strategies provide a more promising
approach for therapeutic interventions, particularly in patients
with HRD.

Exploiting Synthetic Lethality in
HR-Defective Tumors
The most popular synthetic lethal interaction (SLI) exploited in
cancer therapy is the one between BRCA and PARP1 genes (101,
102). Catalytic inhibition of PARP1 “traps” PARP1 molecules
on damaged DNA, resulting in replication fork collapse and
DSB formation. In combination with HRD, due to BRCA1/2
loss, PARP trapping leads to persistent accumulation of DSBs,
inducing cell cycle arrest and apoptosis (Figure 2A). In two
landmark studies, pharmacological targeting of PARP1 with the
orally active PARPi olaparib showed a favorable therapeutic index
in homozygous BRCA-mutated breast or ovarian cancer (103,
104). There are currently six small-molecule PARPi available
in the clinic, four of them (olaparib, rucaparib, niraparib
and talazoparib) have already obtained approval in different
therapeutic settings (65). Despite this remarkable success story,
resistance to PARPi remains a major problem in the clinic and
an active area of research (105). Nonetheless, the identification
of additional, cancer-specific SL gene pairs holds great promise
in developing effective monotherapy regimens, as exemplified
below (Figure 2B).

Two seminal studies from the Sfeir and D’Andrea laboratories
established that HRD cancers display a pronounced dependency
on TMEJ to limit the toxicity of DSBs [(29, 30); Figure 2B].
Moreover, the fact that Polθ is generally absent in normal
cells but upregulated in many cancers makes it a highly
desirable drug target (29). Consequently, two established
precision oncology companies, Artios Pharma and Repare
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FIGURE 2 | Synthetic lethal (SL) strategies to target HR-deficient (HRD) tumors. (A) PARPi (red dot) trap PARP1 proteins on endogenous DNA lesions, including

single-strand breaks or gaps. If not removed timely, trapped PARP1 blocks the replication machinery, leading to one-ended DSBs that need to be repaired by HR. In

HRD tumors such as BRCA1- or BRCA2-mutated cancers, DSBs persist and accumulate, ultimately causing cell death due to SL. (B) HRD tumors are addicted to

alternative, mutagenic DSB repair process (a-EJ and SSA) to sustain proliferation. Targeting Polθ (or FEN1) or RAD52 by small molecule inhibitors (red dots) would

eliminate a-EJ or SSA, respectively, resulting in SL. (C) Apurinic/apyrimidinic (AP) sites (black dot) are one of the most frequent spontaneous lesions in DNA. If not

timely removed by APE2, they have the potential to block DNA replication. Consequently, APE2 inhibition (red dot) would lead to massive accumulation of AP sites

associated with increased rates of fork collapse and DSB formation. In healthy cells, HR can deal with those DSBs, promoting cell survival. In contrast, treating HRD

tumors with APE2i would cause DSB-induced cell death due to SL.

Therapeutics, have launched Polθ inhibitor programs with first-
in-human clinical studies due to start soon. Furthermore,
CRISPR-based genetic screens targeting 309 murine DDR genes
identified 140 Polq SL genes, including many HR mediators,
several c-NHEJ genes and key components of the 53BP1
anti-resection pathway (106). Notably, 30% of human breast
cancers in the TCGA cohort were found to be likely deficient
in one or more of the 140 Polq SL genes, significantly
broadening the number of patients that may benefit from Polθ
inhibition (106).

Another interesting SLI was repeatedly reported between
RAD52 and BRCA1/2 [(107–111); Figure 2B]. Due to the
multiple roles of RAD52 in genome maintenance pathways,
the exact mechanism underlying the RAD52-BRCA SL remains
to be fully understood (112). However, it has been reported
that RAD52-dependent SSA acts as an important backup when
direct protein-protein interactions in the BRCA1-PALB2-BRCA2
complex, required to channel resected DSBs down the HR
path, are disrupted (113). In large agreement with this notion,
RAD52 inhibitors exerted synergistic activity with PARPi against
BRCA1-deficient tumor cells (114). Remarkably, combined
disruption of RAD52 and POLQ caused additive hypersensitivity
to cisplatin, indicating distinct back-up roles in DSB repair and a
potentially effective approach for SL therapeutic strategies (115).
Several small-molecule RAD52 inhibitors have been developed,
but none of them have been subjected to clinical trials (78).

Last but not least, genetic screens by the Elledge laboratory
uncovered FEN1 (encoding Flap endonuclease 1) and APEX2
(encoding AP endonuclease 2, APE2) as SL genes in BRCA1/2-
deficient backgrounds (116). They proposed that in the context
of HRD, FEN1 may be responsible for the removal of Polθ-
dependent 5′ flaps during TMEJ (Figures 1, 2B), while APE2 is
mainly processing abasic sites at replication forks to avoid fork
collapse and DSB formation [(116); Figure 2C].

Notably, acquired genomic instability due to HRD facilitates
acquisition of mutations that could trigger therapy resistance (4).
For instance, PARPi resistance mechanisms have mostly been
linked to either reactivating BRCA mutations or DDR rewiring,
thereby functionally restoring HR. In these cases, chemical
inhibition of the reactivated HR pathway has been proposed
to overcome PARPi resistance (117). Interestingly, numerous
studies revealed that reversion mutations of BRCA genes display
MH signatures that likely originate from error-prone DSB
repair mechanisms such as a-EJ and SSA (118). Consequently,
combined inhibition of PARP1 and Polθ (or RAD52) should
prolong drug responses and prevent resistance acquisition (118).
In addition, targeting alternative SLIs with HRD (Figure 2C)
could be beneficial when PARPi resistance arises due to loss of
PARP1 expression or activation (117).

Finally, it remains to be said that only few robust SLIs have
been identified since the discovery of the SL between PARP
inhibition and BRCA1/2 loss of function in 2005 (119). Moreover,
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it has been argued that most SLIs display incomplete penetrance
due to extensive molecular heterogeneity seen in tumors (120).
Therefore, assessing the penetrance of SLIs will become an
important aspect of future research.

CONCLUSIONS

It has become increasingly evident that targeted inhibition of
DSB repair proteins offers a wide range of possible applications in
cancer treatment. Initially, combinatorial therapy of DSB repair
inhibitors with DNA-damaging agents (e.g., IR or cisplatin)
were considered most effective. Given that DSB repair deficiency
results in increased tumor immunogenicity, the combination
of selected DSB repair inhibitors with immunotherapy will
very likely find its way into the clinic. In addition, the
emerging concept of exploiting SL as anti-cancer therapy is
expected to allow more selective and efficient tumor killing
without the side-effects of conventional drugs. Importantly,
sequential therapy with DNA repair inhibitors was found to
be less toxic compared to simultaneous drug administration
meanwhile retaining treatment efficacy (121, 122). Consequently,
detailed evaluation of the drug administration timing is of vital
interest to reduce cytotoxicity. In addition, the stratification
of robust biomarkers and detection of mutational signatures
will be highly critical to the implementation of SL but also

combinatorial therapy regimens (123). Finally, DSBs are repaired
by multifactorial pathways that are heavily connected. These
interdependencies generate potentially druggable vulnerabilities
but also opportunities for tumors to develop drug resistance.
Thus, establishing potent inhibitors for each DSB repair pathway
will create new treatment opportunities for a wide range
of tumors.
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