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There is a great need to improve the outlook for people facing urinary bladder cancer,

especially for patients with invasive urothelial carcinoma (InvUC) which is lethal in 50%

of cases. Improved outcomes for patients with InvUC could come from advances

on several fronts including emerging immunotherapies, targeted therapies, and new

drug combinations; selection of patients most likely to respond to a given treatment

based on molecular subtypes, immune signatures, and other characteristics; and

prevention, early detection, and early intervention. Progress on all of these fronts

will require clinically relevant animal models for translational research. The animal

model(s) should possess key features that drive success or failure of cancer drugs

in humans including tumor heterogeneity, genetic-epigenetic crosstalk, immune cell

responsiveness, invasive and metastatic behavior, and molecular subtypes (e.g., luminal,

basal). Experimental animal models, while essential in bladder cancer research, do

not possess these collective features to accurately predict outcomes in humans.

These key features, however, are present in naturally-occurring InvUC in pet dogs.

Canine InvUC closely mimics muscle-invasive bladder cancer in humans in cellular

and molecular features, molecular subtypes, immune response patterns, biological

behavior (sites and frequency of metastasis), and response to therapy. Thus, dogs

can offer a highly relevant animal model to complement other models in research

for new therapies for bladder cancer. Clinical treatment trials in pet dogs with InvUC

are considered a win-win-win scenario; the individual dog benefits from effective

treatment, the results are expected to help other dogs, and the findings are expected

to translate to better treatment outcomes in humans. In addition, the high breed-

associated risk for InvUC in dogs (e.g., 20-fold increased risk in Scottish Terriers)
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offers an unparalleled opportunity to test new strategies in primary prevention, early

detection, and early intervention. This review will provide an overview of canine InvUC,

summarize the similarities (and differences) between canine and human InvUC, and

provide evidence for the expanding value of this caninemodel in bladder cancer research.

Keywords: animal models, bladder cancer, cancer prevention, dog, immunotherapy, targeted therapy, transitional

cell carcinoma, urothelial carcinoma

INTRODUCTION

Urinary bladder cancer (urothelial carcinoma, also referred to
as transitional cell carcinoma) is a major human health issue
worldwide with more than 400,000 new cases per year (1, 2).
Broadly speaking, human bladder cancer can be divided into
two general types. The more common form which comprises
approximately two thirds of cases, consists of low-grade non-
invasive cancer that can typically be managed with transurethral
resection and intravesical therapy (3). Although this cancer is
manageable, it can negatively impact the patients’ quality of
life, frequently recurs, and can progress to invasive cancer (3).
The less common, but more serious form of bladder cancer
consists of high-grade muscle-invasive urothelial carcinoma
(InvUC). InvUC is associated with a 50% lethality rate, marked
reduction in quality of life from the cancer and its treatment
(cystectomy, radiation therapy, chemotherapy), and highmedical
costs ($150,000 to >$200,000 per patient) (4–10). In the last two
to three decades, only modest improvement has occurred in the
outcome of patients with InvUC. This review will focus on this
challenging form of bladder cancer, InvUC.

Encouraging progress has recently been made in new
therapies aimed at molecular, epigenetic, and immune targets in
InvUC (10–12). The finding of differential treatment responses
based on molecular InvUC subtypes (luminal, basal, etc.) along
with combinations of these new drugs, is expected to lead
to dramatic improvements in InvUC therapy (11–18). There
are, however, insufficient numbers of patients to test even a
fraction of the new drugs, especially when considering various
possible drug combinations, in order to optimize therapy.
The numbers of patients with metastases who could still be
eligible for trials after failing standard of care therapies are
especially limited. This puts higher demands on pre-clinical
animal studies to identify the most promising therapies to move
forward into humans. Current experimental models, however,
do not accurately predict drug outcomes in humans (19, 20).
Although in vitro systems, and carcinogen-induced, engraftment,
and genetically-engineered mouse models are essential in
bladder cancer research, they do not possess the collective
features (cancer heterogeneity, molecular complexity, invasion,
metastasis, immune cell response) that are crucial to predicting
success or failure of emerging therapies in humans (19–23). With
the resurgence of immunotherapy and the understanding that the
immune system plays a major role in the outcomes of many types
of therapies (16–18, 24–29), it is especially critical that animal
models possess a level of immunocompetence similar to that in
human cancer patients. There is compelling evidence that dogs
with naturally-occurring InvUC possess these collective features

and can serve as a highly relevant animal model for the human
condition to complement other models (30–32). This review will
summarize the similarities (and differences) between InvUC in
dogs and humans, and discuss some of the settings in which the
canine model could be most useful. Expanding the application
of this canine InvUC model is expected to greatly improve the
outlook for humans and dogs facing urinary bladder cancer.

