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As awareness of the habits and risks associated with lung cancer has increased, so

has the interest in promoting and improving upon lung cancer screening procedures.

Recent research demonstrates the benefits of lung cancer screening; the National Lung

Screening Trial (NLST) found as its primary result that preventative screening significantly

decreases the death rate for patients battling lung cancer. However, it was also noted

that the false positive rate was very high (>94%).In this work, we investigated the ability

of various machine learning classifiers to accurately predict lung cancer nodule status

while also considering the associated false positive rate. We utilized 416 quantitative

imaging biomarkers taken from CT scans of lung nodules from 200 patients, where the

nodules had been verified as cancerous or benign. These imaging biomarkers were

created from both nodule and parenchymal tissue. A variety of linear, nonlinear, and

ensemble predictive classifying models, along with several feature selection methods,

were used to classify the binary outcome of malignant or benign status. Elastic net and

support vector machine, combined with either a linear combination or correlation feature

selection method, were some of the best-performing classifiers (average cross-validation

AUC near 0.72 for these models), while random forest and bagged trees were the worst

performing classifiers (AUC near 0.60). For the best performing models, the false positive

rate was near 30%, notably lower than that reported in the NLST.The use of radiomic

biomarkers with machine learning methods are a promising diagnostic tool for tumor

classification. The have the potential to provide good classification and simultaneously

reduce the false positive rate.

Keywords: radiomics, machine learning, CT image, biomarkers, lung cancer

1. INTRODUCTION

Publication of primary results from the National Lung Screening Trial (NLST) reported that lung
cancer screening, especially when performed with low dose computed tomography (CT) scans,
can significantly reduce the mortality rate of lung cancer. This result highlights the benefits of
lung cancer screening; however, the NLST also found that screening results had a notably high
rate of false positive results. Of the total number of low dose CT scans in the NLST, the false
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positive rate surpassed 94% (1). The NLST researchers noted
that the high false positive rate was a challenge which required
further research, and that challenge persists to the present. The
negative consequences associated with false positive exam results
can include patient anxiety and unnecessary invasive diagnostic
procedures such as biopsy (2, 3).

High-throughput extraction of features from imaging data
composes the essence of radiomics, an emerging field of research
which offers significant improvement to decision-support in
oncology (4, 5). Current work examines the predictive power of
quantitative imaging biomarkers, which are quantitative features
extracted from routine medical images (4, 6, 7), as inputs within
predictive classifying models. The information contained in the
imaging biomarkers has the potential to improve classification
accuracy in a variety of statistical models (2).

Across the literature, quantitative biomarkers taken from
imaging data have been used to develop models with the intent
to identify and analyze associations between radiomic/nodule
features (stages or histological characteristics) and clinical
outcomes (survival, recurrence, etc.). Previous work in radiomics
aimed at classification of lung nodules has examined a variety
of outcomes (5, 8–12). Zhu et al. used outcome categories for
lung cancer type with a LASSO classification model (13). Zhang
et al. examined outcomes for local/distant failure using several
machine learning classifiers (5). Pamar et al. used clusters of
biomarkers as predictors inmodels of overall survival (14). Dilger
et al. used an expanded set of radiomic features that included
both nodule and parenchymal tissue. They showed an increase
in classification performance when the parenchymal tissue was
included in feature extraction (3).

In this paper, we investigate the predictive power of
biomarkers (computed from both nodule and parenchymal
tissue as calculated by Dilger et al. (3)) to classify lung nodule
status as malignant/benign while also considering the false
positive rate. Our comprehensive approach includes multiple
combinations of models and filtering techniques. In particular,
combinations of twelve machine learning classifiers along with
six feature selection methods were compared, using area under
the receiver operating characteristic curve (AUC) as the model
performance metric.

