
ORIGINAL RESEARCH
published: 22 January 2020

doi: 10.3389/fonc.2019.01479

Frontiers in Oncology | www.frontiersin.org 1 January 2020 | Volume 9 | Article 1479

Edited by:

Mohit Kumar Jolly,

Indian Institute of Science (IISc), India

Reviewed by:

Mingyang Lu,

Jackson Laboratory, United States

David Jordan Wooten,

Pennsylvania State University (PSU),

United States

*Correspondence:

Tian Hong

hongtian@utk.edu

Specialty section:

This article was submitted to

Molecular and Cellular Oncology,

a section of the journal

Frontiers in Oncology

Received: 10 October 2019

Accepted: 09 December 2019

Published: 22 January 2020

Citation:

Panchy N, Azeredo-Tseng C, Luo M,

Randall N and Hong T (2020)

Integrative Transcriptomic Analysis

Reveals a Multiphasic

Epithelial–Mesenchymal Spectrum in

Cancer and Non-tumorigenic Cells.

Front. Oncol. 9:1479.

doi: 10.3389/fonc.2019.01479

Integrative Transcriptomic Analysis
Reveals a Multiphasic
Epithelial–Mesenchymal Spectrum in
Cancer and Non-tumorigenic Cells

Nicholas Panchy 1,2, Cassandra Azeredo-Tseng 3,4, Michael Luo 5, Natalie Randall 6 and

Tian Hong 1,2*

1Department of Biochemistry & Cellular and Molecular Biology, The University of Tennessee, Knoxville, Knoxville, TN,

United States, 2National Institute for Mathematical and Biological Synthesis, Knoxville, TN, United States, 3Department of

Biochemistry, New College of Florida, Sarasota, FL, United States, 4Department of Applied Mathematics, New College of

Florida, Sarasota, FL, United States, 5Department of Mathematics & Statistics, The College of New Jersey, Ewing Township,

NJ, United States, 6Department of Mathematics and Computer Science, Austin College, Sherman, TX, United States

Epithelial–mesenchymal transition (EMT), the conversion between rigid epithelial cells

and motile mesenchymal cells, is a reversible cellular process involved in tumorigenesis,

metastasis, and chemoresistance. Numerous studies have found that several types

of tumor cells show a high degree of cell-to-cell heterogeneity in terms of their gene

expression signatures and cellular phenotypes related to EMT. Recently, the prevalence

and importance of partial or intermediate EMT states have been reported. It is unclear,

however, whether there is a general pattern of cancer cell distribution in terms of the

overall expression of epithelial-related genes and mesenchymal-related genes, and how

this distribution is related to EMT process in normal cells. In this study, we performed

integrative transcriptomic analysis that combines cancer cell transcriptomes, time course

data of EMT in non-tumorigenic epithelial cells, and epithelial cells with perturbations of

key EMT factors. Our statistical analysis shows that cancer cells are widely distributed

in the EMT spectrum, and the majority of these cells can be described by an EMT

path that connects the epithelial and the mesenchymal states via a hybrid expression

region in which both epithelial genes and mesenchymal genes are highly expressed

overall. We found that key patterns of this EMT path are observed in EMT progression

in non-tumorigenic cells and that transcription factor ZEB1 plays a key role in defining

this EMT path via diverse gene regulatory circuits connecting to epithelial genes. We

performed Gene Set Variation Analysis to show that the cancer cells at hybrid EMT states

also possess hybrid cellular phenotypes with both high migratory and high proliferative

potentials. Our results reveal critical patterns of cancer cells in the EMT spectrum and

their relationship to the EMT process in normal cells, and provide insights into the

mechanistic basis of cancer cell heterogeneity and plasticity.
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INTRODUCTION

Epithelial–mesenchymal transition (EMT) is a fundamental
cellular process in which rigid epithelial cells convert
to motile mesenchymal forms. Canonical EMT and its
reversal, mesenchymal–epithelial transition (MET), occur
in embryogenesis, and they are critical for the formation of body
plans and new organs in metazoans (1, 2). Numerous reports
have shown that EMT is also activated during acquisition of
a metastatic phenotype by tumor cells (3–5). In this scenario,
EMT enables cells to migrate to distant organs or invade adjacent
tissues, whereas MET allows cells to settle and proliferate (6).
Inhibitions of EMT or MET have been shown to reduce the
metastatic potentials of tumor cells (7–9). In addition, EMT
was shown to promote chemoresistance (10, 11), suggesting the
multifaceted roles of EMT in cancer progression and treatment.

Recent data and theoretical studies suggest a remarkable
diversity of normal and cancer epithelial cells in terms of
their E and M properties. Particularly, mathematical models
and experiments show that partial forms of EMT give rise
to intermediate (or hybrid, or transition) cellular phenotypes
that exist between the extreme E and extreme M states,
and that such phenotypes can be stable (12–18). These
intermediate phenotypes were observed in non-tumorigenic
epithelial cells during the EMT process induced by extracellular
stimuli, such as transforming growth factor beta (TGF-β)
(19). While the precise roles of EMT and its associated
cellular states in cancer progression may be complex, recent

single-cell transcriptomic analysis showed that various tumor
cells are enriched with intermediate EMT cellular phenotypes

(20), suggesting the prevalence of such cell states during

cancer progression. In addition, previous survival analysis
has shown that the intermediate EMT states are associated
with poor prognosis of breast cancer patients (21, 22).
Together, these studies suggest the importance of understanding
an EMT spectrum that contains intermediate cell states in
cancer cells.

During EMT, cellular properties such as adhesion, motility,
and proliferation are altered dramatically through the
coordination of two major molecular programs (E and M).
Previous transcriptomic studies showed that several hundred
epithelial-related genes (E-genes) and mesenchymal-related
genes (M-genes) are down-regulated and up-regulated,
respectively (14, 23–25). Previously, one-dimensional EMT
spectrums were used to describe the cellular diversity in
EMT (14, 26). This approach is useful to understand multiple
EMT phenotypes in a concise manner. However, given the
complexity and importance of E- and M-gene coordination,
the one-dimensional spectrums do not provide a complete
view of EMT process and its associated cellular diversity. In
more recent studies, landscapes of cellular states in both E-gene
activity and M-gene activity are used to describe cancer cell
transcriptomes and specific perturbations leading to EMT/MET
(27). Nonetheless, general patterns of cancer cell distributions
in the two-dimensional EMT spectrum are unclear, and it is not
known how such distributions are related to the EMT process
in normal cells. In addition, it is not clear whether the multiple

steps of EMT marked by the intermediate EMT state(s) involve
the same degree of the coordination between E and M programs.

In this study, we performed integrative transcriptomic
analysis that combines cancer cell transcriptomes, time course
data during EMT induction, and transcriptomic changes upon
perturbations of EMT factors. We systematically characterized
the distributions of cancer and non-tumorigenic cells in terms
of their E-gene and M-gene activities with Gene Set Variation
Analysis (GSVA) and statistical models. We found that there is
a significant diversity of cancer cells in their E-gene and M-gene
activities, which cannot be described by an EMT spectrum that
assumes linear coordination between E and M programs. We
identified a non-linear EMT path that connects E and M, and
hybrid cell states can be used to describe a large fraction of cancer
cells in multiple organs. Notably, this EMT path involves a region
in which the activities of E-genes and M-genes are both relatively
high, and the pattern of this path is consistent with the EMT
process in non-tumorigenic epithelial cells with respect to time.
We identified key regulators that may contribute the multiphasic
EMT that is elucidated by the EMT path. We found that the
hybrid EMT gene expression region also corresponds to cell states
with hybrid cellular phenotypes, including high motility and
proliferative potentials. Together, our analyses characterized the
multiphasic nature of EMT in a comprehensive and quantitative
manner, and elucidated the connection between the diversity of
cancer cells and the normal EMT progression in gene expression
space, suggesting that multiple attractors in EMT are an intrinsic
property that is reflected in both cancer and normal cells.

