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Autoimmune cytopenias, particularly autoimmune hemolytic anemia (AIHA) and immune

thrombocytopenia (ITP), complicate up to 25% of chronic lymphocytic leukemia (CLL)

cases. Their occurrence correlates with a more aggressive disease with unmutated VHIG

status and unfavorable cytogenetics (17p and 11q deletions). CLL lymphocytes are

thought to be responsible of a number of pathogenic mechanisms, including aberrant

antigen presentation and cytokine production. Moreover, pathogenic B-cell lymphocytes

may induce T-cell subsets imbalance that favors the emergence of autoreactive B-cells

producing anti-red blood cells and anti-platelets autoantibodies. In the last 15 years,

molecular insights into the pathogenesis of both primary and secondary AIHA/ITP has

shown that autoreactive B-cells often display stereotyped B-cell receptor and that

the autoantibodies themselves have restricted phenotypes. Moreover, a skewed T-cell

repertoire and clonal T cells (mainly CD8+) may be present. In addition, an imbalance

of T regulatory-/T helper 17-cells ratio has been involved in AIHA and ITP development,

and correlates with various cytokine genes polymorphisms. Finally, altered miRNA and

lnRNA profiles have been found in autoimmune cytopenias and seem to correlate with

disease phase. Genomic studies are limited in these forms, except for recurrent mutations

of KMT2D and CARD11 in cold agglutinin disease, which is considered a clonal B-cell

lymphoproliferative disorder resulting in AIHA. In this manuscript, we review the most

recent literature on AIHA and ITP secondary to CLL, focusing on available molecular

evidences of pathogenic, clinical, and prognostic relevance.

Keywords: autoimmune hemolytic anemia, immune thrombocytopenia, chronic lymphocytic leukemia, Evans’

syndrome, molecular

INTRODUCTION

The impact of autoimmune cytopenias (AIC) complicating chronic lymphocytic leukemia
(CLL), particularly autoimmune hemolytic anemia (AIHA) and immune thrombocytopenia
(ITP) is variable, ranging from mild asymptomatic cytopenias case without indication to CLL
treatment, to severe transfusion dependent patients with abrupt onset and CLL progression. Each
patient needs to be carefully evaluated, since the different pictures require a specific approach.
Given this heterogeneity, the variability of response to immune-suppression, and the possible
association/development of clonal diseases (lymphoproliferation or myelodysplasia), the genomic
landscape of AIC is of particular interest.
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In this manuscript, we will review the most recent literature
on AIHA and ITP secondary to CLL with a brief summary
of their clinical management. In particular we will focus
on available molecular evidences of pathogenic, clinical, and
prognostic relevance.

EPIDEMIOLOGY AND PATHOGENESIS

AIC may complicate CLL course at any time, from diagnosis
to disease progression (Figure 1) (1). AIHA are the most
frequent form (7–10% of cases), followed by ITP (1–5%), and
rarer entities such as pure red cell aplasia (PRCA, <1%) and
autoimmune granulocytopenia (AIG 0.17%). From a pathogenic
point of view, CLL associated AIC are mediated by a complex
orchestration of humoral, cellular, and innate immunity: (1)
IgG auto-antibodies coat erythrocytes, platelets, and neutrophils
with consequent antibody-dependent cellular cytotoxicity and
complement-mediated destruction in the reticuloendothelial
system (spleen and liver) or in the blood stream. (2) Anti-
erythroblast and megakaryocyte autoantibodies can impair
bone marrow compensatory response. (3) Autoreactive T-
cells produce inflammatory cytokines and further inhibit
myelopoiesis. (4) Natural killer cells have been shown to destroy
erythroblasts from CLL patients in vitro, confirming a role for
innate immunity.

As regards autoantibodies, they are polyclonal high-affinity
IgG produced by non-malignant self-reactive B-cells in 90%
of cases. CLL cells may also produce autoantibodies (mainly
IgM) in <10% of cases (2–5), and have been shown to
secrete soluble factors inducing a dysregulation of bone marrow
microenvironment (6, 7). Further pathogenic mechanisms,
are the direct antigen presentation by CLL cells that may

FIGURE 1 | Autoimmune cytopenias (AIC) in chronic lymphocytic leukemia (CLL): the heterogeneity of onset imposes different management in each context.

induce self-reactive T helper cells, and the production of non-
functional T regulatory cells (T-regs) (8–10). The latter become
unable to eliminate non-neoplastic autoreactive T- and B-
cells leading to autoimmune phenomena (11–14). In addition,
an increased incidence of autoimmune cytopenias in CLL is
associated to an imbalance in the ratio between Th17 cells
and T-regs (15). Finally, CLL patients developing autoimmune
phenomena displayed a reduction of Toll-like receptors (TLR)-
4, an important player of the innate immunity, together with a
lower expression of TLR2, and an increase of TLR7, TLR9, and
TLR10 (16–18).

