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Dysregulated metabolism is a common feature of cancer cells and is considered

a hallmark of cancer. Altered tumor-metabolism confers an adaptive advantage to

cancer cells to fulfill the high energetic requirements for the maintenance of high

proliferation rates, similarly, reprogramming metabolism confers the ability to grow at

low oxygen concentrations and to use alternative carbon sources. These phenomena

result from the dysregulated expression of diverse genes, including those encoding

microRNAs (miRNAs) which are involved in several metabolic and tumorigenic pathways

through its post-transcriptional-regulatory activity. Further, the identification of key

actionable altered miRNA has allowed to propose novel targeted therapies to modulated

tumor-metabolism. In this review, we discussed the different roles of miRNAs in cancer

cell metabolism and novel miRNA-based strategies designed to target the metabolic

machinery in human cancer.
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INTRODUCTION

Ever since their discovery in 1993 (1), microRNAs emerged as a new class of small RNAs with a
critical role in the regulation of gene expression. MicroRNAs (miRNAs or miRs) are endogenous
small non-coding RNAs from 18-25 nucleotides in length that regulate gene expression via base
complementarity between the seed region of the microRNA and the 3′-untranslated region (UTR)
of the target mRNA (1, 2). Depending on the degree of complementarity, miRNAs binding can
induce mRNA degradation, translational repression, or both (3–5). For the considerable relevance
of miRNAs in gene expression, these tiny RNA molecules have recently been called “master
regulators of gene expression” (6).

The biogenesis of miRNAs has been extensively studied (7–9). For instance, genes encoding
miRNAs show distinct genomic locations, such as intergenic, intronic, exonic, or mirtronic (a type
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of miRNA that is located in the introns of the mRNAs). Genes
encoding miRNAs are transcribed in the nucleus in the form
of long primary transcripts (pri-miRNAs) typically, although
not exclusively, by RNA Pol II (10). Afterward, pri-miRNAs are
processed into a small stem-loop transcript of approximately 55-
70 nucleotides by the RNA-binding protein DiGeorge Syndrome
Critical Region 8 (DGCR8) and Drosha (a ribonuclease III
enzyme) (11, 12). This new structure, termed pre-miRNA, is
recognized by Exportin 5 (Exp 5) and is exported from the
nucleus to the cytoplasm (13). Once in the cytoplasm, pre-
miRNA hairpins are cleaved by the Dicer RNase III enzyme and
TRBP (TAR RNA-binding protein), resulting in a∼22 nucleotide
mature miRNA-miRNA∗ duplex (14–16).

Finally, the mature miRNA is loaded onto Argonaute 2
protein (AGO2) and the RNA-induced silencing complex (RISC)
to catalyze site-specific cleavage or translational repression of
their mRNA targets (17, 18). The post-transcriptional regulation
of gene expression by miRNAs is of paramount importance,
thus, it is estimated that miRNAs could regulate nearly
60% of all human protein-coding genes (19). miRNAs are
involved in several cellular processes, such as proliferation,
development, differentiation, apoptosis, carcinogenesis, and
energy metabolism (20–26).

During tumorigenesis, dysregulated metabolism represents an
adaptive advantage of cancer cell that promote uncontrolled cell
division, cell growth, and survival (27, 28). One of the best
characterized metabolic disorders during cancer development
is the Warburg effect, that increase glucose uptake and
lactate production. During the Warburg effect, miRNAs activity
contributes to keeping high levels of glycolysis. miRNAs
also control other crucial steps of the energy metabolism,
including glucose transport, glycolysis, tricarboxylic acid cycle,
glutaminolysis, altered lipid metabolism, insulin production,
cholesterol, and lipid homeostasis, as well as amino acid and
nucleotide biogenesis (29–33).

In this review, we focus on the different roles of miRNAs in
cancer metabolism and discuss novel miRNA-based strategies
designed to target different processes in human cancer.
We also explore the links between microbiota and miRNA
networks and cancer, with a particular focus on genotoxicity
and tumor-metabolism.

METABOLIC REPROGRAMMING IN
CANCER CELLS

Upon cancer onset and progression, cells exhibit various
growth, proliferation, and survival phenotypes. These cancer
hallmarks are supported by a catabolic and anabolic metabolism
reprogramming. Increasing evidence has shown that metabolic
changes are the result of complex processes, and several cellular
pathways are implicated (34–36). Recent findings have led to a
significant shift in our understanding of altered metabolic states,
which now are seen as a central transformative force in cancer
development (37–39).

The Warburg effect is thought to be an early event in cancer
that promotes rapid adaptation to higher bioenergetic demands,

such as, excessive proliferation and hypoxic microenvironments.
Warburg effect is characterized by: (a) supports the demand
for ATP synthesis and promotes its flux into biosynthetic
pathways to achieve an uncontrolled proliferation; (b) maintains
an acidic microenvironment via the accumulation of lactate; and
(c) allows for ROS signaling homeostasis (40–43). Moreover,
reprogramming energy metabolism promotes tumor cells to use
alternative carbon sources such as glutamine, considered to be
the second source of nutrients after glucose. Glutamine is the
most abundant amino acid in cells, and its catabolism results
in several amounts of cellular precursors, including glutamate,
aspartate, pyruvate, lactate, alanine, and citrate (44–46).

For many years, the Warburg effect was considered as a
synonym for metabolic reprogramming. However, it is clear
that this phenotype alone cannot explain all the metabolic
alterations that enhance the formation of primary tumors
and their development throughout invasion and metastasis.
Recent publications have also reported the metabolic interactions
between tumors and the microenvironment involving cancer-
associated fibroblasts, immune cells, and microbiota, which
allows us to expand our understanding of the metabolic
reprogramming and reveals the complex interaction networks
required to establish the tumor phenotype (47–49). Most of
the aforementioned metabolic features are a consequence of the
deregulation of several cell pathways and often involve altered
oncogenes, tumor suppressors, and miRNA.

miRNAs REGULATION OF METABOLIC
PATHWAYS IN CANCER

In the last decade, a growing volume of evidence has revealed the
role of miRNAs in the regulation of energy metabolism, directly,
through the regulation of glucose transporters (GLUT family),
enzymes (hexokinase 1/2, Aldolase A), and protein kinases
(AMPK, PI3K), or indirectly, through inhibition of several
transcriptional factors (p53, c-Myc) (50–52). In any case, the role
of miRNAs in the regulation of energy metabolism has gained
much interest by their nature to modulate cellular metabolism
and the possibility to use miRNAs-targets genes circuits as cancer
therapies. Therefore, we review the main pathways of energy
metabolism, the genes involved in each metabolic signaling and
their transcriptional landscapes articulated by the miRNAs in
cancer programs.

miRNAs AND GLUCOSE TRANSPORTERS

Glucose represents the main source of cellular energy. In cancer,
tumor cells increase their glucose consumption to maintain
the high energy requirements. However, due to the hydrophilic
composition of glucose, it is not able to cross the plasma
membrane by its own. To overcome this situation, tumor
cells induce the expression of several members of the glucose
transporters family (GLUTs, also named SLC2A proteins).
Glucose transporters are membrane-associated carrier proteins
responsible for facilitating the transport of glucose across the
plasma membrane. In the human genome, 14 GLUT proteins

Frontiers in Oncology | www.frontiersin.org 2 December 2019 | Volume 9 | Article 1404

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Pedroza-Torres et al. miRNAs Metabolism and Therapeutic Opportunities

have been found. Among different members of the GLUTs family,
the expression of GLUT1, GLUT2, and GLUT3 has been reported
to be upregulated in different types of tumors, whereas GLUT4
and GLUT5 are downregulated (53, 54). miRNAs control glucose
uptake by regulating the GLUTs expression; for example, miR-
144 and miR-132 are two miRNAs that have been associated with
the regulation of GLUT1, one of the most broadly expressed
isoforms in various cell types. Lui et al. reported that the
downregulation ofmiR-144 induces an increase in glucose uptake
in lung cancer (55). Moreover, Qu et al. demonstrated that the
decrease in miR-132 expression altered glucose metabolism in
prostate cancer (56). Additionally, miR-150 has been reported
as a GLUT1 regulator in CD4+ cells (57). In renal cell
carcinoma, miR-138, miR-150, miR-199a-3p, and miR-532-5p
overexpression are associated with a decreased expression of
GLUT 1, whereas miR-19a, miR-19b, miR-130b, and miR-301a
decrease are directly associated with an over-expression of
GLUT 1 (58).