METHODS

Transcriptomic Data
RNA-seq-based gene expression data were obtained for 1,215
invasive breast carcinoma samples (BRCA), 183 pancreas
adenocarcinoma samples (PAAD), 576 lung adenocarcinoma
samples (LUAD), 309 cervical squamous cell carcinoma and
endocervical adenocarcinoma samples (CESC), and 550 prostate
adenocarcinoma samples (PRAD) from The Cancer Genome
Atlas (TCGA) using the R package “TCGABiolinks” (28, 29).
These data were pre-processed via upper quartile normalization
of RNA-Seq by Expectation Maximization (RSEM). Previous
studies using TCGA transcriptome data have elucidated key
factors contributing to cancer cell plasticity (24, 30, 31). As a
control for non-EMT cancer cell types, we also obtained 173
acute myeloid leukemia cell samples (LAML) from TCGA. Time
course transcriptomic data for TGF-β-treatedMCF10A cells were
obtained from a recent study by Zhang et al. (32). Transcriptome
data for combinatorial perturbations of TGF-β and ZEB1 in
MCF10A cells were obtained from a recent study by Watanabe
et al. (23). Both of the Zhang et al. and Watanabe et al. studies
employed RNA-Seq data and normalized the results as fragments
per kilobase million (FPKM).

E and M Scores
We computed scores for E and M scores with GSVA (33). For
each sample (one transcriptome), we used a list of E-genes and
a list of M-genes from Tan et al. (26) as two signature gene sets
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to compute the two scores, respectively. Briefly, GSVA estimates
a cumulative density function for each gene using all samples,
ranks genes across samples, and then calculates a score between
−1 and 1 for each gene set using the Kolmogorov–Smirnov
random walk statistic. GSVA scoring was implemented using the
R package “GSVA” (33). The scoring procedure is illustrated in
Figure 1.

Gaussian Mixture Model
We built Gaussian Mixture Models (GMMs) for cancer
cell transcriptomes in terms of their E and M scores
to infer the subpopulations in the EMT spectrum. We
tested one to nine subpopulations, and we used Bayesian
Information Criteria to select the optimal number of
subpopulations (Supplementary Tables 1–5). For each number
of subpopulations, we tested six different models based on
various assumptions on covariance [excluding those that allowed
for non-diagonal or cluster-specific relationships among E andM
scores between models (34)]. Among the models with different
numbers of subpopulations, we selected the best subpopulation
number using the best score based on Bayesian Information
Criterion (BIC). We found that the five-cluster models had the
lowest BIC scores in terms of both mean score in covariance
models and the minimum score (Supplementary Figure 1).
We therefore selected five-cluster models for the subsequent
analysis. To select the most representative model with a
particular assumption of covariance from the models with the
best subpopulation number, we compared the distributions
of all candidate models and selected those with the most
consistent distribution across all models. We found that the
covariance assumptions EII, EEI, VEI, and VVI (34) generated
the most robust models within data sets, except for the LUAD
data where there was a significant difference between equal
volume models (EII, EEI) and unequal variance (VEI and VVI)
(Supplementary Figure 2). While the unequal variance models
had slightly better BIC, model predictions overall had higher
uncertainty values (Supplementary Figure 3). As such, we chose
to exclude unequal volume models and used EII for clustering
transcriptome data except BRCA, where it was outscored by EEI
but gave similar results. GMMs were implemented using the
“mclust” package in R (34). To show that our main conclusions
are not sensitive to the choice of the five-cluster models, we
performed additional analysis with four-cluster and six-cluster
models, which had BIC scores moderately higher than those
with five-cluster models (Supplementary Figure 1). Although
our main analysis focused on five-cluster models, additional
comparisons of these models were performed, and they are
described in later sections.

Segmented Regression
To infer the one-dimensional EMT spectrums (EMT paths)
from the two-dimensional scores, we used segmented regression
models (35). For cancer cells with ample amount of data and
significant heterogeneity of multiple possible EMT paths, the
models were based on consecutive sample clusters that can be
sequentially ordered in the E–M space by adjacency, and the
assumption that paths must proceed from the most extreme E

to the most extreme M state by passing through the minimum
number of clusters (i.e., four clusters in BRCA, three clusters in
all others). In the regression model, we chose the independent
variable to be the projection of a pair of E–M scores onto
a straight line crossing with the origin with slope of −1,
representing a hypothetical linear progression of EMT, and the
dependent variable to be the projection onto its orthogonal line,
representing the deviation from the linear EMT progression. For
time course TGF-β-driven EMT data with the time labels as the
unambiguous independent variable, all data points were used to
infer two models (E and M scores as functions of time). In all
models, piecewise relationships between E and M scores were
obtained. To test the existence of non-zero difference in slope
parameter, we employed the Davies’ test and a pseudo Score
statistic test with a null hypothesis that there is a zero difference
in slopes (36–38). Models with one to four breakpoints were then
tested, and the respective maximum adjusted R2 values were used
to select the best model (see Supplementary Table 6). For time
course data, we used the E score and M scores relative to time to
estimate breakpoints between 2 and 3 days (stating value = 2.5
days) and between 8 and 12 days (stating value = 10 days) for
both E and M, respectively, and compared them to models with
only one breakpoint. We found that the E scores only supported
a segmented breakpoint when both breakpoints were used, while
the two-breakpoint M score model outperformed a model with
one breakpoint, which was always placed around 8 days (adjusted
R2, 0.941 vs. 0.939). The approach we use to estimate breakpoint
positions calculate a 95% confidence interval using a score-based
approach that accounts for the non-differentiable, non-concave
nature of likelihood function for breakpoints (35, 39) and we
found that the confidence interval of the first E break point (0–
4.6 days) covered the most sampled time points and therefore
had the greatest impact on the time course model. Therefore,
to find the upper and lower bound for the time course model,
we modified the model by placing the first E break point at
the extremes of the confidence interval (i.e., 0 days and 4.6
days). Comparably, the confidence interval of other breakpoints
was either too small (0–1.25 days for the first M) or the range
was between time samples (i.e., between 8 and 12 days for the
second E and M breakpoint), such that varying them had little
impact on the model as they did not alter the division of samples
into different segments. Segmented models and analysis were
implemented using the “segmented” package in R (39).

Differences in TES Scores and EMT
Factors Expression Between Clusters
Differences in TES scores and EMT gene expression between
clusters were assessed using Welch’s t-test, and the resulting p-
values were adjusted using Benjamini–Hochberg correction for
multiple hypothesis testing. Expression of individual genes in
TCGA data sets was measured using normalized RSEM values
derived from the TCGA processing pipeline (40).

Clustering of E- and M-Genes
To infer clusters of E- and M-genes controlled by different
regulatory circuits that connect to TGF-β and ZEB1, we
employed a semi-supervised learning method that we used in
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FIGURE 1 | Diagram of the analysis pipeline to map transcriptome samples to E–M score space. The left panels show the scoring pipeline including transcriptomic

data (top) and various gene sets (bottom). The center panels show a brief description of the GSVA scoring process that includes modeling gene expression as a

cumulative distribution function, ranking of genes across samples, and the estimation of scores using Kolmogorov–Smirnov statistics. The right panel shows E–M

score space annotated with possible cell states in each quadrant: terminal-E (lower right), terminal-M (upper left), hybrid intermediate (upper right), and characterless

intermediate (lower left).

our previous study. Briefly, EMT genes were clustered using a
transcriptome data set obtained from combinatorially perturbed
MCF10A cells with up- or down-regulation of TGF-β and ZEB1
(23). This unsupervised clustering was achieved by using a Self-
Organizing Maps (SOM) algorithm on a 10 × 10 grid (41, 42).
Each node was classified by counting the number of previously
annotated E or M genes and computing their ratios (this
supervised step is essentially a k-nearest-neighbors algorithm).
To obtain gene clusters among E-gene nodes and M-gene nodes,
respectively, we used the hierarchical clustering method and we
selected the optimal numbers of clusters (four E-gene clusters and
four M-gene clusters) using the within-cluster sums of squares
error (the elbow criterion). Tables of EMT related scores and
cluster classifications for samples in TCGA and EMT time course
are available in Supplementary Files 1, 2, respectively.