CLINICAL AND PATHOLOGICAL
CHARACTERISTICS OF CANINE InvUC
AND SIMILARITIES AND DIFFERENCES
BETWEEN InvUC IN DOGS AND HUMANS

Frequency and Clinical Presentation of
InvUC
Bladder cancer comprises ∼1.5–2% of all naturally-occurring
cancers in dogs, a rate similar to that reported in humans (1, 2,
30). With estimates that 4–6 million pet dogs develop cancer in
the US each year, this equates to more than 60,000 cases of InvUC
in dogs each year (31). It is acknowledged that many of these
cases will go undiagnosed and untreated, but this still leaves large
numbers of dogs diagnosed with InvUC who could participate in
clinical trials.

As in humans, InvUC is typically a disease of older age dogs
with the reported mean and median ages at diagnosis ranging
from 9 to 11 years (30, 31). A minority of dogs develop the cancer
at a younger age, i.e., as young as 4–6 years of age. The female to
male ratio of dogs with InvUC has been reported to range from
1.71:1 to 1.95:1 (30). Interestingly, in dogs in high risk breeds, the
female to male risk is less pronounced (30). The female gender
predilection in dogs differs from that in humans in which males
are more likely to be affected (15). The reasons for this difference
between the species are not known. One possible reason relates
to smoking in humans, a causative factor for up to 50% of human
bladder cancer (15, 33, 34). Over several decades, smoking
has been more prevalent in men than women (34). Men have
also traditionally had more occupational exposures to chemicals
(34). With a long latency period (up to 30–40 years) between
carcinogen exposure and cancer development in humans, the
differences in exposures between men and women decades ago
can be reflected in current InvUC cases. Another factor to
consider regarding the gender differences between bladder cancer
in humans and dogs is that most dogs diagnosed with InvUC
have been neutered, typically at a young age, and this could affect
their bladder cancer risk (30). In fact, the risk of InvUC is ∼2-
fold higher in dogs who have been spayed or neutered than it is
for intact dogs (30, 35). Interestingly, dogs who have been spayed
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or neutered also have a higher risk for other cancers (35–37). The
reasons for this are not yet known, but the differences are likely to
be important in gaining a better understanding of the processes
leading to the development of InvUC and other cancers, and dog
studies could be very informative.

The presenting clinical signs of InvUC are similar between
dogs and humans, with hematuria being the most common
change observed (30). Pain and urgency are not usually noted
in the early stages of the cancer, but can emerge as the cancer
progresses. A history of urinary tract infections is common in
InvUC cases in humans and dogs. When cancer and infection are
present concurrently, the clinical signs improve with antibiotic
administration, but typically recur after the course of antibiotics
is completed. As the cancer progresses, signs associated with
metastases can emerge. Bone metastases, while uncommon, can
lead to severe pain in both species.

Pathological Features
The diagnosis of InvUC in dogs and humans is made by
histologic examination of tissue biopsies. In dogs, these tissues
are collected by surgery, cystoscopy, or catheter biopsy (30).
The vast majority of bladder cancer in dogs (>90% of cases)
consists of intermediate- to high-grade InvUC, the focus of
this review (Figure 1) (30). Great similarity is noted in the
microscopic features between canine and human InvUC (30). It
is interesting to note that superficial, low-grade bladder cancer is
very uncommon in dogs. Another interesting difference between
bladder cancer in dogs and humans is the location of the cancer
within the bladder. The majority of InvUC in dogs is found in the
trigone region of the bladder, and extension down the urethra
is common (reported in >50% of cases) (Figure 1), whereas
in humans there is a more balanced distribution of the cancer
across different areas of the bladder (30). In male dogs, 29% of
cases have been reported to have prostate involvement based on
evidence from imaging studies or pathology (30). In humans,
prostate involvement of the urothelial carcinoma has been found
in cystoprostatecomy sections in 15–48% of cases across multiple
studies, with higher rates of involvement noted with more
detailed pathologic examination of the tissues (38). Interestingly,
incidental prostatic adenocarcinoma has been found in 12–
51% of cystoprostatectomy sections from men with InvUC (39).
Primary urothelial carcinoma of the prostatic urethra and ducts
(in the absence of bladder disease) is not uncommon in dogs, but
is considered rare in humans (40). It is possible that the growing
practice of neutering male pet dogs, especially at an early age,
could reduce the risk of prostatic adenocarcinoma in dogs, while
enhancing the development of urothelial carcinoma, although
confirmation of this requires further study. Upper tract, i.e., renal
pelvic, urothelial carcinoma is reported in 5–10% of humans (41).
Similar lesions are found in dogs (especially at necropsy), but the
frequency at which they occur has not yet been established.

Several classification and grading schemes have been
published for canine urothelial neoplasms, particularly InvUC,
and these have been summarized in a prior review (30). By
growth pattern, InvUCs are divided into papillary (50%) or
non-papillary (50%) tumors and infiltrating (≥90%) or non-
infiltrating (≤10%) tumors. Although non-infiltrating tumors

comprise the majority of human InvUCs (≥65% of cases), this
form of bladder cancer is uncommon in dogs.