Influence of CLL Therapy on the
Development of AIC
The influence of CLL therapy on the development of AIC
deserves special consideration: single-agent purine analogs
(i.e., fludarabine) may induce CLL-AIHA (19, 20) possibly
worsening the imbalance between Th17 and T-regs (21). FC and
FCR combination schemes (fludarabine, cyclophosphamide, and
rituximab) in the CLL8 trial (22) showed very low incidence
(<1%) of hemolytic anemia, as did bendamustine rituximab (BR)
association (even if anecdotic PRCA cases have been described)
(23). Alemtuzumab led to treatment-emergent ITP in 9% of
CLL cases (24), again possibly due to T-cell dysregulation.
Concerning small molecules, the most interesting data are
available for Bruton’s tyrosine kinase inhibitor ibrutinib: new-
onset AIC was rarely reported in the largest studies performed
so far (25–27). Moreover, AIC resolution occurred in about
a half of CLL-AIC patients (N = 13) (26) and most CLL-
AIC cases were able to discontinue AIC-therapy after a median
of 4.7 months (N = 301 of whom 7% with ongoing AIC
therapy) (27). Similar data were reported in a more recent
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study of 193 patients: 67% of 29 cases with AIC pre-ibrutinib
could discontinue/taper AIC treatment and new-onset AIC
occurred in 6% (all with unmutated IGHV) (28). Recent
evidences suggest an inhibitory role of ibrutinib on autoreactive T
cells, through interleukin-2-inducible kinase (ITK)suppression,
leading the way for its use in T-cell mediated autoimmune
conditions (i.e., graft vs. host disease) (29). Regarding other
small molecules, limited data are available for idelalisib (that
targets phosphoinositide 3-kinase), and venetoclax (a BCL-2
antagonist), although the presence of autoimmune phenomena
was an exclusion criteria in various trials. Concerning venetoclax,
it has been reported to be associated to the occurrence,
although rarely, of AIHA in large CLL registrative trials (30).
Interestingly, increased incidence of autoimmune complications
(hepatitis, colitis, and pneumonitis) has been reported for
idelalisib (31, 32).

MANAGEMENT OF AUTOIMMUNE
HEMOLYTIC ANEMIA SECONDARY TO CLL

Diagnosis
Management of AIHA in CLL requires the evaluation and
exclusion of the other possible causes of anemia, including
bone marrow infiltration/failure, bleeding, vitamin or iron
deficiencies, and renal disease. As previously suggested, a
diagnosis of AIHA can be established in the presence of Hb < 11
g/dL, no chemotherapy in the previous month, variable alteration
of hemolytic markers (increased unconjugated bilirubin, elevated
lactate dehydrogenase, consumption of haptoglobin, increased
absolute reticulocyte counts), and the positivity of the direct
antiglobulin test (DAT) (1, 33). The latter allow to distinguish
warm (wAIHA: DAT positive for IgG or IgG+C3d at low titer
and negative autoagglutination at 20◦C) from cold (cAIHA) cases
(DAT positive for C3d and positive autoagglutination at 20◦C).
Of note, CLL itself may be a confounder in the differential
diagnosis, since LDHmay be elevated during disease progression,
haptoglobin increased due to chronic/acute inflammation, and
reticulocytosis may be absent or inadequate due to bone
marrow infiltration or suppression by cytokine storm and/or
anti-erythroblasts antibodies (1). The latter, demonstrated in a
proportion of CLL cases through the mitogen-stimulated DAT,
were associated to increased IL-4 and IFN-γ production, andmay
contribute to ineffective erythropoiesis (34). Furthermore, DAT
positivity does not necessarily mean AIHA and in a longitudinal
study of DAT+CLL cases only one third developed clinically
overt hemolysis (35). Conversely, DAT negative AIHA cases
may also be present (36), possibly due to the low-affinity or
to the very small number of autoantibodies. In this context,
the use of more sensitive techniques (microcolumn and solid-
phase tests, or mitogen-stimulated DAT) may be useful (34).
Finally, Bone marrow biopsy is usually necessary to document
CLL infiltration and to rule out other causes (including bone
marrow failure).

Treatment
As regards therapy (Table 1), the acuteness of onset, the severity
of the anemia and the degree of hemolysis should be considered,

TABLE 1 | Specific therapies and relative outcomes for warm and cold

autoimmune hemolytic anemia and immune thrombocytopenia secondary to

chronic lymphocytic leukemia (CLL).

Treatment Line Overall

response

rate %

References

WARM AUTOIMMUNE HEMOLYTIC ANEMIA wAIHA

Prednisone

1 mg/kg/day for 3–4 weeks

1st 84–90 (1, 37)

Dexamethasone

40 mg/day for 4 days, 2–6 cycles

every 2–4 weeks

1st 100

Rituximab

375mg sqm weekly × 4

2nd or > 72–80 (38, 39)

Cyclosporine

3–5 mg/Kg day

3nd or > 56 (40)

Alemtuzumab

30mg × 3/week × 4–12 weeks

3nd or > 100 (41, 42)

Splenectomy 3nd or > 69–78 (43)

COLD AUTOIMMUNE HEMOLYTIC ANEMIA cAIHA

Rituximab

375 mg/sqm weekly × 4

1st 50–70 (1, 39, 44)

Rituximab+Bendamustine

90 mg/sqm

2nd or > 71–80 (45, 46)

Rituximab+Fludarabine

40 mg/sqm

2nd or > 76 (47)

IMMUNE THROMBOCYTOPENIA ITP

Prednisone

1 mg/kg/day for 3–4 weeks

1st 90 (37)

Dexamethasone

40 mg/day for 4 days, 2–6 cycles

every 2–4 weeks

1st 90

Rituximab

375mg sqm weekly × 4

2nd or > 78 (48–50)

TPO analog

Romiplostim 1–10 mcg/Kg week

Eltrombopag 50–150mg day

3rd or > 80 (51–53)

Alemtuzumab

30mg × 3 week × 4–12 weeks

3rd or > 100 (42)

Cyclosporine

3–5 mg/Kg day

3rd or > 62 (40)

Splenectomy 3rd or > 61 (43)

Other rituximab associations

reported for warm and cold AIHA,

and ITP

Rituximab+cyclophosphamide

and dexamethasone (RCD)