GSVA for Phenotypic Inference
To infer phenotypic changes when cells move along the EMT
path, we employed GSVA in a way similar to what we
used for computing E and M scores. We focused specifically
on cancer samples for the BRCA data set, because the
presence of normal tissue samples had a significant effect on
functional scoring, specifically with respect to migration (see

Supplementary Figure 4). We obtained curated gene sets from
the Broad Institute and selected four representative gene sets
each for cell migration and for cell proliferation to quantify the
phenotypic enrichment of the corresponding cellular properties
in each subpopulation along the EMT paths (for a full description
of gene sets, see Supplementary Table 7) (43). Differences in
score between clusters were assessed using the same test and
correction procedure as EMT factors. To exclude the possibility
that gene sets carry redundant information with the E- and
M-genes, we calculated the percentages of overlapping genes
between the phenotypic and pathway gene sets and the EMT gene
sets, and in no case did more than 20% of genes in a phenotypic
set belong to the E-gene set or M-gene set.

RESULTS

Multimodal Distribution of Cancer Cells in
the EMT Spectrum
To examine how breast cancer cells are distributed in terms of the
degree of EMT, we obtained 1,215 samples from the TCGA breast
cancer project (BRCA), which focuses on invasive carcinomas,
and we computed a pair of scores that summarize the overall
transcriptional activities of E- and M-genes for each cancer cell
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sample, respectively. These scores are based on GSVA using a list
of 228 E-genes and a list of 188 M-genes as signature gene sets
(26). We found that the BRCA sample transcriptomes are widely
distributed across the space of E and M scores (Figure 2A). In
particular, all four quadrants of the E–M score space contain at
least 10% of the samples, reflecting the heterogeneity of cancer
cells in terms of the degree of EMT. Nonetheless, the quadrant
corresponding to low-E–low-M gene expression contains fewest
samples with 187 (15.4%), whereas the high-E–high-M quadrant
contains 248 (20.4%) samples. To exclude the possibility that the
wide distribution and the low density of samples in the low-E–
low-M region is due to the normalization in the scoring scheme,
we combined these breast cancer samples with 173 acute myeloid
leukemia samples (LAML), which have hematopoietic lineage
origins that are distant from that of epithelial cells. We found that
the distribution of BRCA samples is consistent with the previous
results even in the presence of LAML samples (Figure 2B). BRCA
samples remain widely distributed in high-E and/or high-M
quadrants with fewer samples in the low-E–low-M quadrant that
are close to but do not overlap with LAML samples. We found
that the distribution of the M scores is wider than that of the E
scores (Figure 2). This is consistent with a previous observation
thatM-gene expression is more divergent than E-gene expression
during EMT (23).

We next asked how many subpopulations these breast cancer
samples may contain in terms of the degree of EMT. We built a
series of Gaussian Mixture Models (GMMs) based on the E and
M scores of these samples. We evaluated these models using BIC,
the consistency of clusters across different variance assumptions,
and the number of cells that can be assigned to subpopulations
(clusters) with high confidence (see Methods). We found that a
five-cluster model best describes the overall distribution of BRCA
samples. Our GMM model of BRCA (Figure 2C) includes an
extreme E cluster (orange), an extreme M cluster (green), and
three intermediate clusters (I0, I1, and I2, which are pink, purple,
and blue, respectively). The I0 cluster contains most (178 of 187)
samples that are in the low-E–low-M region, whereas the I1 and
I2 clusters contain all (248 of 248) samples with the high-E–high-
M expression profiles. Most of these samples (237 of 248) belong
to the I1 clusters, with I2 lying along the border between high-E–
high-M and low-E–high-M. To exclude the possibility that our
conclusions are sensitive to the choice of number of clusters, we
analyzed the GMMs for four and six clusters and we found that
they had distributions of clusters similar to that of the five-cluster
model (Supplementary Figure 5).

Although EMT is a process involving gene expression
changes in high-dimensional space, it is useful to construct one-
dimensional EMT spectrums (paths) to quantify the degree of
EMT. Moreover, if these one-dimensional spectrums can be
mapped to the overall E- and M-gene activities, one can further
infer the changes of the (anti-)correlation between E- and M-
gene activities during EMT/MET. Therefore, we constructed
models that describe possible EMT spectrums quantitatively. We
assumed that a path will connect E and M states by joining
neighboring clusters as cells go from the extreme E-state and to
the extreme M-state. We also assumed that paths will take the
fewest possible steps between neighboring clusters (loops and

backtracking were not considered). With these assumptions, two
possible three-step paths of EMT can exist: E–I0–I2–M (the lower
path) and E–I1–I2–M (the upper path). We built two piecewise
linear models using segmented regression with data from these
two sets of clusters (see Methods). Our assumption concerning
EMT progression is supported by a non-linear relationship
between the E and M score (Davies’s test, p = 8.6 × 10−3) and
the possible existence of a breakpoint in the relationship between
E and M along each path (pseudo Score stat, p = 3.7 × 10−8

and p = 1.3 × 10−3 for upper and lower paths, respectively).
Models for the upper (light red, Figure 2D) and lower (light
blue, Figure 2D) paths had reasonable performance in fitting
to their respective data points (R2 = 0.5 and 0.52 for upper
and lower paths, respectively). The overall distribution of BRCA
samples had an R2 of 0.29 with a single segmented model (black,
Figure 2D).

Note that these paths do not necessary contain information
about how cancer cells change their expression over time, because
EMT and MET can occur one after the other at any stage of
EMT/MET. Rather, they predict how the overall E- and M-gene
activities are likely to change at any given state when cancer cells
alter their expression profiles in an incremental fashion. These
steady-state and transient changes may be triggered by changes
of microenvironment or mutations in cancer cells.

We next asked whether the pattern of distributions of cancer
cells in the E–M space is consistent across tumors from different
organs. We obtained samples of pancreas (PAAD), cervical
(CESC), prostate (PRAD), and lung carcinoma (LUAD) from
TCGA, all of which were shown to involve EMT (8, 44–49).
Samples from these cancers show similar distributions to that of
the breast cancer samples (Supplementary Figure 6) and GMMs
consistently generated four populations as the optimal models
(Supplementary Figure 7) with rough correspondence to BRCA
populations (excluding I2). Using the same approach that we
applied to BRCA, we found that a segmented model with two
distinct EMT paths fits better than a single segmented model in
all cases (Supplementary Figure 8). Notably, the samples in the
high-E–high-M states are the main population of the cells at the
intermediate EMT states in PAAD (42 of 56, 75.0%) and PRAD
(147 of 212, 69.3%). In contrast, high-E–high-M and low-E–low-
M populations are comparable in LUAD (104 of 192, 54.1% low-
E–low-M) and CESC (66 of 125, 52.8% low-E–low-M). As such,
both the upper and lower paths could be possible routes of E/M
variations in our cancer data.