When surgical specimens are examined, there is typically
sufficient tissue to assess growth pattern, depth of invasion,
vascular invasion, etc. When tissue biopsies are obtained by
cystoscopy, however, the size of the biopsy is often small,
especially in dogs. Nuclear grade has been established as one
of the few constant features that can be evaluated even in
small tissue samples (30). In a retrospective study using nuclear
grade as the only feature to assign grade, of 232 canine InvUCs
(biopsies or postmortem specimens), two InvUCs were grade I;
67 InvUCs were grade II; and 163 InvUCs were grade III (30).
Although this work utilized a three tier grading system, a four tier
grading system is currently in use in dogs, reflecting that used in
humans (42).

Histologic variants of urothelial carcinoma (also called
urothelial carcinoma with divergent differentiation) have been
increasingly reported in humans, and in some cases may have
prognostic significance (43–45). Interestingly, the percentage
of cells showing divergent differentiation does not appear
to influence patient outcomes (44). Some of the urothelial
carcinoma variants have been observed in dogs including
plasmacytoid and rhabdoid types (46). While there have
been very few reports of such variants to determine their
clinical significance in dogs, in one study, canine InvUC with
fibromyxoid stroma was associated with invasion of the muscle
layer, suggesting a more aggressive behavior (47). Perhaps of
more importance from a clinical perspective, will be to determine
which genetic fingerprints within these variants can be exploited
for targeted therapies.

Local Invasion and Metastatic Behavior
InvUC in humans is characterized by locally aggressive cancer
with growth into and often through the bladder wall, as well
as distant metastases in ∼50% of patients (15, 16). One of
the reasons there is great enthusiasm for the canine InvUC
model is the model replicates this local invasion and distant
metastases of human InvUC, while these features are difficult
to produce in experimental models. In dogs, nodal and distant
metastases have been reported in ∼16% of dogs at diagnosis and
50–60% of dogs at death (30). When applying World Health
Organization (WHO) criteria for staging canine bladder tumors
(Table 1) (48), 78% of dogs have been reported to have T2
tumors and 20% of dogs to have T3 tumors (30). There is a
difference in the TNM staging system between dogs and humans,
with T2 tumors in dogs including muscle invasive disease,
whereasmuscle invasive tumors in humans are typically classified
as T3 or higher. Interestingly in a recent report of 65 dogs
with InvUC that had whole body computed tomography (CT)
performed at diagnosis, iliosacral lymphadenomegaly, sternal
lymphadenomegaly, bone metastasis, and lung metastasis were
suspected in 48, 18, 25, and 35% of the dogs, respectively (49).
These rates of metastases appear higher than reported in other
studies (30). It is possible that this group of dogs had later
diagnoses when the cancer had become more advanced or that
the CT imaging revealed more metastases than are typically
observed with other imaging modalities.
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FIGURE 1 | Canine invasive urothelial carcinoma (InvUC). Canine InvUC often produces papillary lesions extending into the lumen of the urethra (as seen in the

cystoscopic image in A) and bladder (as seen on post mortem specimen in B,C), along with deep invasion into the bladder wall. For comparison, in (A), the inset

demonstrates the normal appearance of this region of the urinary tract in the absence of cancer. In (C), note the transmural growth in the entire bladder (please see the

2* on the right side of the panel), hydroureter (thin arrow), and hydronephrosis (thick arrow) caused by obstruction of the ureteral orifice by tumor growth in the bladder.

An adjacent iliac lymph node (dark dot) is also infiltrated by this neoplasm. The photomicrograph in (D) (H&E 40X) is typical of high-grade InvUC. There is lack of

normal cell maturation and marked nuclear atypia with some binucleated and multinucleated cells, and mitotic figures (arrows). Note the presence of cytoplasmic

vacuoles within neoplastic cells, a common but not unique finding to InvUC. Canine InvUC is locally aggressive and metastasizes to distant sites in more than 50% of

cases. Note metastases to the lung (E) and liver (F). The gross appearance of metastases range from single to multiple nodules that can become confluent as

observed in the lung (E).

TABLE 1 | WHO TNM clinical staging system for canine bladder cancer (48).