2. METHODS

2.1. Dataset
This retrospective study analyzed data originally taken from 200
CT scans of the lungs of patients at the University of Iowa
Hospital. Pathology and radiology reports were reviewed to
identify an analysis set of patients who met eligibility criteria
of having (a) a solitary lung nodule (5–30mm) and (b) a
malignant nodule confirmed on histopathology or a benign
nodule confirmed on histopathology or by size stability for
at least 24 months. Manual segmentations were performed
by a graduate student trained in medical image analysis in
order to define a region of interest (ROI) around each nodule.
The ROIs were defined to include amounts of parenchyma
approximately proportional to the nodule sizes. Individual ROI
voxels were labeled as belonging to either the nodule or the

TABLE 1 | Demographics of patient cohort.

Malignant Benign

Number of patients 110 90

Female 51 (46.4%) 63 (70.0%)

Male 59 (53.6%) 27 (30.0%)

Age, yrs (mean ± SD) 65.7± 11.2 58.2± 13.2

Pack-years (mean ± SD) 38.4± 31.2 11.2± 16.9

Nodule size, mm (range, mean ± SD) 7− 44, 19.1± 6.3 6− 30, 15.2± 5.8

parenchyma, with radiomic features calculated separately for
each to produce the complete set of 416 (approximately half
nodule and half parenchyma) quantitative imaging biomarkers.
These biomarkers measured features such as intensity, shape,
and texture of the ROI (15). This study is a secondary analysis
of de-identified data originally collected with approval from
the University of Iowa institutional review board. Demographic
information can be found in Table 1.

A strength of the dataset is its fairly balanced malignant/
benign status breakdown, with 45% of the cases malignant
and 55% benign. Many machine learning-based classifying
algorithms assume that the outcomes of a data set are balanced,
but this assumption is not met when the proportion of outcomes
is highly uneven. The data set used in this work has a nearly even
ratio of malignant and benign nodules (16).

2.2. Radiomic Features
The 416 radiomic features which were available for this
investigation quantified nodule characteristics from CT images
acquired from a variety of scanner protocols through the
University of Iowa Hospital. The most common CT models
used were Siemens SOMATOM Definition, Siemens Sensation
16, Sensation Biograph 40, and Toshiba Aquilion. Using these
machines, several protocols were used, including Chest CT scans
with and without contrast, CT Angiography scans, Extrenal CT
scans, PET/CT scans, and CT: Chest, Abdomen, and Pelvis scans.
Slice thickness ranged from 1.0 to 6.0 mm with an average of
3.3 mm (15). From these scans, voxels labeled as parenchyma
and nodule were used in the extraction of four classes of
features: intensity, shape, border, and texture. The intensity of
CT images described the radiodensity of the anatomy [measured
using Hounsfield units (HU)] as well as heterogeneity of the
nodule. Shape features examined sphericity and the maximum
diameter of the nodule. Sphericity was computed by comparing
the volume of the nodule to its surface area, and maximum
diameter was measured using the Response Evaluation Criteria
in Solid Tumors (RECIST). The border features were measured
using a rubber band straightening transform (RBST). The texture
features were extracted from the nodule and parenchyma regions
using Laws’ Texture Energy Measures (TEM). From these TEMs,
the mean, variance, kurtosis, and skewness of the nodule and
parenchyma were extracted. Radiomic features were extracted
using aMatlab based CAD tool, and the mathematical definitions
for all of the radiomic measurements are described in full
in Dilger (17).
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TABLE 2 | Summary of feature selection methods.

Feature selection method Abbreviation

Linear combination lincom

Pairwise correlation corr.95

PCA - 0.85 cutoff pca.85

PCA - 0.90 cutoff pca.90

PCA - 0.95 cutoff pca.95

Unfiltered nofilter

2.3. Feature Selection Methods
As is common in radiomics studies with hundreds of features,
many of the biomarkers (features) used as predictors were highly
correlated with one another; this challenge necessitated feature
selection in order to avoid collinearity, reduce dimensionality,
and minimize noise (11, 16, 18, 19). To this end, we considered
three feature selection methods: a linear combinations filter, a
pairwise correlation filter, and principle component analysis.