An EMT Path Involving a High-E–High-M
State Revealed by Time Course EMT Data
To further examine whether the variation in E and M scores
among the populations of BRCA samples is driven by the
canonical EMT (e.g., TGF-β induced) pathway, we applied
GSVA to calculate TGFβ-EMT scores (TES) in order to track
progression through EMT (24). This score has two components,
one for genes that increase during TGF-β-induced EMT
(TES_UP) and the other for genes that decrease during the
same process (TES_DOWN). Importantly, while there is overlap
between these gene sets and our E- and M-gene sets, the majority
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FIGURE 2 | Distribution of BRCA samples in E–M score space following GSVA scoring. (A) Density of BRCA samples in E–M score space. Lighter blue color indicates

higher density and darker blue indicates lower density. (B) Density of samples in a merged BRCA-LAML data set demonstrating the positioning of samples of a

non-epithelial origin in the lower left (low-E–low-M) quadrant beyond the distribution of BRCA samples. (C) Clustering of BRCA samples by GMM. Individual samples

are indicated by points in E–M score space with their assigned cluster indicated by color (E = orange, I0 = pink, I1 = purple, I2 = blue, M = green). Contour lines

indicate the predicted distribution of the underlying models. Black dots denote the center of each Gaussian distribution. (D) Segmented models E–M score

relationship among BRCA samples. Three models are shown: one based on all BRCA samples (black line), one excluding I0 samples (upper path, light red line), and

one excluding I1 samples (lower path, light blue line). Individual samples are shown by points with the color corresponding to whether the point is unique to the upper

path (blue) or to the lower path (red), or common to both paths (purple).

of both TES_UP (155, 81.7%) and TES_DOWN (70, 64.8%)
genes are not used to define our E and M scores. With the
distribution of these scores across the BRCA populations, we
observed a pattern that follows our previous two-path model of
EMT progression (Figure 3). TES_UP and TES_DOWN values

were compared between each cluster using Welch’s t-test; the
p-values and 95% CIs for each comparison can be found in
Supplementary Table 8. I0 samples have significantly decreased
TES_DOWN relative to E samples (Welch’s t-test, p = 1.97 ×

10−42), consistent with a decrease in E-gene expression, while
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FIGURE 3 | Boxplots showing the distribution of TES_UP (left) and TES_DOWN (right) scores that reflect the activating and repressing programs of TGF-β-induced

EMT, respectively. Note that there is a significant difference (Welch’s t-test, α < 0.05) in TES_UP between E and I1 and I0 and I2, but no significant difference among

I1, I2, and M. For TES_DOWN, there is no significant difference between E and I1, but there are significant differences between E and I0, and between I1 and I2. I0

has a significantly lower TES_DOWN score than all other clusters do, but the magnitude of the difference is smaller between M and I0 than for E and I0. A full table of

p-values and 95% confidence intervals can be found in Supplementary Table 8.

FIGURE 4 | TGF-β-induced EMT time course in E–M score space. (A) Time course samples projected in E–M space. Progression of samples through time is

indicated by color (from red to purple) and adjacent time points are linked by a dotted black line. (B) Segmented models of the relationship between the time since

TGF-β induction of EMT and the E–M scores of treated cells. Different colored lines correspond to the best fit (black), lower bound (light red), and upper bound (light

blue) models. Individual BRCA samples are indicated as open points with their color corresponding to the assigned cluster (E = orange, I0 = pink, I1 = purple, I2 =

blue, M = green).
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I1 has significantly increased TES_UP (Welch’s t-test, p = 1.98
× 10−132), consistent with an increase in M-gene expression. As
a consequence, transition from I1 to M involves a significant
repression of E-gene activity, while transition from I0 to M
involves a significant increase of M-gene activity along with a
relatively small change of E-gene activity in terms of magnitude
(lower bound = +0.015 E score), compared to the transition
from I1 (lower bound = −0.217 E-score). Nevertheless, these
results are consistent with an “upper path” of E–M variance
where the initial changes result from EMT-driven activation
of mesenchymal genes and a “lower path” of E–M variance
where the initial changes result from EMT-driven repression of
epithelial genes. These results suggest that canonical EMT is
an underlying factor of E/M variation in our cancer samples.
However, it remains unclear whether TGF-β-driven EMT in non-
tumorigenic cells resembles either of the putative paths (24, 50).

To address this, we used a time course transcriptome data
set for MCF10A cells (non-tumorigenic human breast epithelial
cells) treated with TGF-β (32) to compute E and M score for
time points across EMT using the same procedure described
earlier. The distribution of these time course data points in E–
M score space (Figure 4A) shows that the TGF-β-driven EMT
process involves an initial phase of significant increase of M-gene
expression with a moderate change of E-gene activities, as well as
a final phase of significant decrease of E-gene expression with a
moderate change of M-gene activities. The middle phase of this
process involves change of cell states near or within the high-E–
high-M region. We next built a segmented regression model for
all data points with time as the reference independent variable
(see Methods). We found that the model generated a triphasic
pattern with two break points with respect to both E and M
scores (Figure 4B). Varying the placement of the first E score
breakpoint was used to examine the upper (Figure 4B, light blue)
and lower (Figure 4B, light red) bounds of the model of TGF-β-
driven EMT, and in all cases, cell states primarily evolve through
the high-E–high-M region when compared to our GMMmodels
of BRCA samples (Supplementary Figure 9). Together with the
EMT paths that we constructed for BRCA samples, our analyses
show that the TGF-β-driven EMT primarily involves a path that
crosses a high-E–high-M state, and this process is reflected in the
distribution of a large fraction of cancer samples. These results
imply that some intrinsic intermediate EMT attractors may
govern both normal EMT process and a large number of cancer
cells, and that a major population of cells at the intermediate
EMT states may possess hybrid phenotypes in which the overall
activities of E-genes and M-genes are both high.

Divergence of EMT Genes in Multiphasic
Transitions Regulated by Key EMT Factors
We next asked which EMT factors may be responsible for the
multiphasic EMT that we observed with the time course data as
well as cancer cells. We first examined the time course expression
of several core EMT promoting transcription factors, ZEB1/2,
SNAIL1/2, and TWIST1/2 (Figure 5), which were shown to be
critical for EMT and EMT-related physiological or pathological
processes (51–57). Consistent with the pattern of overall M score,

FIGURE 5 | The average expression of EMT factors over the TGF-β-induced

EMT time course. The color of the background bars in each plot indicates the

(Continued)
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FIGURE 5 | predicated probability of samples at the point in time belonging to

each cell state cluster. The probabilities were calculated by applying the BRCA

GMM model to the segmented model of E–M scores with respect to time after

TGF-β induction. Expression values are FPKM and bars indicate standard error

of the mean.

all these EMT factors show significant increase in the first phase
(Day 0 to Day 5), although some (ZEB2, TWIST1, and TWIST2)
only increase after a delay (Day 2), which is consistent with the
transition into and through the high-E–high-M intermediates.
Conversely, the late-phase expression of these factors is more
divergent (Day 8 to Day 21): ZEB2 and TWIST1 do not show
dramatic increase, while TWIST2 and SNAI1/2 decrease during
the late-phase EMT. This is consistent with our analysis of
EMT paths in BRCA samples where the increase in M scores
becomes moderate after passing through the intermediate states.
We found that the transcription factor ZEB1 showed robust
increasing dynamics even in the late phase. Given the significant
decrease in overall E-gene activity in late-phase EMT (e.g., E
score and CDH1), the dynamical pattern of ZEB1 suggests its
close association with the dynamics of many E-genes. In fact, in
our recent perturbation analysis with MCF10A cells, we found
that most of the annotated E-genes are down-regulated by ZEB1
in a causal fashion (23), and this is consistent with the dynamical
anticorrelation that we found in the time course data.