T—Primary tumor

Tis Carcinoma in situ

T0 No evidence of a primary tumor

T1 Superficial papillary tumor

T2 Tumor invading the bladder wall, with induration

T3 Tumor invading neighboring organs (prostate, uterus,

vagina, and pelvic canal)

N—Regional lymph node (internal and external iliac lymph node)

N0 No regional lymph node involvement

N1 Regional lymph node involved

N2 Regional lymph node and juxtaregional lymph node involved

M—Distant metastases

M0 No evidence of metastasis

M1 Distant metastasis present

To better characterize the distribution of InvUCmetastases in
dogs as the cancer progresses, necropsy findings were compiled
from 137 dogs with InvUC evaluated at Purdue University
(Table 2) (30). Of the 137 dogs, 92 dogs (67%) had metastasis

to at least one site. Nodal metastases alone (in the absence of
distant metastases) were found in 9% of dogs, distant metastases
alone were found in 25% of dogs, and a combination of nodal
and distant metastases were identified in 33% of dogs at the time
of death (30). The frequency of metastasis and the sites involved
were similar between dogs and humans (Table 2), with lung being
the most common site of distant metastasis (50). In addition
to visceral and nodal metastasis, InvUC also spreads to the
abdominal wall through instruments and needles used in surgical
and non-surgical procedures and naturally along ligaments that
support the bladder (51). In this location, the cancer typically
grows aggressively and is poorly responsive to medical therapy.

Bone metastases are also important metastatic sites in

dogs, as well as in humans. To assess the frequency of bone

metastases in dogs, 188 dogs with InvUC undergoing necropsy

were retrospectively studied (52). Of the 188 cases, 17 (9%)

had histologically confirmed skeletal metastasis, mainly to the

vertebrae. This was followed by a prospective study of 21 dogs
with InvUC that underwent total body CT at the time of
euthanasia followed by a standardized pathologic examination
(52). In four dogs, skeletal lesions suspicious for bone metastases

Frontiers in Oncology | www.frontiersin.org 4 January 2020 | Volume 9 | Article 1493

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Knapp et al. Canine Bladder Cancer - Translational Model

TABLE 2 | Metastases identified in 137 dogs with invasive urothelial carcinoma

undergoing necropsy at Purdue University (2005–2013) with comparison to

published autopsy findings from 308 humans with urothelial carcinoma (30, 50).

Location of

metastases

Number of dogs with

metastasis in that

location (% of 137

dogs undergoing

necropsy) (30)

Number of humans with

metastases in that

location (% of 308

humans undergoing

autopsy) (50)

Any metastases 92 (67%) 214 (69%)

Any nodal metastases 57 (42%) 180 (58%)

Regional nodes

(abdominal, pelvic

inguinal nodes)

40 (29%)a 158 (51%)

Thoracic nodes 17 (12%)b 80 (26%)

Other nodes 1 (1%) 8 (3%)

Any distant metastases 80 (58%) 147 (48%)

Lung 69 (50%) 96 (31%)

Bone 15 (11%) 71 (23%)

Liver 10 (7%) 103 (33%)

Kidney 10 (7%)c 30 (10%)

Adrenal gland 8 (6%) 28 (10%)

Skin 8 (6%) 4 (1.5%)

Spleen 6 (4%) 11 (3.6%)

Gastrointestinal 3 (2%)d 45 (15%)

Heart 5 (4%) 13 (4%)

Brain 2 (1.5%) 8 (2.5%)

aNodes included 32 iliac, sacral, and other “sub lumbar,” three inguinal, two mesenteric,

two pancreatic, and one hypogastric node.
bNodes included nine tracheobronchial, four sternal, threemediastinal, and one hilar node.
c It was not always possible to determine if the InvUC represented a second primary site

in the kidney or a metastatic lesion.
dTumor location included stomach in one dog, jejunum in one dog, and pancreas in

one dog.

were detected on CT, and were confirmed to be InvUCmetastases
histologically in three (14%) dogs (52).

There was an additional interesting finding from the necropsy
study of the 137 dogs with InvUC (30). Of the 137 dogs, 18 dogs
(13%) had second primary tumors including hemangiosarcoma
(n = 3), marginal zone lymphoma (n = 3), hepatocholangio-
carcinoma (n = 2), follicular thyroid carcinoma (n = 2),
B cell lymphoma (n = 2), adrenal adenocarcinoma (n =

1), meningioma (n = 1), nasal adenocarcinoma (n = 1),
cutaneous squamous cell carcinoma (n = 1), oral melanoma
(n = 1), pancreatic adenocarcinoma (n = 1), undifferentiated
neuroendocrine tumor (n = 1), histiocytic sarcoma (n = 1), and
splenic sarcoma (n = 1). Second primary tumors are also noted
in humans with InvUC. In an autopsy study of 376 humans with
InvUC, 74 patients (20%) had second primary tumors with other
carcinomas being most common (53).

MOLECULAR FEATURES IN InvUC, AND
SIMILARITIES BETWEEN DOGS AND
HUMANS

Molecular Subtypes
One of the compelling recent advances in InvUC is the
identification of gene expression patterns that segregate human

InvUC into molecular subtypes including basal, luminal, and
others initially described in human breast cancer (13–17, 54, 55).
The subtypes are important because there is strong evidence
that cancer behavior and response to therapy differ between
subtypes, and thus subtypes could emerge as parameters to use
in individualizing cancer treatment (13–17).