2nd or > 89 (54, 55)

Rituximab+cyclophosphamide,

vincristine, and prednisone

(R-CVP)

2nd or > 95 (56, 57)

Current guidelines suggest CLL-directed therapy in relapsed/refractory cases.

together with patient’ symptoms, age and comorbidities. Blood
transfusions are usually indicated if Hb < 6 g/dL or higher in
elderly comorbid patients. Over-transfusion should be avoided
since it carries high risk of allo-immunization. In CLL-cases,
given underlying bone marrow impairment and inadequate
reticulocytosis, transfusion requirement may be higher than
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in primary cases. Moreover, the evaluation of endogenous
erythropoietin (to be performed before repeated transfusions
that may confound the picture) could suggest the use of
recombinant erythropoietin. For warm AIHA, steroid therapy
is considered the first line (usually prednisone at 1 mg/kg
day for 3–4 weeks, followed by a slow tapering in a total
of 6 months). Methylprednisolone boli (2–10 mg/Kg day for
3 days) may be considered, with or without intravenous
immunoglobulins (0.4 g/kg for 5 days or 1 g/kg for 2 days),
in patients with acute hemolysis and slow response to steroid
therapy (1, 37). The fewer patients with cAIHA may have a
milder clinical presentation with Hb levels >9 g/dL and cold
agglutinin associated symptoms (acrocyanosis, itch, urticarial,
etc.) and may require a watchful waiting approach. Treatment
should be reserved for transfusion-dependent cases, active
hemolysis (even if increase of LDH is difficult to judge in
CLL), and invalidating cAIHA symptoms. Corticosteroids are
usually effective only at high doses, and are a useful tool
only in the acute setting. Prompt rituximab treatment should
be considered, together with a quick steroid tapering after
Hb stabilization. Rituximab is currently considered the first
therapy line in cAIHA at standard dose of 375 mg/sm weekly
for 4 weeks, with an overall response in up to 70–100% of
patients (1, 39, 44). Considering patients refractory to first-
line treatment (both wAIHA and cAIHA), current guidelines
advice the introduction of a CLL directed therapy. The choice
between chemoimmunotherapy and small molecules should be
made according to current guidelines (patient age/comorbidities
and CLL molecular characteristics) and considering potentially
hemolytic side effects (avoid fludarabine single agent). As
regards published studies specifically addressing refractory CLL-
AIHA, rituximab in various combinations was able to induce
high (>80%) and durable response rates: 89% (N = 8) with
cyclophosphamide and dexamethasone (RCD) (54, 55), 95%
(N = 20) with cyclophosphamide, vincristine, and prednisone
(R-CVP) (56), and 80% with bendamustine (N = 26), with
a median relapse free survival of 28 months (45, 46). Good
results have also been reported in association with oral
fludarabine, even if mainly in primary cAIHA cases (47). The
only exception to this aggressive approach regards steroid-
refractory wAIHA with no signs of CLL progression. In this
setting, a possible strategy is to administer rituximab single
agent with a reported efficacy in 72% of cases, of whom 40%
sustained responses at 17 months (38, 39). Alemtuzumab has
been abandoned because of serious infectious and autoimmune
complications, as also happened for splenectomy (41–43).
Cytotoxic immunesuppressors showed heterogeneous and weak
efficacy in primary AIHA and are usually not administered
in CLL secondary cases (40, 58). New generation monoclonal
antibodies, such as of atumumab and obinutuzumab, may
also be useful in secondary AIHA (59). As cited above,
ibrutinib seems to be safe in patients with CLL-AIHA and
progressive disease, and a phase II trial of ibrutinib combined to
rituximab is ongoing in CLL-wAIHA [NCT03827603]. Regarding
venetoclax, case reports of successful treatment have been
published (60, 61).

MANAGEMENT OF IMMUNE
THROMBOCYTOPENIA SECONDARY TO
CLL

Diagnosis
The same diagnostic caveats mentioned for CLL-AIHA have to
be considered in the thrombocytopenic patient. ITP should be
suspected in a CLL patient with <100 × 109/L platelets, with
no chemotherapy in the previous month; moreover signs of
CLL progression should be excluded (progressive splenomegaly,
concomitant anemia, significant bone marrow CLL infiltrate,
evidence of bone marrow failure/dysplasia). Other secondary
causes (infections, drug-induced thrombocytopenia, thrombotic
microangiopathies, and heparin-induced thrombocytopenia)
should also be ruled out. Antiplatelet antibodies are of little aid
due to the low sensitivity and specificity of the test, and usually
not performed (1).

Treatment
ITP should be treated only in case of severe thrombocytopenia
(Plt < 30 × 109/L) or bleeding. First-line therapy with steroids
(prednisone at 1 mg/kg day for 1 month, followed by a slow
tapering, or dexamethasone 40 mg/day × 4 days 1–3 cycles) is
the standard approach, with about 50% responders. Intravenous
immunoglobulin can be added in case of bleeding or slow
response to steroids, again with 50% response rate [(27)].
Platelet transfusion may be required in case of life-threatening
hemorrhage. Similarly to CLL-AIHA, steroid refractory cases
would deserve CLL-directed therapy evaluation. Rituximab
monotherapy was shown effective in 86% of CLL-ITP cases
(57% complete response) (48), with 21 months response
duration (49, 50). Rituximab combined to cyclophosphamide
and dexamethasone or to cyclophosphamide, vincristine and
prednisone had a high rate of durable responses in published
experiences (55, 57). Splenectomy is usually discouraged given
the increased infectious risk, older age and comorbidities of
CLL patients. Finally, thrombopoietinmimetics (romiplostin and
eltrombopag), indicated in refractory primary ITP, have shown
high (up to 80%) and durable responses in patients with CLL-
ITP (51–53, 62).