We then asked whether the robust increase of ZEB1 also
exists near the M-end of the EMT path in cancer cells, and we
compared the distributions of ZEB1 expression across the five
cancer cell clusters along the EMT paths (Figure 6). The p-values
for comparing expression change between clusters by Welch’s
t-test can be found in Supplementary Table 9. Consistent with
the time course EMT dynamics, ZEB1 showed an increase in
each of the three steps of the E–I1–I2–M transition in BRCA
(Welch’s t-test, p= 3.97× 10−66, 1.85× 10−4, and 2.85× 10−15,
respectively). In contrast, SNAIL1/2 showed a significant increase
from I1 to M (Welch’s t-test, p = 3.84 × 10−3 and 4.96 × 10−5,
respectively), but not I2 to M (Welch’s t-test, p = 9.61 × 10−2

and 7.13 × 10−2, respectively), which reflects the long run decay
of SNAI1/2 from their initial peak in M in the time course. We
found that, in TWIST1, there is no significant difference between
E and I1 (Welch’s t-test, p = 1.43 × 10−1), consistent with the
delay in the time course, but both TWIST1 and TWIST2 had a
significant increase from I2 to M in BRCA samples (Welch’s t-
test, p= 5.93× 10−9 and 7.39× 10−2, respectively), a pattern not
observed with time course data. In fact, TWIST1 and TWIST2
mirror ZEB1 in terms of their expression patterns in E, I1,
I2, and M clusters. This dissimilarity between the cancer cells
and the time course data was also observed for ZEB2, which
showed the largest absolute change in mean between I2 and M.
Consistent with the moderate increase of M score from E to I0,
expression of ZEB1, TWIST1, and TWIST2 was not significantly
different between I0 and E clusters (Welch’s t-test, p = 2.66 ×

10−1, 1.43 × 10−1, and 4.20 × 10−1 respectively). While the
behavior of ZEB2 and TWIST1/2 was not consistent across data
sets, unlike these EMT factors, ZEB1 has significant dynamical

changes at the M-end of EMT path in both normal and cancer
cells, indicating its primary role in robustly controlling E-gene
expression at this phase of canonical EMT. On the other hand,
the lack of ZEB1 variation in E–I0 suggests that if transition
through low-E–low-M quadrant represents an alternative path
of EMT, it accomplishes repression of E-genes through a ZEB1
independent pathway.

To gain deeper understanding of the divergent expression
patterns that contribute to the moderate change of E-gene
expression in early-phase EMT, and/or to the moderate change
of M-gene in late-phase EMT, we focused on gene clusters
that are differentially controlled by TGF-β, a canonical EMT
promoting factor important for metastasis (58), and ZEB1, a
factor involved in regulation of most E-genes (23). Using a
semi-supervised learning algorithm applied to a transcriptome
data set for MCF10A cells that were combinatorially perturbed
with up-/down-regulation of TGF-β and/or ZEB1 (23), we
classified E- andM-genes into six major gene clusters [Figure 7A,
Supplementary Figure 10, note that our previously analysis
focused on M-gene clusters but not E-gene clusters (23)]. These
gene clusters are regulated by TGF-β and ZEB1 with distinct
circuits. Notably, the three E-gene clusters show a divergent
expression pattern in early-phase EMT. In particular, the E2
cluster containing 80 E-genes show a significant increase from
Day 0 to Day 3 (Figure 7B). The genes in this cluster are
up-regulated by TGF-β via a ZEB-1-independent pathway and
down-regulated by ZEB1, thereby forming an incoherent feed-
forward loop. This network motif is likely responsible for the
transient increase of this gene cluster around Day 3 as well as
the overall increase in E score during the initial phase of EMT.
Divergent expression patterns were also observed for M-genes:
there is a significant difference between the M1/2 clusters and the
M3 cluster, which is primarily regulated by ZEB1 (Figure 7C).
M3 genes (e.g., TWIST1/2) do not exhibit increased expression
until the intermediate phase of EMT progression, and this may
be a general pattern of ZEB1 responsive M-genes. Furthermore,
in contrast to M1 and M2, M3 still increases during Day 12 to
Day 21, further reflecting the dynamics of ZEB1. Together, these
results show that the heterogeneity of gene expression pattern
contributes to the moderation of changes in E-gene expression
during early-phase EMT and M-gene expression during late-
phase EMT. The analysis further suggests that distinct gene
regulatory circuits that connect EMT genes to ZEB1 and TGF-β
are part of the mechanistic basis of such heterogeneity.

Phenotypic Implications of Multiphasic
EMT Spectrums
Since the intermediate cancer cell populations favor hybrid
expression patterns with a high-E–high-M profile, we asked
whether these cells possess hybrid cellular properties related to
the EMT transcriptional program.We first performedGSVAwith
the breast cancer cell transcriptomes using several functional
gene sets related to cell migration and proliferation from
the Broad Institute GSEA database (see Methods). These two
cellular properties are closely related to EMT and tumorigenesis,
respectively. We used four curated cell migration gene sets
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FIGURE 6 | Boxplots showing the distribution of EMT factor expression across different clusters of BRCA samples indicated by color (E = orange, I0 = pink, I1 =

purple, I2 = blue, M = green). Note that the difference between E–I1–I2–M clusters are significant for ZEB1, but SNAI1/2 show no significant difference between I2

and M, and TWIST1 is not significantly different between E and I1 but is between I2 and M. Expression values are normalized RSEM (RNA-Seq by Expectation

Maximization) values (see Methods). A full table of p-values can be found in Supplementary Table 9.

including RUNX2, RUNX3, and SEMA4D-mediated pathways
as well as a general migration gene set from Wu et al. (59)
(Figure 8A). As cells progress from E-state to M-state, these
migration-related genes are up-regulated significantly (Welch’s
t-test, see Supplementary Table 10). Remarkably, the I1 and
I2 intermediate cell clusters show high activities of migration-
related genes and their overall expression is comparable to that
in the M state in all cases except for the RUNX3 pathway.
Additionally, we observe a large increase in the expression of
migration-related genes from E to I1, but not E to I0, except
for the RUNX3 pathway, which shows a linear progression
from E to M. We next applied GSVA to gene sets related to
cell proliferation. Since there were no available gene sets for
breast epithelial cells, we first used two gene sets describing the
proliferation of other cell types: lymphocytes [Goldrath, (60)]
and mice liver cells [Fujiwara, (61)]. In both cases (Figure 8B),
as cells progress from E-state to M-state, proliferation-related
genes are down-regulated significantly (Welch’s t-test, see

Supplementary Table 11), but I1 cells score significantly higher
than M cells, and I1 is not significantly different from E with
the Goldrath set. We observed the same pattern of proliferation
driven by MYC pathway genes and a similar pattern among
VEGFR2 pathway genes, though in the latter set, the proliferation
of intermediate states is slightly higher than the extreme E state.
We also observed that I0 has a higher proliferation score than all
other clusters in the MYC pathway do, but in other proliferation
sets, it is indistinguishable from E or is between E and I1.
Taken together, our analysis of both proliferation and migration
gene sets suggests that cancer cells in I1 and I2 may exhibit
the same migratory potential of full-differentiated mesenchymal
cells with only a partial reduction in proliferation compared to
epithelial cells.