To briefly summarize some of the findings regarding subtypes,
basal subtype InvUCs are more prevalent in women than
men, are associated with squamous features, and are enriched
for STAT3, TP63, KRT5/6A, and CD44; and NFkB, c-Myc,
and HIF signaling (13–17). Some basal InvUC also express
epithelial-mesenchymal transition markers of claudin-low breast
cancer (56). Basal InvUC is thought to be inherently more
aggressive than other subtype tumors, and is associated with
more advanced stage and metastatic disease at diagnosis,
although basal InvUC can be responsive to chemotherapy and
immunotherapy. Luminal subtype InvUC is associated with
papillary histologic features and better clinical outcomes. The
luminal tumors are enriched for ER, TRIM24, FOXA1, GATA3,
PPARG, and activating FGFR3mutations (with good response to
FGFR inhibitors) (14, 17, 57, 58).

It is clear that modeling drug effects across molecular subtypes
is essential. Work by our group provides strong evidence that
the molecular subtypes present in human InvUC are also present
in canine InvUC. Briefly, RNA-seq data were analyzed from 29
canine InvUCs and normal control bladder tissues from four
dogs with no evidence of bladder disease (59). In unsupervised
clustering, the tumors clearly segregated into two groups. When
the same data were analyzed using a panel of genes known
to distinguish luminal from basal bladder tumors in humans,
the two groups from the unsupervised clustering analyses were
identified as luminal and basal subtype. This finding is depicted
in Figure 2 in which additional cases have been added.

Other Molecular Features
The molecular characterization of canine InvUC is still in the
early stages, especially in regards to mutation signatures and
epigenetic events. Some of the initial findings are summarized in
Table 3 and in the following text.

Several important molecular features of InvUCwere identified
in the 2014 Cancer Genome Atlas Research Network (TCGA)
comprehensive molecular characterization of human urothelial
carcinomas (54). This study provided insight into the molecular
pathogenesis of human InvUC, and identified potential treatment
targets (54). Genomic alternations involving PI3K/AKT/mTOR,
CDKN2A/CDK4/CCND1, and RTK/RAS pathways were noted,
and thus receptor tyrosine kinases such as EGFR, ERBB2 (Her-
2), ERBB3, and FGFR3 were identified as potential targets for
therapy (54). Multiple sequencing studies of InvUC in dogs
have been reported, some with cross species analyses, and many
similarities across the species have been identified (59, 62, 68–71).

Overexpression of epidermal growth factor receptor (EGFR)
has been reported in 73% of canine InvUC, which is comparable
to that found in humans (62, 66, 67, 72). Inhibitors of EGFR
family proteins have been evaluated in multiple human bladder
cancer trials with varying success (73–75). EGFR inhibitors
appear to be most useful in patients that are chemotherapy
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FIGURE 2 | Basal and luminal subtypes in canine invasive urothelial carcinoma. RNA-seq data from canine InvUC (n = 33) and normal bladder mucosal samples (n =

4) were normalized using TMM and DESeq concurrently using Strand NGS (Strand, Bengaluru, India). Statistical analyses were conducted using edge R (on TMM

normalized data) and DESeq2 (on DESeq normalized data) with p corr ≤ 0.05 and ≥2-fold change from each analysis. These two lists of differentially expressed genes

were pooled as described previously (59). A prediction model reported earlier was employed to assign luminal and basal subtypes (59). Supervised hierarchical

clustering was performed using genes that assign basal and luminal subtypes in human InvUC (17). Two distinct groups were identified as basal (n = 15) and luminal

(n = 18).

naïve and that have cancer overexpressing EGFR or ERBB2 (76).
Prior treatment with chemotherapy can result in resistance to
EGFR inhibitors, although the mechanisms of this are not well-
defined. Canine studies could lead to a better understanding of
the mechanisms of resistance, and to better identify subsets of
patients who could benefit from EGFR inhibitor therapy.

One approach under investigation is to target EGFR with
a photoimmunotherapy conjugate (Can225-IR700 conjugate),
an approach which has shown promise in canine InvUC cell
lines in vitro and in rodent models (77). The Can225-IR700
conjugate was shown to bind specifically and cause killing of
EGFR expressing cells in vitro. In mice there was accumulation of
the Can225-IR700 conjugate in the tumors with high tumor-to-
background ratio, and tumor growth was significantly inhibited
by near infrared photoimmunotherapy application (77). Using
a different approach to exploit EGFR expression, a study of an
EGFR-targeted toxin has recently been reported with antitumor
activity observed in dogs with InvUC (78). These canine studies
are being conducted to determine promising approaches to take
into human clinical trials.