MOLECULAR ASPECTS IN PRIMARY AND
SECONDARY AIHA

Table 2 shows available studies addressing molecular aspects
of warm and cold AIHA, both primary and secondary to
lymphoproliferative disorders.

Studies on Immunoglobulin Genes
Since the autoantibody is the major pathogenic player, the larger
and older experiments focused on the configuration of the genes
of the variable region of the immunoglobulin heavy chains
(IGHV) encoding AIHA autoantibodies and demonstrated that
some rearrangements are preferentially involved. Almost all
patients with cAIHA displayed monoclonal antibodies encoded
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TABLE 2 | Molecular findings in primary and secondary autoimmune hemolytic anemia (AIHA) and Evans’ syndrome.

Disease Gene/Pathway No. of

patients

Technique Impact and significance References

PRIMARY AIHA

Cold AIHA IGHV4-21 2 Nucleotide sequence

analysis

Pathogenic VH4-21 gene segment is responsible

for the major cross-reactive idiotype

(63)

Cold AIHA IGHV region – Nucleotide sequence

analysis

Pathogenic Specific IGVH regions are related to

anti- i and I red blood cell antigens

autoantibodies

(64)

Cold AIHA IGHV4-34 – PCR Pathogenic Anti-RBC antibodies are clonally

restricted

(65)

Cold AIHA IGHV3-23 – Selection of phage-antibody

library on human red cells

Pathogenic // (66)

Cold AIHA +3 and +12 – Chromosome analysis Pathogenic Autoreactive B-cells are clonal (67, 68)

AIHA TNF-α, LT-α, IL-10, IL-12,

CTLA-4

17 PCR and specific restriction

enzyme digestion

Pathogenic/therapeutic AIHA show higher frequency of LT-α

(+252) AG phenotype

(69)

Cold AIHA IGKV3-20 and IGKV3-15 27 IGH and IG light chain gene

sequencing

Pathogenic/therapeutic IGHV and IGKV correlate with cold

agglutinin disease onset and activity

(70)

AIHA TCRG and TCRB 33 DNA sequencing Pathogenic/therapeutic Pathogenic T-cells are clonally

restricted in AIHA

(71)

Cold AIHA KMT2D and CARD11 16 Exome sequencing,

targeted sequencing,

Sanger sequencing

Pathogenic/therapeutic Autoreactive B-cells display somatic

mutations favoring proliferation

(72)

SECONDARY AIHA

AIHA in CLL IGVH51p1 12 PCR Pathogenic CLL patients expressing IGVH51p1

are more prone to AIHA

(73, 74)

AIHA in CLL IGHV1-69, IGHV3-11,

IGHV4-59, HCDR3

319 RT-PCR Pathogenic/prognostic Sterotyped heavy chains mutational

status in CLL developing AIHA

(75)

AIHA

primary/CLL

and ITP

CTLA-4 exon 1 110 PCR Pathogenic/prognostic/

therapeutic

CTLA-4 signaling is defective in AIHA,

particularly in CLL cases

(76)

AIHA in CLL miRNA−19a,20a,29c,146b-

5p,186,223,324-

3p,484,660

n.a. RT-PCR Pathogenic Nine miRNA are preferentially

expressed in CLL developing AIHA

(77)

AIHA in CLL HCDR3 subset #3 585 PCR Pathogenic/prognostic/

therapeutic

Sterotyped B-cell receptor subsets

correlate with AIHA development

(78)

PRIMARY AND SECONDARY EVANS’ SYNDROME

Evans in

CLL

IGHV 25 PCR Pathogenic/prognostic Majority of ES-CLL cases display

stereotyped B cell receptor

(79)

AIHA and

ITP

Fc-γ-R IIa and IIIa on red

pulp macrophages

82 CFM and mRNA transcript

analysis

Pathogenic/therapeutic Spleen red pulp macrophages display

distinct FC-γ-R expressions

(80)

AIHA and

Evans in

CLL

miR-150 and c-Myb 35 RT-PCR Pathogenic c-Myb expression is high and

miR-150 is low in active hemolysis

and correlate with Hb, bilirubin, and

C3 levels

(81)

Pediatric

Evans

Syndrome

TNFRSF6, CTLA4,

STAT3, PIK3CD, CBL,

ADAR1, LRBA, RAG1,

and KRAS

203 Sanger sequencing in 203;

targeted NGS (tNGS) of 203

genes in 69 negative at

Sanger (n = 69);

whole-exome sequencing in

selected cases

Pathogenic/prognostic/

therapeutic

Majority of pediatric ES display

somatic mutations found in

immune-deficiencies

(82)