GLUT3, another member of the glucose transport proteins
family, is also regulated by miRNAs. Fei et al. demonstrated
that miR-195-5p directly regulates the expression of GLUT3, and
consequently decreases glucose uptake and inhibits cell growth in
T24 bladder cancer cells (59). Similar results were reported byDai
DW in U251 and LN229 glioblastoma cells through the activity
of miR-106a over GLUT3. Additionally, the authors indicated
that miR-106a down-regulation is associated with glioblastoma
patients survival (60).

Other examples of miRNAs that regulate glucose uptake are
miR-233 and miR-133, which directly regulate the expression of
GLUT4 (26, 61). Interestingly, miR-21 and miR-23a indirectly
regulate the expression of GLUT4, as a result of their regulation
over two GLUT4 translocators: PTEN and SMAD4 (62, 63). An
exhaustive work published by Esteves et al., highlight the role of
miR-21a-5p, miR-29a-3p, miR-29c-3p, miR-93-5p, miR-106b-5p,
miR-133a-3p, miR-133b-3p, miR-222-3p, and miR-223-3p that
directly or indirectly regulate the expression of GLUT4 (64). To
our knowledge, there are no reports describing other members of
the GLUT family regulated by miRNAs, although miRNA target
prediction analysis identifies a set of miRNAs capable to silence
them; however, further studies are needed to determine their
contribution to aberrant tumor cell metabolism.

miRNAs IN GLYCOLYSIS

Unlike tumor cells, normal cells obtain energy in the form of
ATP through the glucose-derived pyruvate by the mitochondrial
oxidative phosphorylation. Conversely, regardless of oxygen
conditions, tumor cells prefer anaerobic glycolysis, a less efficient
process for obtaining ATP that produces large amounts of lactate.
To compensate for this apparent decrease in energy flow, tumor
cells increase glucose uptake and trigger alternative pathways to
metabolize alternative carbon sources, such as glutamine, and
some amino acids, such as arginine and glycine. This change in
the energy metabolism confers several advantages to tumor cells,
in addition it also provides necessary biomolecules for the high
rates of cell division (65, 66).

During the first step of glycolysis, glucose is transformed
into glucose-6 phosphate through the phosphorylation of the
6-hydroxyl group of glucose by the enzyme hexokinase (HK).
The hexokinase family of enzymes comprises four isoforms
(HK1–HK4) (67–69). Isoform 2 (HK2) has been reported to be
upregulated in a wide variety of tumors (70–72).

One of the first works that demonstrated the regulation of
miRNAs on the HK2 enzyme was published by Fang et al.
Interestingly, they demonstrated that miR-125a and miR-143
regulate HK2, which modifies glucose metabolism and cell
proliferation in lung cancer cells (73). This finding was confirmed
by Peschiaroli et al. in head and neck squamous cell carcinoma
(HNSCC)-derived cell lines (74), and by Gregersen et al. in colon
cancer cells (75). Another miRNA, miR-199a-5p, regulates HK2
expression and has been reported to be under-expressed in liver
cancer cells. Remarkably, overexpression of HIF1α decreased
miR-199a-5p expression, which promotes glycolysis and lactate
production (30). In stomach cancer cells, miR-181b directly
inhibits the expression of HK2 and causes a decrease in glucose
uptake and lactate production (76). In addition, miR-155 has also
been reported as a regulator of the expression of HK2. Jiang
et al. demonstrated that miR-155 regulates the expression of
HK2 by two different mechanisms. First, miR-155 promotes the
indirect transcription of HK2 through the activation of STAT3,
a transcriptional activator of HK2. Second, miR-155 regulates
the expression of C/EBPβ, a transcriptional activator of miR-143,
whose overexpression is related to the inhibition of HK2 (77).

A couple of works showed that the enzyme responsible
for catalyzing the second reaction of glycolysis, glucose-6-
phosphate isomerase (GPI), is regulated by miR-200 in breast
cancer cells (78) and by miR-302b and miR-17-5p in chicken
primordial germ cells (79). Another glycolytic enzyme regulated
by miRNAs is phosphofructokinase 1 (PFK1). PFK1 is the main
regulatory enzyme for glycolysis; it catalyzes the phosphorylation
reaction of fructose-6-phosphate to convert it into fructose-1,6-
bisphosphate. In this sense, Yang et al. demonstrated that miR-
135 targets PFK1, inhibits aerobic glycolysis, and suppresses
tumor growth (31).

Similarly, Aldolase A, a glycolytic enzyme that catalyzes the
conversion of fructose-1,6-bisphosphate to glyceraldehyde 3-
phosphate (G3P) and dihydroxyacetone phosphate (DHAP), is
targeted by several miRNAs. Among the miRNAs that have been
reported to regulate Aldolase A expression are the following:
miR-122 in liver cells (80), miR-15a and miR-16-1 in leukemia
(81), and miR-31 and miR-200a in Y79 retinoblastoma cells (82).

The expression level of glyceraldehyde 3-phosphate
dehydrogenase (GAPDH) has been widely used for normalizing
quantitative gene expression experiments. GAPDH catalyzes
the sixth reaction of glycolysis, where a molecule of NADH is
released. Like other enzymes in glycolysis, GAPDH is targeted by
some miRNAs such as miR-644a (83) and miR-155 (84).

The last reaction of the glycolysis pathway is catalyzed by
pyruvate kinase 2 (PKM2) enzyme. PKM2 dephosphorylates
phosphoenolpyruvate to produce pyruvate regardless of oxygen
concentration. PKM2 has been reported to be over-expressed
in many tumors due to the dysregulation of various miRNAs
that down-modulate it. Some of the miRNAs reported to directly
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regulate the expression of PKM2 are miR-133a, miR-133b, miR-
326, and miR-122 (85–87) whereas those that indirectly regulate
it are miR-99a, miR-124, miR-137, and miR-340 (88, 89).

miRNAs INVOLVED IN LACTATE
METABOLISM

In tumors, after the glycolysis phase, pyruvate is converted into
lactate by the lactate dehydrogenase enzyme (LDH). Some works
have reported increased levels of LDH and its correlation with
tumor aggressiveness (90–92). Interestingly, LDH expression is
also regulated by miRNAs. For instance, miR-375 regulates the
subunit B of LDH (LDHB) in maxillary sinus and esophageal
anaplasias (93). In addition, subunit A of LHA (LDHA) has
been reported to be regulated by miR-34a, miR-34c, miR-369-
3p, miR-374, miR4524a/b, miR-323a-3p, miR-200c, miR-30d-5p,
and miR-30a-5p in breast cancer cells and osteosarcoma tissues,
which induces a decrease in glycolysis, lactate production, ATP
generation, and cell proliferation (94–99).