To exclude the possibility that the consistency of the observed
pattern is simply due to overlap between the migration,
proliferation, and E/M gene sets, we examined the number of
overlapping genes between phenotypic gene sets, and between
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FIGURE 7 | Subclusters of E and M genes in TGF-β induced EMT (A) A model of the regulation of subclusters of E (E1, E2, E3) and M (M1, M2, M3) genes by TGF-β

and ZEB1 based on perturbation analysis (23). The boxes containing “AND” and “OR” indicate the type of logic gate integrating the regulatory signals of TGF-β and

ZEB1: “OR” indicates that one factor can drive activation/repression independently, while “AND” indicates both are required. However, in the case of both “AND”

gates, TGF-β alone can regulate the subcluster, either with reduced (M1) or with opposite (E3) affect (the latter is indicated by TGF-β being ambiguous for E3). Also,

there is no gate integrating TGF-β and ZEB1 for E2 because ZEB1 suppresses activation by TGF-β when present (indicated by the dotted line for TGF-β). For the data

and methodology underlying this regulatory model, see Supplementary Figure 10 for E-genes. (B) GSVA scores of E1, E2, and E3 subclusters across the

TGF-β-induced EMT time course. (C) GSVA scores of M1, M2, and M3 subclusters across the TGF-β-induced EMT time course. The color of the background bars in

each plot indicates the predicated probability of samples at the point in time belonging to each cell state cluster. The probabilities were calculated by applying the

BRCA GMM model to the segmented model of E–M scores with respect to time after TGF-β induction. Bars that align with points on the line graph represent the

predicated probabilities at the time point while columns between sample time points represented the predicated probabilities at the middle point of two neighboring

time points (i.e., 0.25, 1.75, 2.5, etc.). Bars around each point indicate standard error of the mean.

phenotypic gene sets and the EMT gene sets. The largest overlap
occurs between the Wu gene set and E-gene (42, 22.9%) and
M-genes (27, 14.7%). In the remaining pairwise comparisons
of gene sets, there was either no or a small overlap (one to

three genes) (Supplementary Table 12). This suggests that our
phenotypic scores are generally independent from one another
and fromE–M scores, such that the functionally hybrid potentials
of the I1 and I2 states are not likely due to an artifact in
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FIGURE 8 | Phenotypic scores BRCA cancer samples. (A) Boxplots showing the distribution of migration-related gene set scores across different clusters

of BRCA samples indicated by color (E= orange, I0= pink, I1= purple, I2= blue, M= green). Note that, in all cases, there is a significant jump in score between E–I0 and

(Continued)
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FIGURE 8 | I1–I2–M, except for RUNX3 where there is a constant, significant growth in scores from E to M. A full table of p-values can be found in

Supplementary Table 10. (B) Boxplots showing the distribution of proliferation-related gene set scores across different clusters of BRCA samples indicated by color

as in (A). Note that proliferation scores of I1 samples are consistently higher than M samples and, in two cases, are comparable to that of E samples (Goldrath and

VEGFR2). A full table of p-values can be found in Supplementary Table 11.

our method. Furthermore, this hybrid potential appears to
be specific to cancer cells: the time course data showed the
same pattern of an early gain of migration (Figure 9A), but
only in the Fujiwara proliferation set did the intermediate
EMT phase show high proliferation relative to the terminal
mesenchymal states. In contrast, the intermediate EMT phase
has lower proliferation capacity than either terminal E or M in
scores obtained with the Goldrath set as well as the MYC and
VEGFR2 pathways (Figure 9B), suggesting that the combined
proliferative andmigratory potential may be specific to cancerous
intermediate states. Furthermore, this phenotypic combination
may contribute to the “fitness” of the tumorigenic intermediate
EMT states in metastasis (62).

While the analysis of proliferative andmigratory genes implies
the functional significance of the upper path of EMT, the lower
path remains largely undescribed due to the similarity of I0 to
E in these measures. We performed further analysis with other
high-level functional gene sets, and we found that I0 samples

are distinct from other EMT clusters in the expressions of cell
cycle and DNA repair genes (Figure 10A). Cell cycle genes are
significantly up-regulated in I0 compared to all other EMT
clusters (see Supplementary Table 13) and there is a significant
decrease in DNA repair associated gene expression from E to

I1 (Welch’s t-test, p = 4.16 × 10−26) that is not seen from
E to I0 (Welch’s t-test, p = 3.51 × 10−1). We next analyzed
three sets of proto-oncogene pathways (E2Fs,MCM, and CDC25;

Figure 10B) and three sets of tumor suppressor pathways (RB,
P53, PTEN; Figure 10C) that are related to the cell cycle and
cell survival. All proto-oncogene pathways showed increased
expression in I0 compared to other EMT clusters, while pathways
of tumor suppressors were decreased, except for RB, which also
had increased expression (see Supplementary Table 14). The
higher expression of RB associated genes may be due to the
significant overlap in the RB pathway with those of CDC25
(66.7%) and E2F (58.3%). In general, there is a large degree of
overlap between proto-oncogene pathways, but not within tumor
suppressor pathways or between tumor suppressors and proto-
oncogene pathways, except for RB (Supplementary Table 12). In
terms of the expression of these tumor suppressors themselves,
both RB and PTEN are down-regulated in I0 compared
to I1, I2, and M, but not P53 (Supplementary Figure 11,
Supplementary Table 15). RB and PTEN were previously shown
to be mutated or down-regulated in triple-negative breast cancer
(also known as basal-like) (63–66). These results further suggest
that different intermediate EMT states or paths have distinct
signatures that can be potentially used for diagnosis or treatment
of particular cancer subtypes (67, 68).

To explore the relationship between these tumor suppressors
and cancer subtypes, we obtained the subtype annotation of
BRCA samples from TCGA and analyzed frequency of each
subtype among our EMT clusters. We used a chi-squared test
to evaluate the distribution of subtypes against a null model

where the frequency in each cluster matched the background
distribution (Figure 11A) and found that the distribution of
Luminal A (p= 4.05× 10−8), Luminal B (p= 7.90× 10−10), and
Basal (p = 2.55 × 10−19) subtypes differed significantly across
EMT clusters (HER2 Enriched was also significant, p = 0.72 ×

10−3, but violated the assumptions of chi-squared test due to
low counts in I0 and M). In general, we observed an increase
in Her2 subtypes (Luminal A and Basal) from E to M, but Basal
samples specifically are enriched in I0, which accounts for 41.5%
of all I0 samples and 38.7% of all Basal samples. Compared to
other I0 samples, Basal I0 samples have decreased RB (Welch’s
t-test, p = 1.84 × 10−9) and PTEN (Welch’s t-test, p = 1.69 ×

10−3) expression, but P53 is not significantly different in either
direction (Welch’s t-test, p = 9.68 × 10−2), though P53 is more
variable among I0 Basal samples (Figure 11B). Taken together,
these results indicate that I0 samples are enriched in the loss of
clinically significant features, including both hormone receptors
and tumor suppressors, though it is unclear if this is directly
related to the down-regulation EMT genes in general or if the
correlation arises from some linkage to additional factors.

DISCUSSION

The diversity of cancer cells regarding their relationship to EMT
has been found in numerous previous studies (14, 21, 24, 26).
However, the distribution of cancer cells in terms of the overall
activities of E- and M-genes was unclear. In this study, we used
integrative transcriptomic data analysis to show that cancer cells
from various organs are widely distributed across the E- and M-
gene expression space and that a non-linear path connecting E
and M via a high-E–high-M region describes a large fraction of
breast, lung, pancreas, cervical, and prostate cancer cells. With
further transcriptomic analysis using non-tumorigenic cells, we
found that this EMT path is consistent with the progression
of TGF-β-induced EMT in normal cells over time. A previous
study with breast cancer cells also showed a similar consistency
in terms of a binary model between E and M states (69). These
results suggest that the gene regulatory network in epithelial cells
govern high-E–high-M cellular states intrinsically, and a large
fraction of cancer cells show this expression pattern. Nonetheless,
future experiments are warranted to demonstrate the existence of
and the relationship between the cancerous intermediate EMT
states and their normal counterparts. Previous mathematical
models based on core EMT regulatory networks have explained
the hybrid nature of partial EMT states (15–18, 70, 71). Our
analyses complement these mechanistic dynamical models by
demonstrating that the hybrid EMT states in terms of the overall
transcriptional activity are prevalent in cancer cells. These EMT
states not only show significant activities of E- and M-genes
comparable to those at extreme E and M states, respectively, but
are also associated with gene expression patterns corresponding
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FIGURE 9 | Phenotypic scores of EMT time course samples (A) Migration scores across the samples in the TGF-β-induced EMT time course. (B) Proliferation scores

across the samples in the TGF-β-induced EMT time course. The color of the background bars in each line plot indicates the predicated probability of samples at the

point in time belonging to each cell state cluster. The probabilities were calculated by applying the BRCA GMM model to the segmented model of E–M scores with

respect to time after TGF-β induction. The black line indicates the change between sample averages at each experimental time point.
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FIGURE 10 | Phenotypic scores were significant in I0 BRCA cancer samples. (A) Boxplots showing the distribution of cell cycle and DNA repair-related gene set

scores across different clusters of BRCA samples indicated by color (E = orange, I0 = pink, I1 = purple, I2 = blue, M = green). (B) Boxplots showing the distribution

of proto-oncogene (CDC24, E2F, and MCM) pathways across different clusters of BRCA samples indicated by color as in (A). (C) Boxplots showing the distribution of

tumor suppressor (P53, PTEN, and RB) pathway scores across different clusters of BRCA samples indicated by color as in (A). The p-values of the comparison of

scores between clusters can be found in Supplementary Tables 13, 14.
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FIGURE 11 | Enrichment of basal-subtype BRCA tumors in the I0 cluster. (A) The frequency of Luminal A (gray), Luminal B (yellow), Basal (blue), and Her2 Enriched