IGHV, immunoglobulin heavy chain variable region; +3 and +12, trisomy of chromosome 3 and 12; TNF-α, tumor necrosis factor alpha; LT-α, lymphotoxin alpha; IL-10 and -12,

interleukin-10 and -12; CTLA-4, cytotoxic T-lymphocyte antigen-4; IGKV, immunoglobulin K light chain variable region; TCRG, T-cell receptor gamma; TCRB, T-cell receptor beta;

miRNA, microRNA; Fc-γ-R, Fc-gamma-receptor; CFM, cytofluorimetry; PCR, polymerase chain reaction; RT-PCR, real time PCR; HCDR3, heavy chain domain region 3; ES, Evans

syndrome; wAIHA and cAIHA, warm and cold autoimmune hemolytic anemia; ITP, immune thrombocytopenia; CLL, chronic lymphocytic leukemia; NGS, next generation sequencing.
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by the IGHV4-34 gene, responsible for I antigen binding (63–
65). Rarely, IGHV3 family genes may also encode anti-I cold
agglutinins, in particular IGHV3-23 and IGKV3-20 (66, 70, 83).
Concerning Ig light chain genes, the IGKV3-20 gene and the
IGHV3-15 gene are used in most cAIHA patients and contribute
to I antigen binding. From a clinical perspective, mutations
in the complementarity determining region (CDR)2 and in
the framework region 3 (FR3) of IGHV4-34 correlated with
lower hemoglobin levels (70), whilst those in the IGKV3-20
CDR3 correlated with younger age at diagnosis. These findings
are in line with the clonal nature of cAIHA that is currently
considered a distinct lymphoproliferative disorder, with some
level of bone marrow infiltration morphologically different from
other non-Hodgkin lymphomas. The presence of stereotyped
light chains of cAIHA may be of therapeutic interest, since anti-
light chain vaccinations with IGKV3-20 are under investigation
for lymphoproliferative diseases (84).

Other studies focused on B-cell receptor configuration and its
contribution to AIC development. It is known that unmutated
IGHV carries a strong prognostic impact on CLL course and
correlates with a higher incidence of AIC (78, 85–89). The
binding of auto-antigens to unmutated CLL cells activates a
signal transduction (i.e., phosphorylation of SYK and ZAP-
70) promoting survival and proliferation (90). More recently,
a high recurrence of stereotyped IGHV aminoacid sequences
has been observed in CLL patients developing AIC (91–95).
Efremov et al. (73) reported an over-representation of the 51p1
VH gene; in other two large studies (N = 319 and N = 585),
patients developing AIHA showed a more frequent expression
of unmutated IGHV1-69, IGHV3-11, IGHV4-59, IGHV4–30,
IGHD2-2, and IGHJ6 genes, unfavorable [del(17)(p13) and
del(11)(q23)] cytogenetics, and stereotyped HCDR3 sequences
(75, 78). Finally, stereotyped B cell receptor configuration was
found in 66% of CLL secondary Evans syndrome, a known severe
complication defined by the association of AIHA and ITP (79).

Studies on Cell-Mediated Immunity
Since a T-cell imbalance is known to play a part in AIC
development (higher Th17/T regulatory ratio, Th1 to Th2
cytokine shift, increased APC activity), other studies focused on
T-cell compartment. They showed the presence of clonal T-cell
populations, mainly CD8+, in about 50% of AIHA patients (N =

33), higher than in controls (71). Another study (76) evaluated
cytotoxic T-lymphocyte antigen-4 (CTLA-4) gene status in
patients with primary or secondary AIC (20 primary AIHA, 30
CLL-AIHA, and 60 ITP). CTLA-4 is a negative regulator of T-
cell responses and has been implicated in various autoimmune
diseases (96, 97). A high prevalence of an A to G polymorphism
at position 49 was found among AIHA cases, particularly in the
CLL-AIHA group (73% vs. 47% in the control group), suggesting
CTLA-4mediated T-cell imbalance in these cases. A more recent
study found a significant higher frequency of lymphotoxin-α (LT-
α) (+252) AG phenotype in 17 AIHA cases compared to controls
(41% vs. 13%) (69). LT-α (also known as TNF-β), is involved
in the regulation of cell survival, proliferation, differentiation,
and apoptosis, and plays an important role in innate immune
regulation and immune-surveillance (98).

Finally, it has been reckoned that AIHA clinical picture
also depends on the level of the monocyte-macrophage system
activation and some Authors studied FcγR subtypes expressions
in various tissues in 82 AIHA cases. They found that red pulp
macrophages predominantly expressed the low-affinity receptors
FcγRIIa and FcγRIIIa, did not express the inhibitory FcγRIIb,
and expressed very low levels of the high-affinity receptor FcγRI,
compared to blood monocytes (80). This may be of therapeutic
interest, given that FcγR and its signaling have recently become a
target in autoimmune diseases.

Genomic Studies
The use of advanced target and non-target sequencing assays
offered further insights in AIHA pathogenesis. In particular,
in a study of 16 primary cAIHA, next generation sequencing
of bone marrow B-cells allowed the identification of recurrent
mutations of KMT2D and CARD11 in 69% and 31% of cases,
respectively (72). Similar mutations have also been reported
in lymphomas as well as in Kabuki syndrome, a congenital
disorder characterized by malformations, immune-deficiency,
and development of autoimmune diseases. Loss of KMT2D
function increases B cell proliferation, impedes class switch
recombination (99), and may concur to survival of autoreactive
B cells synergizing with IGHV4-34-encoded immunoglobulin
receptor stimulation (72). CARD11 mutations were shown to
induce constitutive activation of the NF-kB pathway, similarly
to what observed in diffuse large B-cell lymphoma. Evaluation
of KMT2D and CARD11 might be of diagnostic utility in
cAIHA, and would help to distinguish it from MYD88 mutated
lymphoplasmacytic lymphoma. Genomic studies may give hints
for novel therapeutic approach. In fact, histone deacetylase
inhibitors, that have been used in lymphoma, myeloma and
Kabuki syndrome, might have a therapeutic potential in cAIHA
with KMT2D mutations (72, 100). Similarly, therapies targeting
CARD11 gain-of-function mutations are under investigation for
B cell lymphomas and may be studied also in cAIHA (101).