Lactate fluxes are mainly maintained by monocarboxylate
transporter (MCTs). MCTs are membrane proteins acting as
carriers for lactate, pyruvate, and ketone bodies. Up to now,
four MCT isoforms (MCT1, MCT2, MCT2, and MCT4) have
been described in humans, and each of them exhibits a distinct
cellular distribution (100). In the same way as LDH enzymes,
lactate carriers (MCT proteins) are regulated by diverse miRNAs.
For example, MCT1 is targeted by miR-29a, miR-29b, miR-124,
and miR-495 in pancreatic β cells (101, 102). Another MCT1-
regulatory miRNA is miR-342-3p, which promotes alterations
in lactate and glucose flows. In addition, miR-342-3p over-
expression significantly decreased cell proliferation, viability,
and migration in breast cancer cell lines (103). MCT4, another
member of the family of lactate transporters, is regulated by miR-
145, which causes the accumulation of lactate within tumor cells
in hepatocellular carcinoma cells (HCC) (104).

miRNAs INVOLVED IN GLUTAMINE
METABOLISM

Glutamine metabolism (glutaminolysis) represents the second
source of nutrients in cancer cells. Actually, high rates of
glutaminolysis are necessary for metabolic reprogramming as it
provides substrates for increased lipogenesis and nucleic acid
biosynthesis that are critical to preserve the high proliferation
rates of tumor cells (105, 106). Glutaminolysis converts
glutamine into TCA cycle metabolites through the activity
of multiple enzymes. First, glutamine is transported into
the cells by solute transporters SLC1A5 and SLC7A5. Once
inside the cell, glutamine is converted into glutamate and
later into alpha-ketoglutarate (α-KG) by glutaminase (GLS),
glutamate dehydrogenase (GDH, and other enzymes, such as
glutamate pyruvate transaminase (GPT) for alanine production
and glutamate oxaloacetate transaminase (GOT) for aspartate
production. In addition, glutaminolysis produces considerable
amounts of succinate, fumarate, malate, NADH, and ATP
molecules. The transport of glutamine into the cell is strictly

regulated by the membrane protein SLC1A5 (also called ASCT2
protein). SLC1A5 and other members of the ASC solute
transporters family have been reported to be overexpressed in a
wide variety of tumors. Dong J et al. showed that the exogenous
expression of miR-137 and miR-122 markedly inhibited the
SLC1A5 expression in a dose-dependent manner therefore
altering tumor glutamine metabolism (107).

In a well-conducted work, Gao et al. demonstrated that
the repression of miR-23a and miR-24b by the oncogenic
transcription factor c-Myc resulted in a greater expression
of GLS proteins and led to the upregulation of glutamine
catabolism (108). Another miRNA reported to regulate GLS
protein expression is miR-203, which additionally sensitizes
malignant melanoma cells to temozolomide chemotherapy (109).
Expression of glutamate cysteine ligase, the rate limiting enzyme
of glutathione (GSH) synthesis, is attenuated by miR-18a in
liver cancer (110) and by miRNA-153 in glioblastoma (111).
Additionally, miR-450a limits the metastatic potential of ovarian
cancer cells by targeting a set of mitochondrial mRNAs to reduce
glycolysis and glutaminolysis (112).

miRNAs REGULATION OF OXPHOS

Oxidative phosphorylation (OXPHOS) is a metabolic pathway
combining two cellular processes to generate energy in the
form of ATP. First, in an oxidative stage, the electron donors
such as NADH and FADH2 are oxidized by the electron
transport chain that turns the released energy into a proton
gradient across the mitochondrial inner membrane. In the
second stage, phosphorylation, ATP synthase uses the proton
gradient to phosphorylate ADP to ATP. OXPHOS involves
a system of protein complexes with oxidoreductase functions
(complex I–IV) and ATP synthase (complex V). Even though
OXPHOS is the most efficient way to produce cellular energy,
tumor cells prefer to metabolize glucose via aerobic glycolysis.
Several studies have recently indicated that, contrary to what is
generally accepted, tumor cells could alternate between these two
processes, OXPHOS and aerobic glycolysis, depending on the
tumor microenvironment (113–115).

Interestingly, it has been proposed that several miRNAs
regulate OXPHOS by inducing the inhibition of many
components of the electron transport chain. For instance,
miR-210 regulates the activity of the mitochondrial complex I
(NADH: ubiquinone oxidoreductase) via the iron-sulfur cluster
assembly enzyme (ISCU) by reducing the availability of iron and
sulfur ions (116). Another study published by Muralimanoharan
et al. revealed that miR-210 overexpression significantly reduces
the complex III expression of the electron transport chain
(ubiquinone:cytochrome c oxidoreductase) (117). Cytochrome c
oxidase (complex IV), another enzyme of the electron transport
chain, is also regulated by miRNAs. The following miRNAs have
been reported to regulate cytochrome c oxidase: miR-181c (118),
miR-338 (119), and miR-210 (117).

Finally, ATP synthase (complex V), a transmembrane enzyme
that catalyzes ATP synthesis from an ADP molecule, is also
regulated by miRNAs. Willers et al. reported that miR-127-5p
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reduces the expression of the catalytic subunit of ATP synthase
(β-F1 subunit) in BT-549 cells in breast cancer (120). Another
miRNA, miR-141, reduces the activity of ATP synthase by
reducing SLC25A3 proteins (121).

miRNAs REGULATION OF
TRANSCRIPTION FACTORS AND
SIGNALING PATHWAYS

miRNAs are also capable of modulating metabolic
reprogramming through regulating various transcription
factors relevant in metabolic pathways (122). The metabolic
shift of tumor cells may be a potential strategy to evade
programmed cell death and triggers cell survival and growth by
activating oncogenes, such as RAS, MYC, and p53 (51, 123–126).
Tumor metabolic reprogramming seems to be influenced
by oncogenes and tumor suppressor networks. For example,
phosphatidylinositol 3-kinase (PI3K), a lipid kinase that regulates
the levels of phosphorylated phosphatidylinositol at the plasma
membrane and enhances glucose uptake and glycolysis in cancer
cell metabolism, is targeted by miR-320, miR-123a, miR-422,
miR-506, and miR-136 (127). Catanzaro et al. showed evidence
that downregulation of miR-139-5p in pediatric low-grade
gliomas drives cell proliferation by regulating PI3K/AKT
signaling (128). Furthermore, miR-33a/b, targets metabolic
enzymes involved in fatty acid metabolism and the AMPK
pathway, whereas miR-29b targets amino acid catabolism,
which regulates cancer cell metabolism and biogenesis to
support tumor growth and proliferation (61, 129–131). Like
PI3K, AKT, and mTORC1, the MYC transcription factor has
important metabolic roles beyond enhancing glycolysis. MYC
promotes mitochondrial gene expression and mitochondrial
biogenesis. MYC mainly depends on glutamine as a carbon
source for mitochondrial metabolism (132). The oncogene MYC
can bind to the promoter region of other oncogenes such as
some miRNAs; for example, miR-9 is frequently upregulated in
glioma specimens and cells, and it could significantly enhance
proliferation, migration, and invasion of glioma cells (133).

On the other hand, miRNAs regulate important signaling
pathways in mitochondria by triggering adaptive mechanisms to
optimize the oxidative phosphorylation concerning the substrate
supply and energy demands. For example, exogenous exosomes
carrying miRNAs can induce metabolic reprogramming by
restoring respiration in cancer cells and thus suppressing tumor
growth. The exosomal-miRNAs involved in the modulation
of cancer metabolism may be used for better diagnoses and
therapies (134, 135).

Hypoxia-inducible factor 1 (HIF-1), another pathway related
to tumor metabolism, is also regulated by miRNAs. HIF-1
activation can stablished oncogenic signaling by promoting
glycolysis of cancer cells; but also, an alternative mechanisms
over the glucose carbon mitochondrial metabolism confers
HIF-1 a tumor suppressor role in some types of cancer (136,
137). In this way, miR-125-5p, miR-33-5p, and miR-190-5p are
known to target the master regulator of oxygen deprivation
response, HIF-1 (138). On the other hand, HIF-1 is a key

molecule in adapting cancer cells to the reduced oxygen
availability in the microenvironment (139–141). HIF-1 induces
metabolic reprogramming as it upregulates genes such as HK1,
HK2, LDHA, PDK1, GLUT1, and GLUT3, which enhance
lactate production through the glycolytic pathway (142, 143).
HIF1 also influences the activity of the pentose phosphate
pathway, nucleotide biogenesis, angiogenesis, and suppresses the
mitochondrial function (144, 145).