(orange) breast cancer subtypes among breast cancer samples in each of the five EMT clusters. (B) The expression of tumor suppressors P53 (red), RB (blue), and

PTEM (purple) in Basal I0 samples vs. all other I0 samples.

to high motility and proliferation potentials, suggesting their
hybrid cellular phenotypes.

Our analyses of breast cancer samples focused on a GMM
with five clusters. Although this model was the best-performing
model amongmodels with one to nine clusters (see Methods), we
extended our analyses to a four-cluster model and a six-cluster
model (Supplementary Figures 5, 12–14). The distribution of
the four clusters in the former model is clearly consistent with
the non-linear EMT paths that we obtained with the five-cluster
model (Supplementary Figure 5). Since it is less obvious whether
the six-cluster model generates results inconsistent with our
main conclusions, we performed segmented regression, analyzed
the key EMT gene expression, made comparison with time

course data, and examined the functional enrichment of all
clusters with the six-cluster model (Supplementary Figures 12–
14). All results were consistent with those obtained with the
five-cluster model. Therefore, the main conclusions of this
study do not depend on the exact number of clusters in
the GMM.

We used statistical models to describe possible subpopulations
in the cancer cell transcriptomes. It is possible that these
subpopulations (clusters) of cells correspond to attractors in the
EMT spectrum. In particular, both the normal EMT process
and some cancer cell subpopulations show high-E–high-M
expression pattern, suggesting the existence of attractors within
that expression pattern. Future work is needed to relate the
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subpopulations in the statistical models to attractors (e.g., stable
steady states) in dynamical systems, which would require a
combination of transcriptomicmeasurement and tests of stability
of the cell phenotypes. Previous work has shown the stability
of a hybrid E/M phenotype in lung cancer cells (17). More
systematic analysis will be needed to draw a general conclusion
about the attractor property of the hybrid cancer cells in various
other organs.

We found that the EMTpath through a high-E–high-M region
can be a major EMT path in both cancer and normal cells.
This conclusion does not exclude the possibility that other EMT
paths exist in significant populations of cancer cells. In fact,
clusters of cells near the low-E–low-M region were found in the
EMT spectrum, and they may also contribute to the transition
EMT states observed in tumor cells (20). Future work involving
single cell analysis is needed to reveal EMT paths in the cancer
settings at higher resolutions (72–74). It is also possible that
frequent transitions involving both EMT and MET, and those
between intermediate states (e.g., high-E–high-M from/to low-
E–low-M) occur in tumorigenesis (69, 75, 76). These transitions
may be driven by paradoxical signals, such as simultaneous
up-regulation or down-regulation of both EMT promoting and
inhibiting factors in the microenvironment or the decoupling of
the activating and repressing functions of EMT, as seen in the
TES scores of the I0 and I1 clusters. The correlations between
cancer and non-tumorigenic cells in the EMT spectrum do not
imply the similarity of the dynamics of EMT between cancer and
normal cells. In fact, genetic perturbations are likely to be a major
factor contributing to the diversity of cancer cell transcriptomes.
The EMT paths in the cancer samples suggest the directions of
changes of cellular properties upon the gradual genetic or non-
genetic perturbations to these cells. In addition, these correlations
suggest that the existing regulatory pathways may channel the
perturbed cells into some defined states, so long as the disruption
of EMT pathways is not dramatic.

The summary scores that we used to quantify the overall
activities of E- andM-genes are based on the expression of a list of
EMT genes. The advantage of such metrics is that the scoring is
robust to the change of individual genes. However, performing
clustering on cells based on low-dimensional scores has the
disadvantage of missing useful information in high-dimensional
gene expression space, which has even greater potentials to reveal
multiple attractors (77). This can be seen in part in the scores
of E and M gene subclusters, in that the initial increase in E
score during the time course appears to be driven by a specific
subset of epithelial genes with distinct regulation by EMT factors.
Moreover, the diversity of cancer cells must be beyond their
status in the EMT spectrum (30, 78). Nonetheless, in case of
proliferation and migration, we found that the activity of many
functional gene sets is highly correlated with EMT status despite
little or no overlap with annotated EMT genes. Overall, our
clustering method is not aimed to provide a general clustering
framework for analyzing cancer cells. Instead, given that the
goal of our study is to find the overall patterns in the EMT
spectrum for better understanding cancer cell diversity, the E-
and M-gene scores serve as a concise approach to summarize the
gene expression in cancer cells.

It was proposed in earlier studies that the mesenchymal state
is associated with tumorigenesis (79). More recently, there was
a refinement of the concept in terms of the roles of EMT in
cancer progression. Multiple studies involving tumorigenesis
models or analysis of tumor cells suggest the critical roles of
partial EMT in metastatic processes (3, 80, 81). In addition,
cellular functions of both epithelial and mesenchymal genes
contribute to the formation of secondary tumors (7, 81). This
suggests that metastasis may involve synergy among various
cell types in multiple positions on the EMT spectrum. Our
work further suggests that a significant population of cancer
cells possess hybrid functions. Although it is likely that tumor
formation requires interactions of multiple types of cells, the
multifunctional nature of the hybrid cells, in particular their
potential to migrate and proliferate, might be an important factor
contributing to the invasiveness of cancer cells.
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Supplementary Figure 1 | Graphs of the Bayesian Information Criterion (BIC)

against the number of clusters in the model of BRCA samples. (A) The BIC of six

different variance model, indicated by the color the line (EII = red, VII = orange,

EEI = green, VEI = blue, EVI = purple, VVI = pink). (B) The average BIC across all

six models. Note that, in both graphs, the BIC of the five cluster models have the

minimum value and occurs at the cusp of the graph, where additional cluster

cease to produce large reduction in BIC.

Supplementary Figure 2 | Clustering of LUAD transcriptome samples using

different variance models. Note the difference between models with equal volume

(top) and varying volume (bottom).
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Supplementary Figure 3 | Histogram of uncertainty (1—max probability of

cluster membership) for different GMM models of LUAD transcriptome samples

using different variance models. Note decreased uncertain for models with equal

volume (top) compared to those with varying volume (bottom).

Supplementary Figure 4 | Migration score for RUNX2 pathway in BRCA

samples including only cancer samples (left) and all samples (right). Note the

decrease in proliferation scores for M and I2 when normal samples are included as

most of these samples are clustered with M or I2. This suggest that these samples

are functional different from cancer samples and therefore were excluded from

further functional analysis.

Supplementary Figure 5 | Clustering of BRCA samples by GMM using four (A)

and six (B) clusters. Individual samples are indicated by points in E-M score space

with their assigned cluster indicated by color (E = orange, I0 = pink, I1 = purple,

I1’ = blue, I2 = green, M = red). Contour lines indicate the predicted distribution

of the underlying models. Black dots denote the center of each Gaussian

distribution. Note that the major difference in the four clusters model is that the

most extreme low E, high M cluster now include the majority (69%) of I2 samples

from five-cluster GMM, the remainder being split between I1 and I0. Similarly, in

the six-cluster GMM model, I1 samples from the five-cluster GMM model are

divided into two clusters, I1 and I1’, with I1’ consisting of samples with the most

extreme E and M expression.