Another very recent study evaluated a large series of pediatric
patients with Evans syndrome by Sanger sequencing, targeted
NGS, and whole exome sequencing (N = 80): 65% received a
genetic diagnosis, 49 had a germline mutation, and 3 somatic
variants. Pathogenic mutations in genes involved in primary
immunodeficiencies (TNFRSF6, CTLA4, STAT3, PIK3CD, CBL,
ADAR1, LRBA, RAG1, and KRAS) were found in 40% of cases,
and probable pathogenic variants in 16 genes not previously
reported in autoimmune disease were detected in 25%. It was
already known that children with primary immunodeficiency
are more prone to develop immune cytopenia, whilst in adult
Evans’ syndrome a primary immunodeficiency was identified in
9% of cases only (102). In the pediatric study, mutated patients
showed more severe disease with higher treatment requirement
(>number of therapy lines) and mortality. These data confirm
that a higher genomic burden is probably involved in pediatric
cases, and that it seems to have prognostic and therapeutic
significance (82). For instance, patients with autoimmune
lymphoproliferative syndrome (ALPS), caused by germline and
somatic TNFRSF6 mutations, are more prone to develop severe
persistent hypogammaglobulinemia after rituximab treatment,
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and splenectomy is contraindicated. Since rituximab is highly
effective and broadly used in Evans syndrome, a prompt
diagnosis of such cases is of great importance. Moreover, 36%
of cases had potentially targetable mutations that will be suitable
for new therapeutic approaches including rapamycin inhibitors
(in ALPS or a PIK3d activation syndrome) (103, 104), CTLA-4
fusion protein (in CTLA-4 and LRBA deficiency) (105, 106), JAK
inhibitors (in patients with JAK1 or JAK2 mutations) (107), and
calcineurin inhibitors (in patients with NFATC1 variants) (108).

Studies on MicroRNAs
MicroRNAs (miRNAs) are small single strain RNAs mainly
implied in gene expression regulation at transcriptional and
post-transcriptional level. They have been associated with
different clinical-biological forms of CLL and are also known
to play a substantial role in autoimmunity (77). In a recent
study evaluating malignant B-cells from CLL-AIHA patients,
nine down-regulated miRNAs were identified (i.e., miR-19a,
miR-20a, miR-29c, miR-146b-5p, miR-186, miR-223, miR-324-
3p, miR-484, and miR-660), of whom two (i.e., miR-20a
and miR-146b-5p) known to be involved in autoimmune
phenomena. Interestingly, miR-146b-5p was shown to modulate
the expression of CD80, a molecule involved in the B-T cell
synapse formation and in restoring the APC capacity of CLL
cells. Another miRNA, miR-150, was recently studied in 35
patients with AIHA/Evans syndrome and was found low in
patients with active hemolysis compared to those in remission
or with CLL-AIHA. MiR-150 negatively correlated with bilirubin
values and positively with Hb and complement levels, suggesting
the role of miRNAs in predicting CLL evolution and treatment
response (81).

MOLECULAR ASPECTS IN PRIMARY AND
SECONDARY ITP

Studies on Immunoglobulin Genes
Similarly to AIHA, first molecular studies on primary ITP
showed the presence of recurrent IGHV gene rearrangements
in autoreactive B cells (Table 3) (109). Roark and Colleagues,
found an association with rearrangements of IGHV3-30, and
further reports showed that IGHV30 encoded IgM and IgG
anti-GPIIb autoantibodies (122–125). Interestingly, IGHV3-30 is
highly employed also in AIHA, CLL, and immunodeficiencies
and this may explain the association with ITP (74, 126). In CLL
patients, it has been shown that the risk of developing ITP was
higher among patients with stereotyped subset #1 (IGHV1–5-
7/IGHD6–19/IGHJ4) and #7 (IGHV1–69 or IGHV3–30/IGHD3-
3/IGHJ6) in HCDR3 region (78). Other IGHV involved in anti-
platelets autoantibodies are VH1-02, VH1-46, VH3-21, and VH4-
59. Interestingly, a specific heavy- and light-chain pairing seems
to be necessary to enable antibody pathogenicity (127–131).
Anti-platelets autoantibodies appear to share single heavy-chain
VHDJH and have undergone isotype switching (hallmark of a
T-cell-dependent, antigen-driven response). These aspects are
not observed in naturally occurring anti-platelet antibodies that
are polyreactive IgM with little or no somatic mutation of their
variable regions, and are responsible for platelets turnover. The

presence of stereotyped IGHV asset could be of therapeutic
interest in ITP, since IGHV3-30-targeted reagents, such as anti-
idiotypic antibodies derived from mice (132, 133) or humans
(125) are under evaluation (134–137).

Studies on Cell-Mediated Immunity
Th17 are known to mediate autoimmunity through the release
of pro-inflammatory cytokines (IL-2/IL-17). Th17 cells response,
together with Th2 (anti-inflammatory), regulatory B (Breg),
and Treg cells inhibition (with decrease in IL-10/TGF-β), favor
ITP persistent/chronic phase. As a matter of fact, therapy with
corticosteroids, rituximab, and thrombopoietin receptor agonists
have all be shown to increase Tregs and TGF-β levels (TPO
agonists also increase Breg). Given the importance of these
cytokine dysregulation, some Authors focused on Treg/Th17
imbalance and on cytokine genes polymorphisms. In a recent
study, it has been shown that NF-κB-94ins/del ATTG genotype
(involved in the NLRP3 inflammasome) contributes to ITP
development and to imbalanced Th17 cell response (119).
Another study on IL-17F rs763780 polymorphism, that has been
associated with IL-17 expression and activity, showed a lower
prevalence in ITP cases (N = 165) compared to healthy controls
(118). Finally, Hu et al. demonstrated that IL-17A and IL-21
are able to upregulate STAT-1, STAT-3, STAT-5 or RAR-related
orphan receptor C (RORC), resulting in decreased Treg/Th17
balance in newly diagnosed ITP cases. This imbalance recovered
after ITP remission and was reversed by the neutralization of IL-
17A or IL-21 through targeting antibodies (111). IL-21 levels,
together with IL-4, were also found to be abnormal in pediatric
ITP (N = 85), and to affect T follicular helper cells levels and
regulation (116). IL-17A or IL-21 blockade could be a novel target
for ITP.