Finally, the oncogene c-MYC regulates HIF1 expression
regardless of oxygen levels, and both act in concert to “fine-tune”
adaptive responses during tumor growth (146–149). Moreover, it
has been reported that more than 50% of tumors have mutations
in the tumor suppressor p53, which leads to metabolic changes
and contributes to the Warburg effect through the upregulation
of c-MYC, HIF-1, and a broad range of genes involved in other
aspects of cancer biology, including tumor cell survival and
proliferation, migration, drug resistance, and immune evasion
(51, 150, 151). The advance in molecular biology techniques has
allowed us to detect how a diversity of miRNAs regulate tumors
metabolism, as we show in Table 1 and Figure 1.

DRUGGABLE miRNA-METABOLIC
NETWORKS WITH POTENTIAL VALUE FOR
CANCER THERAPY

The unveiled connection between cancer profiles and metabolic
reprogramming shed light on the reassessment of metabolism-
targeting pharmacologic therapies as potential opportunities in
cancer. Alterations in keymiRNA regulatory networks contribute
to the oncogenic transformation of cancer cells through genes
involved in the metabolic switch (163). New insights into
the altered tumor metabolism have provided novel therapeutic
strategies that are being evaluated in preclinical models or
clinical trials as effective therapies for many human cancers
(164). Pharmacological targeting of altered miRNAs may have
therapeutic effects by suppressing relevant cancer signaling
pathways without affecting normal cells (165). Furthermore,
pleuritic effects of metabolic drugs include miRNAs modulation
that impairs signaling pathways and regulates cell energy
production, which reveal miRNAs as potential drug targets.

Numerous studies now suggest that drug repurposing,
which is the discovery of new therapeutic indications for
known drugs, represents an attractive route in drug harnessing
in cancer. Unlike the development of new molecules, drug
repurposing identifies new uses for existing drugs that already
have clinical and safety descriptions (166). Repurposing drugs
with an oncological and non-oncological primary purpose,
such as metabolic-based drugs, might be an attractive strategy
to offer more effective treatment options to cancer patients
and faster translate the research knowledge into the clinics
(167). Interestingly, a growing body of evidence has shown
that many of the antineoplastic effects and improved responses
to these metabolic-based drugs may be mediated through
induction of tumor suppressor miRNAs and suppression of
oncogenic miRNAs.
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TABLE 1 | Main miRNAs that regulate cellular metabolism in different types of cancer.

miRNA Location Cancer type Target gene/pathway References

miR-125a 19q13.41 Hepatocellular

carcinoma

HK2 (152, 153)

miR-192/215-5p 11q13.1, 1q41 Colorectal cancer ZEB1 and ZEB2, Type I collagens (104)

miR-140-3p 16q22.1 Chronic myeloid

leukemia

SIX (154)

miR-140-3p 16q22.1 Spindle cell

oncocytomas

TCA, carbohydrate, lipid

metabolism

(155)

miR-940 16p13.3 Glioma MTHFD2 (156)

miR-139-5p 11q13.4 Pediatric low-grade

gliomas

PI3K/AKT signaling (128)

miR-151a-5p 8q24.3 Malignant pleural

mesothelioma

FASN, OXSM, ACACB (157)

miR-361-5p Xq21.2 Prostate cancer Sp1/PKM2 axis (158)

miR-7,

let-7a,

miR-34a

and miR-143

9q21.32, 9q22.32,

1p36.22; 1p36.22, 5q3

Glioblastoma Critical regulators of aerobic

glycolysis

(159)

miR-125 19q13.41 Hepatocellular

carcinoma

HK2 (160)

miR-122 18q21.31 Hepatocellular

carcinoma

PKM2 and represses glycolytic

metabolism

(161)

miR-126 9q34.3 Mesothelioma,

hepatocellular,

pancreatic and breast

cancer

Insulin receptor substrate-1

(IRS1)

(134)

miR-195-5p 17p13.1 Bladder cancer GLUT-3 (59)

miR-155 21q21.3 Breast cancer miR-143 (77)

miR-378 5q32 Breast cancer ERRγ and GABPA (162)

In this section, we describe existing evidence ofmolecules with
biochemical mechanisms impairing tumor metabolism. These
molecules appear as the most promising repurposing and de-
novo pharmacological interventions as shown by preclinical
and clinical studies. Particular emphasis was put on chemo-
resistance, which is recognized as a critical cause of treatment
failure. It is reported that dysregulations of miRNAs contribute
to therapy resistance via drug efflux mechanisms, alterations
in drug targets, energy metabolism, DNA repair pathways,
evasion of apoptosis, cell cycle control, among others (6, 168,
169). We briefly described below some pharmacologic therapies
employed in different metabolic-related diseases and how they
could selectively target metabolic pathways in cancer cells and
modulate miRNAs networks, we will also comment some of the
most relevant evidence of each of the metabolic therapeutically
intervention and its anti-carcinogenic properties via miRNA
activity. A more extensive over-view of miRNA expression
portraits modulated by pharmacological treatment, as well as
cooperative or resistance phenotypes toward drug activity is
listed in Table 2 and Figure 2.

TARGETING GLUCOSE METABOLISM:
METFORMIN

Metformin, a commonly prescribed drug for treating type 2
diabetes, inhibits the mitochondrial complex I that impairs

respiration, which results in a systemic impede of glucose
uptake and neoglucogenesis (217–220) that reduces blood
glycemia and insulinemia in hyperglycemic/diabetic patients.
The tumor-suppressing effect of metformin has been reported
in epidemiological studies describing a statistical association
between metformin use and improved clinical outcomes
in cancer (221–224). One striking example of this onco-
suppressive feature is the cooperative effect of metformin and
neoadjuvant chemotherapy to achieve complete tumor regression
in some breast cancer patients (225). Although the precise
anti-tumorigenic mechanism of action is not well-described,
recent studies have shown that metformin can partially direct
mitochondrial complex I inhibition, reduce NADH oxidation,
and increase AMP/ATP ratio in tumors, with the consequent
inhibition of mTOR signaling and decrease of fatty acid and
cholesterol synthesis (218, 220, 226). Thus, metformin favors a
catabolic process over an anabolic one in tumor cells. Overall,
this metabolic pressure causes proliferation decline and triggers
apoptosis in cancer cell lines [(227); Table 2 and Figure 2].

A variety of evidence, both in-vitro and in-vivo along
with epidemiological studies, supported the protective effect of
metformin against cancer development (228–231). Even more,
the role of metformin on cancer not only fall in limiting its
incidence, but also as a novel therapeutically intervention as
shown by the 335 registered clinical trials that have evaluated
patients benefit of incorporate Metformin in their treatment. The
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FIGURE 1 | Drugs with clinical potential in cancer that modulate miRNAs implicated in cell metabolism. In boxes are shown drugs that potentially modulate the main

miRNAs involved in the metabolic reprogramming of tumor cells. Increased glycolysis flow, alteration of the PI3K/AKT/mTOR pathway, and epithelial-mesenchymal

transition (EMT) are key processes that allow tumor cells to reprogram their metabolism in order to survive, proliferate, migrate, and evade new niches. Different

miRNAs participate in these processes inhibiting the expression of enzymes (e.g., HK2, PKM2, IRS1, PI3K, AKT, mTOR), transcription factors (e.g., SP1, SIX1, ZEB1,

ZEB2, GABPA), and cellular receptors (e.g., GLUT3, ESRRG).

underlying mechanism of the anticancer activity of Metformin
can be partially explained through its ability to modulate miRNA
expression, activity and biogenesis in a variety of tumor types
(Table 2 and Figure 2). For instance, overexpression of the
tumor suppressors let-7, miR-26, and miR-200 family members
has been reported in the literature as a pleuritic effect of
Metformin molecular activity in breast, colorectal, pancreatic,
oral and renal cancer. Briefly, Metformin up-modulates let-7a,
that epigenetically inhibits the oncomiR miRNA-181a, which
actively participated in the epithelial-to-mesenchymal transition,
thus, abrogating this aggressive phenotype in BRCA (170). In
CRC, themetabolic drug overexpress let-7, miR-200b/c, andmiR-
26a that limit the stem-like phenotype, which has been linked to
poor clinical outcomes (171). Consistently, in pancreatic tumors
Metformin induces the expression ofmiR-26a and let-7cmiRNAs
reducing cell proliferation, invasion, and migration. Particularly,

miR-26a down-regulates the oncogene HMGA1 contributing
to the observed phenotype (172). Studies in oral cancer cell
models reveal that Metformin significantly increases miR-26a
levels which directly decreases Mcl-1 expression that enhances
apoptotic rates and reduces tumor-cell viability (173). Finally,
in renal carcinoma Metformin treatment limits cell proliferation
by miR-26a up-modulation that in turn down-regulates Bcl-2,
cyclin D1 and upregulates the tumor suppressor PTEN, which
all together influence cell cycle and cell death (174).