In considering a different molecular target, HER-2
(EGFR2/ERBB2/NEU) has been found to be significantly
overexpressed in canine InvUC samples when compared
to non-neoplastic urothelium (79), as is the case in human
InvUC (80, 81). In two immunohistochemical studies HER-2
immunoreactivity was noted in 13 of 23 (56%) and in 14 of 23
(60.9%) cases of canine InvUC, respectively (79, 82).

The p53 tumor suppressor gene product has an important
role in differentiation of the urothelium (60). Loss of p53
expression has been noted in human InvUC, and has been
associated with lymph node metastasis, advanced TNM stage,
and shorter survival times (60, 83). Similar to the reports in
humans, p63 expression, a homolog of p53, has been reported
to be significantly lower in dogs with InvUC, compared to dogs
with polypoid cystitis and normal urothelium (61). Expression of
p53, the p53 inducible gene 14-3-3σ protein, and vimentin have
been documented in canine InvUC in vitro and in vivo (63, 84).
Expression of vimentin in human InvUC has been associated
with epithelial-mesenchymal transition, cancer progression, and
metastasis (85). The 14-3-3σ protein, which is expressed in
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TABLE 3 | Early findings of molecular features in canine InvUC, and similarities

and differences between canine and human InvUC.

Molecular

feature

Human InvUC Canine InvUC

Molecular

subtypes

Luminal and basal are the

main subtypes.

Subgroupings within these

occur (13–17)

Luminal and basal are the

main subtypes. Early data

indicating subgroupings

requires confirmation in

larger studies (59)

P53 pathway p53 protein (presumed

mutant) is detected by

immunohistochemistry

(IHC). Note: wildtype p53

protein is typically degraded

faster than mutant p53, and

thus mutant p53 is the form

that is thought to be more

commonly detected by IHC

(15, 60)

p63 (homolog of p53)

protein (presumed wildtype)

is less abundant in InvUC

than in normal bladder in

IHC studies (61)

Loss of function mutations

in p53 occur in 50% of

cases. Thus, the tumor

suppressor pathway is

inactivated (15)

P53 mutations are not well

defined in canine InvUC.

Enrichment has been noted

in genes that negatively

regulate the expression of

p53 in microarray and

RNA-seq analyses (59, 62)

Loss of p53 function is often

accompanied by loss of

RB1 and amplification of

MDM2 and CDKN2A (15)

RB1 expression is reduced

in 5 of 8 canine InvUC cell

lines (63). RB1 status has

not yet been reported in

clinical studies. MDM2 is

overexpressed in InvUC in

RNA-seq data. CDKN2B is

overexpressed in RNA-seq

data; CDKN2A has not

been reported (59)

PTEN/PI3K/AKT/

mTOR pathway

Aberrant pathway activation

occurs in 40% of human

cases (13)

Overexpression of some

genes in the pathway have

been observed, but further

study is needed to better

characterize the pathway in

dogs and to define

similarities and differences

between dogs and humans

(59)

RTK/RAS

pathway

FGFR3 mutations occur in

20% of cases (13)

FGFR3 mutations have not

yet been defined

BRAF mutations are rare

(13)

BRAFV600E mutations are

common (∼80% of cases)

(64, 65)

EGFR EGFR is overexpressed in

75% of high grade tumors

detected by IHC (66, 67)

EGFR is overexpressed in

73% of cases as detected

by IHC (62)

Cox-2 Cox-2 is overexpressed in

>80% of cases as detected

by IHC

Cox-2 is overexpressed in

>80% of cases as detected

by IHC and RNA-seq

analyses (30)

human and canine bladder cancer, has also been linked to
tumorigenesis (86, 87).

Mutations in several other genes implicated in the
development and progression of InvUC and other cancers
in humans have been identified in canine InvUC (64, 69).

Examples include CDKN2B, PIK3CA, BRCA2, NFkB, ARHGEF4,
XPA, NCOA4, MDC1, UBR5, RB1CC1, RPS6, CIITA, MITF, and
WT1 (16, 54, 64, 69, 88–93). It is anticipated that other shared
molecular targets will be found. In early microarray analysis,
more than 450 genes were identified that were differentially
expressed between InvUC and normal bladder and that were
shared between dogs and humans (P < 0.05; 2FC) (62, 94).
In one report involving RNA-seq analysis, 1,589 genes were
identified that were differentially expressed between normal
bladder and bladder cancer in dogs and in humans (69).

Along with the notable similarities between canine and human
InvUC, there is one intriguing difference. The majority (67–
85%) of canine InvUCs harbor a BRAFV595E mutation, which
is homologous to the BRAFV600E mutation in humans (64, 65).
This mutation is considered a driver mutation of 8% of all human
cancer across cancer types, and is especially common in human
metastatic melanoma (64, 95). Thismutation leads to constitutive
activation of the MAPK pathway. While BRAF mutations are
common in certain forms of human cancer, these mutations
are rare in human InvUC. Other mutations within the MAPK
pathway, however, occur in ∼30% of human InvUC cases (54).
It is intriguing that even though BRAF mutations are common
in canine InvUC and that different molecular drivers are more
common in human InvUC, the cancer in both species converges
into a disease possessing the same molecular subtypes.