For the linear combinations filter (lincom), a QR
decomposition along with an iterative procedure is used to
determine if some predictors are linear combinations of others.
Predictors are sequentially removed until the design matrix is
full rank. The pairwise correlation filter removes those predictors
whose pairwise correlation is greater than a specified cutoff.
The two predictors with the largest absolute correlation are
first considered. Of those two, the predictor with the highest
average absolute correlation with all other variables is removed.
This process continues until all the predictors left have pairwise
absolute correlations less than the cutoff. After investigating
multiple cutoffs, we chose a cutoff value of 0.95 for the pairwise
correlation filter (corr.95) since this cutoff removed highly
correlated variables but still retained a large number of features.
Principal component analysis reduces dimensionality by creating
new, uncorrelated predictors which explain a large proportion of
the variance in the predictor space. Principal component analysis
was implemented at three different cutoffs (pca.85, pca.90,
pca.95), where the number of components accounted for either
85, 90, or 95% of the variance in the predictor space (Table 2).

2.4. Classifiers and Performance Metrics
Combinations of the six feature selection methods and twelve
classifiers were investigated by implementing a 10-fold repeated
cross-validation framework with five repeats, a standard
validation technique (5, 13, 16, 20, 21). The feature selection
methods were included in the cross-validation algorithm so
that their contribution to the final model fit is reflected
in the performance metrics. The classifiers are from three
different families: linear, nonlinear, and ensemble (22). Of the
linear classifiers, an elastic net (elasticnet), a logistic regression
(logistic), a partial least squares model (pls), and a logistic
regression with Step AIC were fit. The nonlinear classifiers
include a K-nearest neighbors model (knn), a neural network
(nnet), and three support vector machines: a linear kernel
(svml), a polynomial kernel (svmpoly), and a radial kernel
(svmr). The ensemble models used included bagged classification

TABLE 3 | Summary of classifiers.

Model family Classifier Abbreviation

Linear

Elastic net elasticnet

Logistic regression logistic

Partial least squares pls

Logistic regression with step AIC glmStepAIC

Nonlinear

K-nearest neighbors knn

Neural network nnet

Support vector machine (linear kernel) svml

SVM (polynomial kernel) svmpoly

SVM (radial kernel) svmr

Ensemble

Bagged trees bag

Random forest rf

Stochastic gradient boosting gbm

trees (bag), random forest (rf), and stochastic gradient boosting
(gbm) (Table 3).

The quality of model performance in most machine learning
algorithms is dependent upon the choice of various tuning
parameters. Some tuning parameters take into account the
number of predictors after feature selection. For example, the
mtry tuning parameter for rf, which determines the number
of candidate variables at each branch, is equal to the square
root of the number of predictors. Other tuning parameters were
chosen based on standard practice (22, 23). For example, the
decay tuning parameter for nnet, which helps prevent overfitting,
generally takes the values of 0.1, 0.01, and 0.001. All models were
fit using the caret R package (24). Our R code implementing
the feature selection and classification models is presented as
Supplementary Material.

3. RESULTS

The linear combinations filter removed 217 biomarkers, leaving
a set of 199 predictors. The pairwise correlation filter retained 39
predictors, while principal components analysis retained 12, 14,
and 18 components at the 85, 90, and 95% levels, respectively.

Figure 1 gives the predictive performance (AUC) of each
feature selection method (in rows) and classifier (in columns),
averaged over the 50-folds/repeats in the cross-validation.
Logistic regression models cannot be calculated when the
number of predictors is larger than the number of observations,
so the nofilter row is blank for this classifier. The large number of
predictors also caused multiple computing issues with the neural
net classifier, so training this classifier without using any feature
selection was not considered. Table 4 gives the highest average
AUC for each classifier across the various feature selection
methods. Principal component analysis yields lower AUC values
for all of the classifying models. Using lincom, the top four
classification methods perform well, with AUC ≥ 0.728 (we note
that svmr with corr.95 also has an average AUC = 0.728). The
standard deviation over the folds/repeats is also given, along with
sensitivity, specificity, and false positive rate statistics. Specificity
and sensitivity were computed using a 0.5 threshold from the
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FIGURE 1 | Average AUC values (over the 50 repeated cross-validation testing sets) of each feature selection/classifier combination.