TARGETING AEROBIC GLYCOLYSIS: PDK
INHIBITORS

Dichloroacetate (DCA, PDK inhibitor) is a small molecule
that inhibits the pyruvate dehydrogenase kinase (PDK) and
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TABLE 2 | miRNAs target by metabolic-drugs or miRNAs related to therapy resistance.

Drug Druggable miRNA/Therapy-resistance miRNA* Cancer References

Targeting glucose metabolism

Metformin ↑let-7a, let-7b, miR-26a, 101, 192, 200b and 200c. Over-expression of miR-26a

decrease cancer stem-cells markers, an enhanced apoptosis rate. Let-7b re-expression

blocks stem cells features

PC BRCA Oral Renal (170–174)

↑miR-34a in obese mice reducing its putative targets (Notch, Slug, Snail)

↑miR-34a which in turn restrict Sirt1/Pgc1α/Nrf2 signaling pathway and decrease

proliferation rates

PC (175)

(176, 177)

↓miR-27a which AMPKα and ↑miR-193 family that increased AMPKα and decrease FASN

levels, resulting in limiting mammospheres phenotype

BRCA (178, 179)

Combined treatment of metformin + FuOx ↓miR-21 and ↑miR-145, that suppress

β-catenin and c-Myc signaling expression colon cancer cells

CRC (180)

↑miR-141, 200a, 205 and 429 inhibiting EMT, thus, modulating metastatic traits GC (181)

↑mir-124, 182, 27b, let7b and ↓miR-221 and 181a; inhibiting cell proliferation CLC (182)

↑miR-192-5p, 584-3p, and 1246; suppressing cell motility and cell cycle M (183)

↑DROSHA, modulate the miRNA biogenesis, to affect these miRNAs expression CLC (182)

↓miR-222 resulting in enhance abundance of p27, p57, and PTEN ↓miR-222 resulting in

enhance abundance of p27, p57, and PTEN

Lung (184)

↑DICER expression and miR-33a that targets c-MYC BRCA (185)

↓miR-146a, 100, 425, 193a-3p and 106b involved in cell migration, invasion and

proliferation

PCA (186)

↑miR-192-5p, miR-584-3p, and miR-1246 enhance EFEMP1 and SCAMP3

downmodulation favoring the suppression of cancer cell motility and growth through G2/M

cell cycle arrest and cell apoptosis

M (183)

RS:↑miR-21

↓miR-21 and ↑miR-145 over combined treatment with 5-fluorouracil and oxaliplatin, that

suppress β-catenin and c-Myc expression, and consequently reduce cell growth and

sphere formation

↓miR-21-5p in cell lines model, xenograft murine model and in tissue from human

patients. Since also the pre-miRNA sequence is down-modulated the modulation seems

to be at the transcriptional level. Functional reduction of miR-21-5p allow the expression of

upstream activators of the AMPK, CAB39L and SESN1

CRC

BRCA

(187)

(180)

(188)

Dichloroacetate (DCA) Promising therapeutic agents to ↓miR-210 Cancer (189)

↑miR-375 resulting in anti-proliferating effects PCA (190)

CPI-613 May improve miR-497-5p,−449a,−25-3p,−6838-5p,−520d-3p that down-modulates the

expression of Cyclin D3, E1, E2, F, A2, B1 and CDK2 genes of BxPC-3

Cancer (189)

Targeting FA metabolism

Statins Lovastatin upregulated miR-33b expression, reduced cell proliferation and impaired c-Myc

expression

MB (191)

Simvastatin: inhibits the growth of human CRPC cells by suppressing NF-κB and LIN28B

and ↑let-7 miRNA family

PCA (192)

Simvastatin: ↓miR-34a, which regulates the NAD+-dependent histone deacetylase

SIRT1. ↑miR-612, which is known to reduce stemness

BRCA, PCA, OsC (193)

Simvastatin is an activator of miR-192 which subsequently led to suppressed proliferation,

migration and invasion

CRC (194)

Atorvastatin: ↑miR-182 that targets the anti-apoptotic Bcl-2 and p21 PCA (195)

↑miR-140-5p activating the transcription factor NRF1 that reduced cell proliferation and

induced apoptosis

BRCA (196)

Fluvastatin: ↓miR-140-3p-1 and its downstream pathway such as cell growth BRCA (197)

Statin: ↑miR-33a promoting a proliferation inhibitory effect PCA (198)

lovastatin: ↓miR-133a promoting GCH1 important for endothelial nitric oxide synthase Cancer (199)

Rapamycin Rapamycin-dependent miRNA: ↑miR-29b, 21, 24, 221, 106a, and 199a Renal (200)

↑let-7, miR-125a,−125b,−21, and−26a. Rapamycin is mediated by let-7 family with

anti-proliferative effects

Renal (201)

*RS: miR-21 supports mitochondrial function and adaptation to rapamycin Renal (200)

Long-term rapamycin treatment RS: ↑MYC that results in ↑miR-17–92 Brain (201)

(Continued)
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TABLE 2 | Continued

Drug Druggable miRNA/Therapy-resistance miRNA* Cancer References

Aspirin and non-steroidal

anti-inflammatory agents

↑miR-98 that targets WNT1, suppressing cell proliferation Lung (202)

Sulindac drug: ↓miR-9,−10b,−17, and−21 by suppressing NF-κB-mediated transcription

of miRNAs

BRCA CRC (203)

↓miR-21 decreasing cell proliferation and invasion upon inactivation of β-catenin/TCF4

signaling

CRC (204)

↑let-7 by decreasing the miRNA-sponge H19, resulting in the down-modulation

Hypoxia-inducible factor 1α reducing l PDK1, attenuating glycolysis

BRCA (195)

Celecoxib: ↑miR-29c supress the oncogen MCL-1 reducing apoptosis GC (205)

TVB-2640 miR-15 and miR-16-6: Inhibition of FASN: Agonist effect BRCA (206)

Targeting lactate metabolism: LDHA inhibitors

AZD3965 miR-342-3p: Inhibition of the monocarboxylate transporter MCT1: Agonist effect BRCA (103)

Antimetabolite chemotherapeutic agents

Methotrexate (MTX) *RS: ↑miR-24 SNPresults (207)

*RS: ↑miR-140 OsC, CRC (208)

*RS: ↑miR-215 modulated DTL, a cell cycle-regulated gene OsC, CRC (209)

Capecitabine ↑miR-125b-5p ↑miR-137 Cancer (189)

5-Fluorouracil ↓Relevant oncogenes such as miR-210 HCC

CRC

OsC

(208, 210,

211)

↑Relevant tumor suppressor miRs: let-7 family, miR-15b,−16,−23a,−23b, and−200c BRCA (189)

*ES: ↑miR122 through the inhibition of M2 splice isoform of pyruvate kinase (PKM2) in
vitro and in vivo

CRC (212)

*RS: ↑miR-21 and−221 BRCA (213)

*RS: ↑miR-21,−34,−140 HCC

CRC

OsC

(212)

Gemcitabine May impact the expression of 56 relevant miRNAs such as miR-200,−205,−27a,−27b,

and let 7 family

Cancer (214, 215)

*ES: ↑microRNA-218 by inhibiting the secretion of HMGB1 by PANC-1 cells and the

PI3K/Akt pathway

PC (212)