In addition to traditional methods to assess molecular features
in cancer, canine InvUC has been used as a test case for
other methodologies. For example, the methods for desorption
electrospray ionization (DESI), an ambient ionization mass
spectrometry approach, were developed using canine tissues (96).
In DESI analyses, lipid patterns were identified that distinguish
InvUC from normal urothelium in the canine tissues. In a follow
up study, similar lipid patterns were found in human bladder
cancer tissues (96, 97). Recently a new ambient ionization MS
approach, touch spray MS (TS-MS), has been tested in canine
tissues, and this technique rapidly identified lipid patterns that
distinguished InvUC from normal tissues (98). This technique
is especially intriguing because optimization of this form of MS
could lead to a point-of-care instrument for use in the operating
room or cystoscopy suite.

SIMILARITIES IN TREATMENT RESPONSE
BETWEEN DOGS AND HUMANS WITH
InvUC

Standard Treatments for InvUC in Humans
and Dogs
Some of the key features concerning the treatment of InvUC in
humans and dogs are summarized in Table 4. In humans, the
standard treatment for bladder-confined InvUC is cystectomy,
usually combined with neoadjuvant chemotherapy (8, 9). In
half of patients, distant metastases emerge over the next 1–
2 years and sometimes later, and the metastatic disease is
treated with chemotherapy or immunotherapy (4, 10, 12). For
patients who are not eligible for cystectomy, bladder sparing
therapies combining radiation therapy and chemotherapy have
been defined (99).
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TABLE 4 | Treatment options for invasive urinary bladder cancer in humans and

dogs.

Type of

Therapy

Human InvUC Canine InvUC

Cystectomy Cystectomy is the frontline

treatment of choice in

eligible patients with

bladder-confined cancer. It

is typically combined with

neoadjuvant chemotherapy

(8, 9)

Cystectomy is not usually

performed in pet dogs due to the

morbidity and cost of the

procedure, and frequent

extension of the cancer down

the urethra which could preclude

surgical cure (30–32)

Radiotherapy Radiotherapy is used in

trimodal therapies

(maximum transurethral

resection, radiotherapy,

chemotherapy) in bladder

sparing protocols. This is

typically reserved for

patients who are not

eligible for or choose to

forego cystectomy (99)

Studies to determine the efficacy

of radiotherapy in dogs are

limited. Trimodal therapy has not

been investigated in dogs

(100–102)

Chemotherapy Chemotherapy is most

often used in the

neoadjuvant setting and in

the treatment of emergent

metastasis. Chemotherapy

protocols can include:

MVAC (methotrexate,

vinblastine, doxorubicin,

cisplatin), or in recent years

less toxic combinations

such as

cisplatin-gemcitabine or

carboplatin-taxol (103, 104)

Since cystectomy is rarely

performed in dogs,

chemotherapy is used to treat

the primary cancer in the urinary

tract, as well as to treat

metastasis. Chemotherapy

drugs with activity in dogs

include: cisplatin, carboplatin,

vinblastine, mitoxantrone, and

others. Cisplatin is considered

one of the most active agents in

humans and dogs, but is rarely

used in dogs due to consistent

renal toxicity (10, 30)

Cyclooxygenase

(Cox)

inhibitors

Cox inhibitors are not

routinely used as

anticancer agents in

human bladder cancer. In

humans, Cox inhibitors

induce biological changes

in tumor tissues similar to

those noted in canine

bladder cancer (105, 106)

Cox inhibitors are a mainstay of

canine bladder cancer treatment.

These drugs are appealing

because of the antitumor effects

(single agent remission rate 20%,

stable disease rate 55–60%),

oral delivery, relatively low cost

and risk of side effects, and

positive benefits on quality of life.

Cox inhibitors are also used to

improve remission rates with

chemotherapy, e.g., doubling the

remission rate with cisplatin and

vinblastine (30, 107–112)

Immunotherapy Immune checkpoint

inhibitors approved for use

in humans include those

targeting PD-L1

(atezolizumab, durvalumab,

avelumab) and those

targeting PD-1

(pembrolizumab,

nivolumab) (12, 113–120)

Immune checkpoint inhibitors are

not yet available for use in dogs

Targeted

agents

An FGFR inhibitor

(Erdafitinib) is approved for

use in human bladder

cancer

FGFR mutations are less

common in canine bladder

cancer, and agents targeting

FGFR have not been tested in

dogs. Targeted therapies tested

in dogs include an EGF-toxin

conjugate, and folate targeted

therapies (78, 121, 122)