Studies on Inflammatory Cytokines
Interferon (IFN)-γ signaling and tumor necrosis factor (TNF)
are highly implicated in ITP pathogenesis and provides a
link between autoimmunity, inflammation, and bone marrow
failure. A polymorphism in the signal transducer and activator
of transcription 1 protein (STAT1) rs1467199 SNP, the main
target of IFN-γ down-stream emerged in a study of 328 ITP
children, and was differentially found between newly diagnosed
and chronic patients (112). More recently, microarray studies
showed that a huge number of long non-coding RNAs (lncRNAs)
were significantly up-regulated or down-regulated in newly
diagnosed and chronic ITP patients vs. healthy individuals.
TNF and granulocyte macrophage colony-stimulating factor
signaling were the most interested pathways. Interestingly,
lncRNAs ENST00000440492, ENST00000528366, NR_038920,
and ENST00000552576 were able to distinguish newly diagnosed
from chronic ITP (120). Finally, Peng et al. used gene expression
profiling analysis and whole-exome sequencing on samples
from family members with ITP, sporadic ITP cases and
healthy individuals and identified a potential pathologic p.G76S
heterozygous mutation on the TNFRSF13B gene. Mutated
cases had upregulated cytokine-cytokine receptor interaction,
increased serum TNFα, IL-17α, IFNγ, and BAFF levels, and
enhanced binding capacity of APRIL ligand to B cells. Moreover,
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TABLE 3 | Molecular findings in primary and secondary immune thrombocytopenia (ITP).

Disease Gene/Pathway No. of

patients

Technique Impact and significance References

PRIMARY AND SECONDARY ITP

ITP IGVH3-30 2 PCR Pathogenic/therapeutic Anti-PLT antibodies are clonally

restricted

(109)

ITP CD41, c-Myb, c-MPL,

caspase-2, caspase-9,

GATA-1, Bcl-xl

Murine

models

RT-PCR Pathogenic Hyperexpression of those genes in

the spleen of ITP mice

ITP Haptoglobin 58 Matrix assested laser

desorption/ionization

time-of-flight mass

spectrometry

Prognostic/predictive High haptoglobin levels predict

long-term response to splencetomy

(110)

ITP Th17 associated

signaling factors

– – Pathogenic Neutralization of IL-17A and IL-21

regulates Treg/Th17 imbalance

(111)

ITP STAT1 328 Sequenom Mass Array Pathogenic STAT1 rs1467199 SNP plays a role in

IFN-γ dependent development of ITP

(112)

ITP miRNA 32 RT-PCR Pathogenic/therapeutic 44 miRNAs are differentially

expressed in ITP pre- and

post-QSBLE therapy

(113)

ITP miRNA-125a-5p 30 RT-PCR Pathogenic lncRNA MEG3 inhibits

miRNA-125a-5p favoring Treg/Th17

imbalance

(114)

Primary and

secondary

ITP

Proteomics 134 Surface-enhanced laser

desorption/ionization

time-of-flight mass

spectrometry

Diagnostic 6 marker proteins distinguishing

primary from secondary ITP

(115)

ITP Bcl-6, c-Maf, Blimp-1,

ICOSL, TACI, BAFFR

85 RT-PCR Pathogenic T follicular helper cells display different

frequency and regulation between

newly diagnosed and chronic

pediatric ITP

(116)

ITP TNFRSF13B 2 GEP and WES Pathogenic G76S mutation is a gain-of-function

mutation and predispose to familial

and sporadic ITP

(117)

ITP IL-17F rs763780 165 RT-PCR Pathogenic IL-17F rs763780G allele frequency is

significantly lower in ITP vs. controls

(118)

ITP NLRP3 inflammosome 403 RT-PCR Pathogenic/therapeutic NF-Kb-94ins/del ATTG genotype

correlates with Th17 imbalance

(119)

ITP Long non-coding RNAs 64 Microarray studies and

RT-PCR

Pathogenic lncRNAs are differentially

upregulated/downregulated in

newly-diagnosed and chronic ITP vs.

healthy controls

(120)

ITP Integrated mRNA and

miRNA

4 Microarray technique

and RT-PCR

Pathogenic Cellular stress response is

deregulated in mesenchymal stem

cells from ITP cases

(121)

ITP, immune thrombocytopenia; CLL, chronic lymphocytic leukemia; IGHV, immunoglobulin heavy chain variable region; PLT, platelets; Th17, T- helper 17 cells; Th1, T helper 1; IL-17

and -21, interleukin-17 and -21; lncRNA, long non-coding RNA; Treg, T regulatory cells; miRNA, microRNA; GEP, gene expression profiling; WES, whole exome sequencing; PCR,

polymerase chain reaction; RT-PCR, real time PCR; NGS, next generation sequencing.