Supplementary Figure 6 | Contour plots of LUAD (top-left), PAAD (top-right),

CESC (bottom-left), and PRAD (bottom-right) samples in E-M score space.

Supplementary Figure 7 | GMM models of LUAD (top-left), PAAD (top-right),

CESC (bottom-left), and PRAD (bottom-right) samples in E-M score space.

Individual samples are indicated by points in E-M score space with their assigned

cluster indicated by color which roughly correspond to the clusters assigned to

BRCA but for the absence of an I2 intermediate state (E = orange, I0 = pink, I1 =

purple, M = green).

Supplementary Figure 8 | Segmented models E-M score relationship among

LUAD (top-left), PAAD (top-right), CESC (bottom-left), and PRAD (bottom-right)

samples. Three models are shown: one based on all samples (black line), one

excluding I0 samples (upper path, light red line), and on excluding I1 samples (light

blue lines). Individual samples are shown by points with the color of the point

corresponding to the whether the point is unique the upper path (blue), lower path

(red), or common to both paths (purple).

Supplementary Figure 9 | Probabilities of cluster membership across

segmented models of E-M scores in the TGF-β induced EMT time course. Three

segmented models are evaluated, the best fit and the upper and lowers bounds,

which are based on the confidence interval of the time of the first breakpoint in the

relationship between time after TGF-β induction and E-score. Probabilities are

estimated by evaluating the segmented model every 0.25 days from 0 to 21 days

and clustering the resulting E-M scores using the BRCA GMM model.

Supplementary Figure 10 | The response of subculsters of epithelial (E1, E2, E3)

and mesenchymal (M1, M2, M3) genes to TGF-β and ZEB1. Each boxplot shows

the distribution of fold change of expression to eight contrast conditions between

TGF-β induction (TGFβ) ZEB1 induction (DOX), TGF-β inhibition (SB), and ZEB1

inhibition (dZEB) and their respective controls (WT for TGF-β induction and DMSO

for ZEB1 induction). Note that, for M3 genes, the distribution of fold change is

highest for DOX vs. DMSO and DOX + SB vs. SB, indicating increased expression

in response to ZEB1 regardless of TGF-β expression and that, for E2 genes, the

distribution of TGF-β + dZEB vs. dZEb is most positive, indicating that, when

dZEB is absent or repressed, TGF-β can induced expression of these epithelial

genes. Following the methodology applied to M-genes in (23), the regulation of

E-gene subclusters was inferred from their response to each condition. The

response of E1 to each factor is independent of the other factor (compare TGF-β

vs. WT to TGF-β + dZEB vs. dZEB and DOX vs. DSMO to DOX + SB vs. SB),

similar to M2, so we infer regulation occurs via an “OR” gate. E3 genes are

repressed by expression TGF-β in the presence of ZEB1 (TGF-β vs. WT), but

unaffected by ZEB1 in the presence (DOX vs. DMSO) or absence (DOX + SB vs.

SB) of TGF-β. As such, E3 regulation is similar to M1, requiring integration of

TGF-β and ZEB1 via an “AND” style logic gate. However, unlike M1, the absence

of ZEB1 doesn’t suppress the TGF-β effect on E3. Rather, TGF-β has the opposite

effect on E3 genes without ZEB1 (TGF-β + dZEB vs. dZEb). Finally, E2 genes are

repressed by ZEB1 (DOX vs. DMSO), independent of TGF-β (DOX + SB vs. SB),

while TGF-β activates E2 (TGF-β + dZEB vs. dZEB), though this effect is

suppressed in the absence of ZEB1 (TGF-β vs. WT). While this pattern is difficult

to describe using a single logical gate, it is easy to understand as ZEB1 regulating

E2 both directly and by suppressing the activating function of ZEB1. Therefore, E2

is similar to M3 in that ZEB1 plays the dominant role in regulating the expression.

Supplementary Figure 11 | Boxplots showing the distribution of P53, PTEN, and

RB expression across different clusters of BRCA samples indicated by color (E =

orange, I0 = pink, I1 = purple, I2 = blue, M = green). A full table of p-values can

be found in Supplementary Table 15.

Supplementary Figure 12 | TGF-β induced EMT time course in E-M score space

with six GMM clusters. (A) Segmented models of the relationship between the

time since TGF-β induction of EMT and the E-M scores of treated cells. Different

colored lines correspond to the best fit (black), lower bound (light red), and upper

bound (light blue) models. Individual BRCA samples are indicated as by open

points with their color corresponding to the assigned cluster (E = orange, I0 =

pink, I1 = purple, I1’ = blue, I2 = green, M = red). Note that, much like the

5-cluster GMM models, the models pass from E to I1 to I2 to M, with only the

upper bound intersecting with I1’. (B) The predicated probability of samples at a

point in segmented model TGF-β induced EMT belonging to each cell state

cluster from the six cluster GMM model of BRCA samples. The probabilities were

calculated by applying the BRCA GMM model to segmented model of E-M scores

with respect to time after TGF-β induction. Note that I1’ appears for a small period

of time between I1 and I2 and never accounts for the majority predictions of the

cell state at any point during TGF-β induced EMT.

Supplementary Figure 13 | Boxplots showing the distribution of ZEB1

expression across six clusters of BRCA samples indicated by color (E = orange,

I0 = pink, I1 = purple, I1’ = blue, I2 = green, M = red). As with the five cluster

GMM model of BRCA samples, the differences between E-I1-I2-M clusters are

significant. The I1’ cluster has significantly higher expression than I1 and

significantly lower expression than M, but is not different from I2. Expression

values are normalized RSEM (RNA-Seq by Expectation Maximization) values.

Supplementary Figure 14 | Phenotypic scores BRCA cancer samples in the six

cluster GMM model. (A) Boxplots showing the distribution of migration related

gene set scores across different clusters of BRCA samples indicated by color (E =

orange, I0 = pink, I1 = purple, I2 = blue, M = green). (B) Boxplots showing the

distribution of proliferation related gene set scores across different clusters of

BRCA samples indicated by color as in (A). Note that in both cases, the

association between BRCA clusters and phenotypic data is the same, with

proliferation being maintained through I1 and migration increasing at I1, though I1

occasionally represents a peak of migration at or above the level of M.

Supplementary Table 1 | BIC Scores for BRCA sample models.

Supplementary Table 2 | BIC Scores for PAAD sample models.

Supplementary Table 3 | BIC Scores for LUAD sample models.

Supplementary Table 4 | BIC Scores for CESC sample models.

Supplementary Table 5 | BIC Scores for PRAD sample models.

Supplementary Table 6 | Adjusted R-squared values for different breakpoint

models.

Supplementary Table 7 | Description of phenotypic gene sets from the Broad

Institute.

Supplementary Table 8 | P-values and 95% CI values for TES scores between

clusters.

Supplementary Table 9 | P-values for EMT Factor expression between clusters.

Supplementary Table 10 | P-values for migration scores between clusters.

Supplementary Table 11 | P-values for proliferation scores between clusters.

Supplementary Table 12 | Overlap between E-M gene sets and Broad Institute

gene sets.

Supplementary Table 13 | P-values for cell cycle and DNA repair scores

between clusters.
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Supplementary Table 14 | P-values for proto onco-gene and tumor suppressor

pathway scores between clusters.

Supplementary Table 15 | P-values for tumor suppressor gene expression

between clusters.

Supplementary File 1 | EMT related scores and cluster classifications for

samples in TCGA.

Supplementary File 2 | EMT related scores for EMT time course

data.
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