*RS: ↑miR-21,−34,−140 PC (214, 215)

Targeting glutamine metabolism

Pegylated arginine

deiminase (ADI-PEG)

Bioengineered pre-miR-1291 processed to high levels of mature miR-1291. *ER:

↑miR-1291 increases sensitivity to ADI-PEG (trough modulation of ASS1 and GLUT1)

PC (216)

*Therapy-resistance miRNA. ↑, over-expression; ↓, down-regulation. Therapy-resistance miRNA: RS, reduce sensitivity; ES, enhanced sensitivity. Cancer: BRCA, breast cancer;
CRC, colorectal cancer; PCA, prostate cancer; PC, pancreatic cancer; HCC hepatacarcinoma; CLC, cholangiocarcinoma; MB, medulloblastoma; OsC, osteosarcoma; GC, Gastric;
M,Melanoma.

regulates mitochondrial pyruvate dehydrogenase complex that
catalyzes the irreversible decarboxylation of pyruvate into
acetyl-CoA (232). PDK is overexpressed in several tumors and
favors pyruvate conversion into lactate (233). Inhibition of PDK
by DCA in cancer cells prompts glucose oxidation, reverses
mitochondrial apoptosis, and suppresses tumor growth (234).
CPI-613 is a novel anticancer agent (lipoic acid analog) that
inhibits PDK through targeting lipoyl-binding pockets and
selectively target the altered mitochondrial energy metabolism in
tumor cells and produces changes in mitochondrial and redox
status, which leads to tumor cells death (232, 235, 236). One of the
main clinical challenges in colorectal cancer management is the
development of chemoresistance. Interestingly, DCA treatment
improve chemosensitivity to 5-fluorouracil. The evidence
pointed out that the DCA over-express miR-149-3p which
consequently enhanced 5-FU-induced apoptosis. Importantly,

miR-149-3p is a post-transcriptional regulator of PDK2
transcript. Thus, DCA treatment overcome chemoresistant
phenotype by modulating miR-149-3p/PDK2 axis (237).

TARGETING FA METABOLISM

Several pieces of evidence propose that targeting de novo fatty
acid synthesis might be effective in the treatment of some cancers.
For example, statins, cholesterol-lowering drugs, have been
recently related to antitumor, cytostatic, and cytotoxic activity in
diverse clinical trials of advanced malignancies (238); however,
the studies are still inconclusive. Epidemiological studies have
shown that statins lower the risk of presenting lung, breast, bowel,
and prostate cancer (239, 240). Furthermore, different preclinical
in-vitro studies show that statins may produce a variety of
antineoplastic responses in cancer cells, including a cytostatic
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FIGURE 2 | Pharmacological-targeting of tumor metabolism and miRNA-modulating networks of drugs tested in clinical trials or already approved FDA drugs for

cancer treatments. It is reported that dysregulations of miRNAs contribute to therapy resistance via drug efflux mechanisms, alterations in drug targets, energy

metabolism, Glutamine metabolism, lactate metabolism, cholesterol metabolism, among others.

effect (cell cycle G1/S phase arrest), pro-apoptotic activity by
downmodulating BCL-2 (241, 242), anti-metastatic properties
through NF-kB and matrix metalloproteinase inactivation (243,

244) and anti-angiogenic properties. Different studies have
provided novel evidence of the pleiotropic effects of statins
independent to its cholesterol signaling modulation in cancer.
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For instance, in-vitro assays have shown that more than
400 miRNAs are altered by statins interventions. Including,
some well-known tumor suppressor miRNAs such as miR-
612, which is up-modulated after statins treatment promoting
cancer cell differentiation and enhancing cancer cells response
to chemotherapy (193). In another study, miR33a (198), and
miR-33b (191) resulted up-modulated and participates in the
anti-oncogenic properties of statins by promoting proliferation
inhibitory effects and down-regulating the oncogene c-Myc.
Another statin-regulated miRNA is miR-182, which down-
regulates the antiapoptotic Bcl-2 transcript and consequently
favors cell apoptosis (195). In a more complex regulatory
circuit, simvastatin reduces NF-κB and LIN28B expression and
subsequently increased let-7 levels, that in summary significantly
inhibited cell viability and clonal proliferation [(192);Table 2 and
Figure 2].

In a different fashion, rapalogs that inhibit mTOR (e.g.,
rapamycin and its derivatives, everolimus, and temsirolimus)
exhibit anti-tumor effects by targeting PI3K/Akt/mTOR axis
and cell proliferation. A wide spectrum of tumors is being
evaluated in monotherapy or in combination. Temsirolimus and
everolimus have been recently approved for the treatment of
patients with advanced renal cell carcinoma (245, 246). Since
mTOR is also involved in glucose metabolism by stimulating
GLUT1, it is reasonable to propose a combinatory therapy with
metformin to synergistically kill tumor cells [(247); Table 2].
Once again, let-7 family is one of the most reported miRNAs
related with Rapamycin mechanism, playing a dual role. In
one hand, in short-term treatments the inhibitory effect of
rapamycin over cancer cells is mediated by increased expression
of let-7 members that regulates c-MYC post-transcriptionally
regulates c-MYC. On the other hand, re-expression of let-7
restore rapamycin sensitivity in resistant tumor cells (201). Long-
term rapamycin treatment up-modulates miR-17–92 cluster that
is related to rapamycin resistance, probably by its positive
regulation over c-Myc (201). From a combinatory point of view
rapamycin and metformin are able to synergize their activities
against cancer cells, since this last one inhibits miR-21-5p which
induces signaling of mTOR, a rapamycin-target (188).

Finally, TVB- 2640 compound is one of the first bioavailable
fatty acid synthase (FASN) inhibitor to enter clinical trials
for breast, colon, and astrocytic tumors, in combination with
chemotherapy with the aim of enhancing clinical responses
and prolonging stable disease times (NIH). Its antineoplastic
activity leads to reduced cell signaling, induces tumor cell
apoptosis, and inhibits cell proliferation in tumor cells by
restricting lipid signaling, mainly fatty acid production, which is
necessary to satisfy tumors metabolic needs [(248–250); Table 2
and Figure 2].

ASPIRIN: ANTI-INFLAMMATORY AND
METABOLIC DRUG IN CANCER CELLS

Aspirin, a non-steroidal anti-inflammatory drug (NSAIDs), has
shown metabolic and antitumor properties (251). Aspirin may
impair tumor cell migration and metastasis through preventing

platelet clot formation (252). Aspirin also activates AMPK and
inhibits mTOR and FA synthesis in cancer cell lines (253).
Recently, aspirin has been demonstrated to have effective anti-
tumor effects against RAS/RAF-mutant cells in colorectal cancer
by simultaneously affecting BRAF/CRAF dimerization and
hyper-activating the AMPK and ERK pathway [(254); Table 2
and Figure 2]. Besides the well-described cardioprotective effects
of NSAIDs, there are substantial preclinical, clinical, and
observational data that supports its activity in preventing cancer,
with strong evidence in colorectal (255), lung (256), and ovarian
cancer (257, 258). In preclinical studies NSAIDs administration
confer a chemopreventive effect in different cancer cell models
and in-vivo assays, probably via miRNA modulation. Recently,
a novel mechanism of action of aspirin has been reported, in
which the drug induces the expression of well-known tumor
suppressors miRNAs, such as miR-98 that in turn suppress
WNT1 and consequently limits cell proliferation in lung cancer
(202).Moreover, NSAIDs favor let-7 expression by decreasing the
abundance of one of its ncRNA-sponge, attenuating in this way
glycolysis in breast cancer [(195); Table 2]. Anti-inflammatory
drugs are also able to abrogate the oncogene miR-21, that results
in low cell proliferation and invasion rates in BRCA and CRC
(203, 204).