B cells transfected with the G76S mutation could induce human
megakaryocyte apoptosis in vitro (117).

Studies on MicroRNAs
MiRNAs expression was also evaluated in ITP in various
reports: molecular studies of bone marrow mesenchymal stem
cells from ITP patients showed that 740 genes and 32
miRNAs were differentially expressed compared to controls
and correlated with the presence of cellular growth defects
and functional abnormalities. The latter seem to be due to

impaired cellular stress response, unfolded protein response, and
reduced DNA transcription (121). Burenbatu and Colleagues,
identified 44 miRNAs that are differentially expressed in ITP
patients before and after treatment with the Mongolian medicine
Qishunbaolier (QSBLE). Interestingly, 25 from these 44 miRNAs
are downregulated in ITP as compared to controls, and are
restored after QSBLE exposure (113). Finally, reduced miR-
125a-5p expression has been linked Treg/Th17 imbalance. Li
et al. demonstrated that miR-125a-5p expression is inhibited by
MEG3 overexpression in ITP patients (N = 30). Interestingly,
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FIGURE 2 | The changing border between primary and secondary autoimmune cytopenias (AIC). Immune dysregulation is more profound in AIC secondary to

systemic autoimmune diseases and immune deficiencies, than in AIC secondary to infections. Likewise, a higher burden of somatic mutations is more typical of bone

marrow failures (BMF) and lymphoproliferative disorders (chronic lymphocytic leukemia, CLL; non-Hodgkin lymphomas, NHL), than in cold agglutinin disease (CAD)

and syndrome (CAS). The increasing availability of genomic testing will improve the diagnostic sensitivity, moving upward the border between primary and

secondary AIC.

dexamethasone was able to reduce MEG3 expression in vitro,
thus restoring Treg/Th17 ratio (114).

Proteomics
Proteomic studies found some clinical implications: screen of
64 primary and 70 secondary ITP cases using surface-enhanced
laser desorption/ionization time-of-flight mass spectrometry
(SELDI-TOF-MS) allowed the identification of 6 proteins able to
distinguish primary from secondary cases with high sensitivity
(115). Another proteomic study identified higher haptoglobin
levels as a favorable serum biomarker for predicting long-term
response to splenectomy in ITP, with a positive correlation with
postoperative platelet count (110).

DISCUSSION AND FUTURE
PERSPECTIVES

AIC secondary to CLL are a nice model of close intersection
between cancer and autoimmunity. Both are the result of
uncontrolled and dysregulated homeostatic mechanisms
leading to aberrant proliferation and activity of specific cellular
subsets with heterogeneous epiphenomena. Leukemic B-cells
show impaired apoptosis, are unable to efficiently produce
immunoglobulins, may function as antigen presenting cells,
and release a variety of inflammatory cytokines leading
to three main immune-related complications: infections,
autoimmune diseases, and decreased immune-surveillance
on secondary malignancies. These complications seem to

correlate with advanced stage CLL and with poor prognostic
markers. Moreover, CLL therapy may have an impact on
their development.

The genomic landscape of primary and secondary AIC
is of particular interest, since the type and the depth of
the immune response is likely under genetic control and it
could be hypothesized that a predisposing genetic background
correlates with a more profound immune dysregulation.
Molecular studies performed so far, mainly focused on B-
cell/autoantibodies characteristics and functioning, and on T
cell aberrations: sterotyped B cells with specific IGHV and light
chain configuration are involved in AIC development, clonal T
cells, specifically CD8+ ones are present, and various cytokine
genes polymorphisms may correlate with Treg/Th17 imbalance.
Other experiences showed a dysregulation at the gene expression
level as demonstrated by altered miRNA and lnRNA profiles
in AIC cases compared to healthy subjects, but also in newly-
diagnosed vs. chronic patients, and in the same patients in
different tissues. Finally, proteomic studies reported differentially
translated proteins in primary vs. secondary cases. In this regard,
all the guidelines on AIC state that secondary causes should
always be excluded. However, current workup relies mainly on
laboratory, morphologic and imaging techniques that could be
unable to disclose the presence of clonal disorders (Figure 2).
In this context, the genetic/molecular characterization of AIC
patients will probably increase our sensitivity in diagnosing
secondary cases. This has been demonstrated in the recent paper
on a pediatric Evans’ population, where NGS/WES techniques
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revealed the presence of an underlying disease in 65% of cases,
with important clinical/therapeutic implications. No data are
available for adults, but for cAIHA, where a clonal lymphoid
infiltrate is almost invariably present. This form is particularly
difficult to distinguish from secondary cases. Berentsen and
Colleagues proposed to differentiate cold agglutinin “disease”
from “syndrome” basing on the absence or presence of a
secondary cause. The demonstration that MYD88 mutation is
always absent and thatKMT2D andCARD11 ones are present in a
proportion of cases, carry diagnostic, prognostic and therapeutic
impact, further stressing the utility of molecular studies in
AIC. Finally, there is growing evidence that AIC may evolve
to overt clonal diseases of myeloid or lymphoid lineages and
no predictors are available (138–141). This tempts to speculate
about a model of “double clonality” unique for these forms,
where either myeloid or lymphoid populations may undergo

clonal expansion/selection. As a matter of fact, clonality and
malignancy are distinct although overlapping concepts, and
the evolution of a clonal disorder into an overt malignancy
may require a long time, even longer than human lifespan.
The immune system has a role in this process. However, it
is not always clear whether it acts as an effector or spectator,
and the exact molecular/genetic mechanisms and therapeutic
implications have still to be disclosed.
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