TABLE 4 | AUC values for classifiers with highest predictive performance (SD

taken over the 50 cross-validation testing sets).

Feature

method

AUC SD Sensitivity Specificity False

positive

rate

SD

Classifier

elasticnet lincom 0.747 0.111 0.616 0.729 0.271 0.136

svml lincom 0.745 0.112 0.549 0.765 0.235 0.126

svmpoly lincom 0.741 0.113 0.569 0.781 0.219 0.132

pls lincom 0.728 0.111 0.627 0.707 0.293 0.126

svmr corr.95 0.728 0.106 0.542 0.780 0.220 0.148

gbm lincom 0.714 0.106 0.596 0.733 0.267 0.140

glmStepAIC corr.95 0.714 0.110 0.636 0.684 0.316 0.130

nnet lincom 0.709 0.113 0.620 0.707 0.293 0.143

logistic corr.95 0.684 0.108 0.600 0.689 0.311 0.116

knn corr.95 0.676 0.109 0.482 0.738 0.262 0.117

rf corr.95 0.663 0.124 0.473 0.730 0.270 0.127

bag lincom 0.658 0.106 0.529 0.702 0.298 0.146

model predicted class probabilities. The AUC standard deviations
are fairly similar, while sensitivity and specificity have larger
variation. The false positive rates are more variable than the
AUC values, and the mean false positive rates are all notably
lower (all less than 32%) than the 94% found in the results of
the NLST.

Figure 2 shows the distribution of the AUC scores for the four
best performing classifiers: elasticnet, svml, svmpoly, and pls.
Among all feature selection methods, corr.95 and lincom yielded
the highest AUC values on average across these four classifiers.

The lincom feature selection with the elasticnet classifier has
the best overall predictive performance (AUC = 0.747), followed
by the svml classifier with the lincom feature selection (AUC
= 0.745). As has been observed in other radiomic studies,
support vector machines perform well with respect to predictive
performance (21).

The boxplots in Figure 3 show the distribution of the false
positive rates for the four best performing classifiers. These
distributions show that the lowest false positive rates were
achieved in combination with either the lincom or corr.95 feature
selection methods for all four of these classifiers. These two
feature selection methods result in both the highest average AUC
values and the lowest false positive rates.

Figure 4 gives the ROC curve for the best performing
classifier/feature selection combination (elasticnet/lincom).
Although the NLST did not report false negative rates, the ROC
curve displays the tradeoff between specificity and sensitivity.
While the classifiers have reduced the false positive rate, the
tradeoff is an increase in the false negative rate, which would be
estimated to be near 0.38 for this particular classifier. This natural
tradeoff between specificity and sensitivity for classifiers would
suggest that radiomic methods should not be the sole diagnostic
tool in lung cancer diagnosis. However, the reduction of the
false positive rate for a non-invasive procedure is a substantial
improvement and supports the inclusion of these methods in
clinical practice.

4. DISCUSSION

While awareness of the benefits of preventative screening for
lung cancer has increased in recent years, there is still a need
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FIGURE 2 | Boxplots of AUC values (over the 50 repeated cross-validation testing sets) for each feature selection method for the four best-performing classifiers.

FIGURE 3 | Boxplots of the false positive rates (over the 50 repeated cross-validation testing sets) for each feature selection method for the four best-performing

classifiers.
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FIGURE 4 | ROC curve for the elastic net classifier with the linear combinations filter.

for improved accuracy in nodule classification. Moreover, a high
false positive rate for the diagnostic outcome of lung cancer
screening remains a major challenge. Nodule characteristics
(biomarkers) calculated from CT scans offer the possibility
of improved nodule classification through various modeling
techniques. Machine learning algorithms have the potential to
harness the predictive power in nodule characteristics. However,
little work has been done to compare the performance of various
machine learning methods used in conjunction with different
feature selection methods, especially as they relate to lung cancer
tumor diagnosis.