TARGETING LACTATE METABOLISM:
LDHA INHIBITORS

Several clinical trials evaluating LDHA inhibitors in different
solid cancers are currently underway. One mechanism of action
of LDHA inhibitors is to limit lactate export from cancer cells
into the extracellular space. Accumulating intracellular lactate
moves LDHA catalyzed-reaction to produce pyruvate, which
prevents NAD+ regeneration and affects the energy source that
established a fine competition between cancer cells that resulted
in cell death. AZD3965, a drug affecting lactate metabolism,
inhibits lactate transporter MCT1, which is overexpressed in
several tumors and is associated with poor outcomes (259–
262). MCT1 inhibitors probably synergize with the exogenous
restauration of miR-342-3p that should provide a more effective
inhibition of lactate transportation, which result in loss of cancer
cell metabolism homeostasis [(103); Table 2 and Figure 2].

ANTI-TUMORAL THERAPY WITH
ANTIMETABOLITE CHEMOTHERAPEUTIC
AGENTS

Antimetabolites as chemotherapeutic agents (e.g., methotrexate,
capecitabine, 5-fluorouracil, and gemcitabine) are small
molecules that resemble nucleotide metabolites; they inhibit
the activity of enzymes involved in nucleotide synthesis by
preventing cell division and triggering cell death. They are
widely used in clinics to treat cancer since neoplastic cells
have an increased metabolic demand that requires a huge
nucleotide biosynthesis and DNA replication (263). More in
detail, methotrexate is a folate analog that inhibits carbon
transfer reactions required for de novo nucleotide synthesis.
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Fluorouracil (5-FU) is a synthetic analog of uracil that inhibits
thymidylate synthase by limiting the availability of thymidine
nucleotides for DNA synthesis (264) and has been reported
that enhances the expression of relevant tumor suppressors
such as let-7 family, miR-15b,−16,−23a,−23b, and−200c, some
of them well-describe metabolic modulators (189). Moreover,
5-FU represses miR-210 (208, 210, 211), that down-modulates
GPD1L, a negative regulator of HIF, restricting HIF-1α stability
[(265, 266); Table 2]. Similarly, capecitabine is widely used in
chemotherapies for gastrointestinal cancers. It halts tumor cells
by inhibiting DNA and RNA synthesis and limiting the precursor
of thymidine triphosphate (267, 268). Gemcitabine, another
nucleoside analog, is intercalated into the DNA molecule and
blocks DNA polymerases (269). Notably, the literature reports its
effect over several miRNAs such as miR-200,−205,−27a,−27b,
and let 7 family [(215, 269); Table 2]. All these agents can achieve
important clinical responses and lead to complete remission in
many cases.

In recent years, there has been substantial attention to the role
of miRNAs in regulating metabolic reprogramming. Researchers
have tried to reveal the mechanisms that regulate metabolic
alterations in tumor cells and identify the interactions (miRNA-
mRNA, miRNA-transcription factor, and miRNA-metabolic
pathway) that are susceptible of being therapeutically actionable.
Although studies are still incipient, robust data have been
generated, describing howmiRNAs directly or indirectly regulate
the dysregulated metabolism of tumor cells. Based on the
evidence described in this work, it is appropriate to hypothesize
that there aremiRNA interactions susceptible of beingmodulated
by therapeutic interventions to reverse the metabolic alterations
that allow tumor cells to uncontrollably proliferate. In addition,
it is necessary to emphasize the usefulness of miRNAs-based gene
therapies to enhance the regulatory activity of those identified
miRNAs. However, more studies need to be conducted in a
broader spectrum of components of the energetic metabolism
of tumor cells, such as enzymes, transcription factors, positive
regulators, and enhancers to provide more evidence on the
impact of regulation mediated by miRNAs and their signaling
networks on oncogenic processes.

NEW DRUGGABLE TARGETS WITH HUGE
IMPACT IN CANCER METABOLISM: THE
EMERGENCE OF miRNA-BASED
THERAPIES

In the last section we discussed how metabolic-target drugs
and chemotherapy can modulate miRNA signaling programs
as a beneficial pleiotropic effect. But it is also necessary to
emphasize the usefulness of miRNAs-based therapies to improve
or moderate their regulatory activity. Recent advances have
permitted to study the effects of directly manipulating cellular
miRNA levels by suppressing the expression of oncomiRs, that
somehow enhance cancer metabolism, and which are frequently
overexpressed in human cancers. Or on the contrary, by
reestablishing the expression of tumor suppressor miRNAs that
in many cases collaborate to restrict cancer energetics programs
(270). Evidences obtained from these studies have prompted

the designing and refinement of dedicated technology aimed
at, either, inhibiting miRNAs (i.e., antisense oligonucleotides,
locked nucleic acid, antagomiRs, miRNA sponges, and small
molecule inhibitors that inactivate mature miRNA sequence
in the RISC complex) (271–273) or restoring their levels by
mimic sequences that can be recognized by Dicer and Ago2
proteins to be functional. Notable, miRNA delivery systems have
been improved during the last years, resulting in robust and
more specific devices such as liposomes, adenovirus, adeno-
associated virus, EDV nanocell, and nano-particles accompanied
with conjugate antibodies (274–276).

Below we briefly describe some examples of clinical trials that
have been evaluated the therapeutic impact of targeting miRNAs
involved in the regulation of emerging hallmarks of cancer like
tumor metabolism, already described in previous sections. For
instance, MRX34 was the first miRNA-based therapy undergoing
in a clinical trial for cancer treatment, its aim was to re-
express miR-34, that regulates LDHA, by introducing a mimic
sequence through the lipid carrier NOV40 to treat patients with
lymphoma, melanoma, multiple myeloma, liver, small cell lung,
and renal carcinoma. Unfortunately, although promising results
were observed, the trial was terminated due to severe immune-
related reactions developed by some patients (277).

The first completed phase 1 trial evaluated the TargomiR
technology, intended for delivering miRNA mimic sequences in
vehicles containing bacterially derived minicells and a targeting
moiety antibody against EGFR to treat non-small cell lung
cancer. A similar example is the MesomiR-1 drug, which
reintroduces miR-16, a miRNA that regulates Aldolase A in
glycolysis process (278, 279). Another, drug delivery system being
evaluated in stage 1 clinical trial is the locked oligonucleotide
acid-modified inhibitor for miR-155 (MRG-106), as part of the
clinical intervention for cutaneous T-cell lymphoma patients
(280, 281). This therapeutic intervention re-expresses miR-155
targets such as miR-143, that negatively regulates HK2 and
consequently limits the active glycolytic phenotype (77). Other
examples include the new miRNA delivery system from Regulus
company named RGLS5579, an anti-miRNA against miR-10b,
for patients diagnosed with glioblastoma multiforme (282).
Interestingly, under hypoxic conditions, HIF1 upregulates the
transcription factor TWIST that results in the induction of the
oncomiR miR-10b (283).

A further candidate of miRNA-based therapeutic currently
under evaluation by Regulus and Sanofi companies, although not
for cancer patient’s treatment, is RG-012 which silences miR-
21 in patients with Alport syndrome (284). Along the text we
widely discussed miR-21 activity as a promoter of the tumoral-
metabolism and its role in resistance against metabolic-based
drugs. Miragen, another company, maintains also an active
phase 1 study for miR-29 mimic (MRG-201) to treat keloid,
fibrosis and scar tissue formation (ClinicalTrials: NCT03601052).
Importantly, miR-29 is frequently lost in cancer and has been
reported to negatively regulates MCT1, a lactate transporter
(101, 102).

Lastly, combinatorial therapy strategies have provided
successful results to treat cancer since this approach can target
several tumor cell survival pathways and establish molecular
landscapes to overcome resistance, offering a holistic way
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to reduce tumor development and evolution (285). Taking
advantage of the technological advances, chemotherapeutic
agents can be coordinately administrated with miRNA-based
therapeutics to provide synergistic effects and enhance patient
response. Since, these examples represent the first generation
of miRNA-based therapeutics, there are some challenges and
limitations. As an illustration, preclinical experiments in in-vivo
models have shown low RNA stability, numerous mRNAs targets
can be regulated by a single miRNA and different biological
effects can be achieved by a miRNA in different tissues (286).
Thus, it is important to guarantee tumor-specific delivery and
local retention of miRNAs, for example by nanoparticle which
facilitates target-specific shipment of miRNAs (286, 287).