However, models to predict pulmonary nodule status have
been developed and evaluated in other studies. Chen et al.
extracted 750 imaging features and compared the performance
of a support vector machine (SVM) trained with all to an SVM
trained with a sequential forward selection of 4 features (2).
Leave-one-out cross-validation demonstrated superior accuracy
of 84% for the 4-feature model vs. 56% for all features. Alahmari
et al. studied the prognostic performance of radiomics features
and found the addition of feature changes over time (delta
radiomics) to improve AUC performance from 0.773 to 0.822
(25). SVM and random forest models as well as different feature
selection algorithms were considered in their analysis. Final
results are presented for random forest models and ReliefF
feature selection, suggesting that these were the optimal choices,
although comparisons to the others were not presented. A
computer-aided lung nodule detection system was proposed
by Ma et al. (26). In their approach, multiscale nodule and
vessel enhancement filters were applied to patient images prior
to extracting 979 radiomics features for training of a random
forest classifier. Comparisons to other modeling approaches
were not made. Uthoff et al. used a set of 922 radiomics
features that is an extension of ours with both nodule features
and parenchyma features calculated in 25, 50, 75, and 100%
bands around the maximal in-plane diameter of the nodule
(27). They used k-medoids clustering to select features for

training of an artificial neural network. K-medoids feature
selection is similar in spirit to the high correlation selection
approach we used in that both reduce the number of features
by selecting representative ones from those that are similar.
Comparisons to other modeling approaches are not presented in
their publication.

In this study, we considered the ability of nodule biomarkers
to accurately predict malignant/benign status. The elastic net,
support vector machines with polynomial and linear kernels,
and partial least squares were the most predictive classifiers.
When combined with the linear combination and correlation
feature selection methods, these four classifiers had AUC values
comparable in accuracy to the most predictive models studied
in previous radiomic analyses (14, 16, 21). Furthermore, we
observed that these classifiers greatly reduced the false positive
rate from that given in the NLST results.

The observations from this investigation suggest that
classifiers such as support vector machines and elastic net
perform well with quantitative imaging biomarkers as their
predictors. We also show that the chosen feature selection
method will impact model performance, and we recommend
using linear combination or a correlation-based reduction
method over principal components. Different CT modalities
and/or different patient population characteristics may yield
different results. In order to recommend a particular model for
application in a clinical setting, these results would need to be
externally validated.

As as comparison, the two best classifier/feature selection
combinations were fit with both the 416 biomarkers, as well as the
demographic variables of sex, age, and pack-years (the number
of packs smoked per day multiplied by the number of years
smoked). Elastic Net with the Linear Combination filter had an
average AUC of 0.747 (see Table 4) without the demographic
variables included. This number was increased to 0.854 when
these variables were added. The Linear Support Vector Machine
with the Linear Combination filter had an average AUC of
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0.745 without the demographic variables included. This number
was increased to 0.820 when these variables were added. This
suggests that radiomic features, while having good predictive
performance, can be enhanced when other patient characteristics
are included in the model.

Taken together, a number of common themes emerge from
our present work and the past work of others. First, methods
that reduce the number of features prior to model training
appear to improve predictive performance. We believe this is
especially true in the field of radiomics where large numbers of
features tend to be highly correlated. Oftentimes, there are many
features that do not provide additional information because they
are linear combinations of others and may be removed with a
linear combination filter. In addition, radiomics features tend
to exhibit strong clustering for which high correlation or k-
medoid selection seems to improve prediction even when in
the cases of models, like random forests and gradient boosting,
that perform automatic feature selection. Second, our work
suggests that SVM performs well in the radiomics setting and
supports its use by others. Furthermore, we found the commonly
used random forest model to have poor performance; whereas,
the less commonly used in radiomics—but commonly used
in genomics—elastic net model was our top performer. Thus,
we encourage consideration and reporting of more than one
modeling approach in radiomics research. Finally, there is strong
evidence that pulmonary features derived from the parenchyma
and that reflect changes over time help with prediction. Likewise,

as is the case in many fields, improvements in prediction are
often achieved when utilizing subject matter expertise in the
development of features and modeling approaches.
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