PERSPECTIVES: HOW TO TAKE
ADVANTAGE OF THE LOCAL AND
SYSTEMIC METABOLIC CONTEXT AND
ITS CONNECTION TO microRNA
REGULATORY CIRCUITS IN CANCER?

In addition to tumoral-intracellular metabolic reprogramming,
tumor cells encounter a variety of systemic factors that can
influence tumorigenesis and cell metabolism (27, 34, 38, 41,
164, 288). For instance, obesity is a metabolic disorder that
promote tumor growth and a connection between obesity
and certain cancers, including colorectal, renal, breast cancer,
esophageal, adenocarcinoma, thyroid, endometrial, prostate, and
leukemia, have been reported in numerous cohort studies (289–
292). In recent years, there has been substantial attention to
miRNA roles in obesity-linked cancer (293). miRNA regulation
programs can modulate adipogenic differentiation by controlling
signaling pathways related to its biogenesis, additionally, several
miRNAs associated with obesity also have well-described roles in
carcinogenesis, thus, their deregulated expression portrait may
act as a functional link between obesity and cancer (294–296).

Furthermore, over the last decade, a huge advent of
next-generation sequencing occurred, allowing to deeply
characterize the diversity of microorganisms that colonize
human epitheliums, known as microbiota. Human microbiome

produces small molecules and metabolites through a complex
community network with relevant biological effects both at local
and systemic levels and its dysregulation contributes to cancer
establishment, progression and therapy response (297–300).
Carcinogenesis is a complex process on which exogenous, as
well as, endogenous factors could impact in different ways
on malignant transformation. Among endogenous factors,
metabolites generated as byproducts of metabolic activity
can either act as carcinogen compounds (i.e., nitrosamines,
conversion of alcohol to acetaldehyde, and tumor-promoting
secondary bile acids) or as anticarcinogens (i.e., activation
of dietary phytochemicals and inactivation of hormones that
stimulate tumor cells growth). Even more, metabolism of
different substances within the body can be affected by different
health conditions like diabetes or obesity, which is characterized
by chronic inflammation. In this context, bacterial metagenome
has revealed to be an important player in fine-tuning tumor
metabolic function, as is enriched in genes that participates
in nutrients, bile acid and xenobiotic metabolism, as well
as biosynthesis of vitamins and isoprenoids, therefore has
become an emergent factor that affects tumor development
(301–303). Based on these novel data, the gut microbiome is
increasingly being recognized as a dynamic ecosystem influenced
by environmental conditions such as diet and drug therapy with
relevant effects on tumoral biology and metabolism (304, 305).
As an open system, gut microbes elicit their effects on cancer
cells via their capacity to induce pro-inflammatory responses
(306–308) or more indirectly by the production of secondary
metabolites (309–311). Recent evidence showed that short chain
fatty acids (SCFAs), hydrogen sulfide (H2S), bile acids, and some
other metabolites are produced by gut microbiota and impact
the genome and epigenome of cancer cells, including miRNAs.
Thus, the gut microbiome is an important regulator of host
transcriptional dynamics in part through the establishment of
inter-communications via miRNA signaling (312).

Host microbiome has pointed out as a potential modulator
of cancer metabolism and could be a future target for precision
medicine. While there is less evidence of how microbiota affects
most of the miRNA landscapes in human tumors, there are
growing data that explain how the microbiota confers some

TABLE 3 | miRNA portrait and gut microbiota in cancer.

miRNA Activity Cancer References

miR-182,

miR-503, and

mir-17∼92

cluster

Differentially expression of these oncogenic miRNAs was correlated

with the relative abundances of: Firmicutes, Bacteroidetes, and
Proteobacteria. Possible role of these miRNAs in driven glycan

production in tumor location through the recruitment of pathogenic

microbial taxa and thus impact tumor development

CCR (319)

Upregulation

of miR-21

Fusobacterium nucleatum induces CRC cell proliferation by

up-modulating the oncogenic miR-21 via TLR4 signaling

CRC (320)

Upregulation

of

miR-20a-5p

The colibactin genotoxin produced by Escherichia coli promotes

cellular senescence by the upregulation of miR-20a-5p, which in turn

downregulates SENP1, resulting in the proliferation of uninfected cells

and, subsequently, tumor growth. The over-expression of miR-20a-5p

also alters p53 SUMOylation, which has been shown to promote tumor

growth and metastasis

CRC (321–323)
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effect on cancer pathways in colorectal cancer (CRC). Under
physiological conditions, the microbiota promotes a metabolic
niche that produces a huge amount of the energy required

by the intestinal epithelial cells (313) through the production
of butyrate, a SCFAs, as a result of complex carbohydrates
fermentation. CRC cells preferentially use glucose over butyrate

FIGURE 3 | Life style and diet has an impact on different metabolic mechanisms in human cells. Disruption of metabolic fluxes, might particularly affect expression of

genes and miRNAs related to control of cell proliferation, cell cycle, and adhesion, eventually leading or favoring neoplastic processes to take place in different organs

(i.e., Breast, Prostate, Lung, Colon, etc.). Microbiota, on the other side, the new star player in the complex interaction between environment and human organism, can

also influence the effect of nutrients or drug intake within host. In an unhealthy weight scenario (i.e., obesity), disequilibrium in adipogenesis leads to chronic

inflammation and triggering of signals for over-expression of oncomiRs. Under this condition, dysbiosis (e.g., loss of balance in gut bacteria composition) could further

concur to sustain or even enhance the metabolic perturbations favoring neoplastic transformations.
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as the major source of energy, resulting in a gut microbiome
related dysbiosis (314). In the tumoral context, low butyrate
concentrations enhance MYC expression, which in turn up-
modulates the levels of the oncogenic miR-17-92 cluster (315).
The overexpression of miR-17-92a cluster has been shown to
enhance cell proliferation, metastasis, and angiogenesis (316–
318). This data demonstrates an antitumor mechanism of
butyrate over the MYC /miR-17-92a axis in CRC cells. As
exemplified, miRNAs activity is a relevant feature in mediating
metabolic changes and modulating the interaction of host
transcriptional portrait and microbiota. Some other evidences
are described in Table 3. Results from numerous studies now
suggest an additionally level in the complex interplay between
miRNAs and gut microbiome, including data describing the
influence of miRNAs in controlling gut composition and growth
rates by improving selectively pressure on the surrounding
microenvironment (Table 3).

Furthermore, results from numerous studies suggest that
intestinal miRNAs come from two main sources: host and food
(55, 324). The intestinal epithelial cells are the main contributors
of host-derived miRNAs, but miRNAs contained in food can
as well be absorbed by the host and regulate gene expression
in a cross-species regulation manner (325, 326). Recently it
has been showed that Ginger derived exosome-like vesicles,
containing RNA, are taken up by the gut microbiota and can
alter microbiome composition and host physiology. Briefly, the
exosomal particles are preferentially engulfed by Lactobacillus
rhamnosus and the exosomal microRNAs-cargo target various
genes in the bacteria, such as Ginger miR7267-3p that mediate
the production of IL-22, favoring an improvement in the colitis
via IL-22-dependent mechanisms (324). These findings reveal
how plant products and their effects on the microbiome may
be exploited to specially target host processes to modify tumor
growth through specific diet interventions (Figure 3).

Although studies are still incipient, robust data have been
generated, describing how microRNAs serve as important

communication factors between the gut microbiome and the
host. On the basis of these evidences, it’s appropriate to
hypothesize there is an open bi-directional communication
between host cells and microbes, potentially mediated through
miRNA activity. However, more studies are required to be
conducted in a broader spectra of cancers, to provide more
evidence on the impact of gut microbiota and their miRNAs
signaling networks on oncogenic and metabolic processes (300),
which finally will allow us take advantage of these changes and
devise new strategies to translate the modulation of metabolic
alterations into patient management.
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