The treatment of InvUC in dogs can include surgery, radiation
therapy, chemotherapy and other drugs, or combinations of
these, although surgery and radiation therapy are used less often
than drug therapy in dogs (30–32). Complete cystectomy is not
typically performed in pet dogs because of the frequent extension
of cancer beyond the bladder (urethra, prostate, other organs),
the morbidity of the procedure, and the expense involved (30–
32). Most InvUC lesions in dogs are not in a location where
complete surgical excision is possible. Early reports of radiation
therapy in dogs with InvUCwere discouraging because of the side
effects (100), although newer radiation therapy approaches have
been much better tolerated, allowing further study (101, 102).
Currently, drugs are the mainstay for treatment of InvUC in dogs
(30). Pet owners insist that the drug protocols be well-tolerated;
anything beyond mild side effects is not considered acceptable.
This is not unreasonable, and low adverse event profiles are also
desirable for humans. Although InvUC is not usually curable in
dogs with current therapies, the disease can be controlled in 80%
or more of dogs, and the dogs can enjoy many months to beyond
a year, with a minority of dogs living more than 3 years with
good quality of life (30). It should be noted that since the bladder
is not removed, dogs can be used to study treatments of organ-
confined disease, metastases, or both. It is recognized that having
the primary tumor intact will lead to continued emergence of
cells with metastatic potential.

Chemotherapy Responses
The response to chemotherapy for InvUC is similar between
dogs and humans. Platinum agents are considered to be the
most active agents in both species (10, 30, 103, 104). Cisplatin-
based combination chemotherapy protocols are not often used
in dogs because of side effects considered unacceptable in dogs,
although a comparison of single-agent activity between dogs
and humans is possible. The remission rate with single-agent
cisplatin has been reported to be 12–20% in dogs and 17–34%
in humans (30, 104). Carboplatin has activity in both species,
although it is considered less active than cisplatin (30, 104, 123).
The previous standard protocol for InvUC treatment in humans
was methotrexate, vinblastine, doxorubicin, and cisplatin (104).
Although this protocol was considered too toxic for acceptable
use in pet dogs, an important component of the protocol,
vinblastine, has been evaluated in dogs with remission and stable
disease rates of 36 and 50%, respectively (124). Vinblastine has
single-agent activity in humans and contributes to combination
therapy protocols (125, 126). Gemcitabine is also considered an
active drug in both species (127, 128).

ENTHUSIASM FOR CANINE CLINICAL
TRIALS IN InvUC, AND EXAMPLES OF
TRANSLATIONAL STUDIES

Canine Clinical Trials, a Win-Win-Win
Scenario
Treatment studies in dogs are expected to be a win–win–win
scenario (30). The individual dog receives treatment that is
expected to help them and that often provides hope when other
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treatments are not effective or not feasible. The study results
are expected to help other dogs and ultimately help humans
with InvUC. The subsidized cost for treatment in many of the
trials allows some pet owners to pursue treatment for their
dog even if they cannot afford any other therapies. For all of
these reasons, in the Purdue University Veterinary Teaching
Hospital, more than 90% of owners of dogs with InvUC elect to
enroll their pet in a clinical trial. Parallel mechanism studies are
feasible in dogs with samples of blood, urine, and, in some cases,
tumor tissues collected by cystoscopy available before, during,
and after therapy. Most pet owners will also allow a necropsy
of the dog when it dies or is euthanized (because of declining
quality of life due to cancer progression or other conditions).
This provides crucial information on the disease process and
response to therapy, and the opportunity to bank tissue samples
for future studies. Although most treatments tested in dogs have
been systemic therapies, dog studies can also be used to evaluate
intravesical therapy (129).

Evaluation of Emerging Targeted Therapies
in Dogs With InvUC
There are published examples of studies of targeted therapies
in dogs with InvUC of translational value (121, 122, 130).
One example is a canine clinical study performed to determine
the expression of high affinity folate receptors (folate receptor
alpha) in InvUC and the safety and efficacy of folate-targeted
therapy (121). Briefly, folate receptor alpha expression was
detected in 78% of canine InvUC tissues, and folate uptake
in vivo was confirmed by scintigraphy. An escalating dose of
folate-targeted vinblastine (EC0905) was administered to pet
dogs with biopsy-confirmed folate receptor-positive InvUC. The
maximum tolerated dose was determined, with neutropenia and
gastrointestinal upset being dose limiting toxicities. The drug
was well-tolerated at the maximum tolerated dose, and good
antitumor activity was observed (121). Folate receptor expression
was identified in human InvUC (121), and further work is
ongoing to define the percentage of cases with folate receptor
expression. Although the folate-vinblastine conjugate had good
antitumor activity in dogs with InvUC, the duration of remission
was limited inmany cases. Thus, a follow up study was performed
in dogs using a different folate conjugate, folate-tubulysin
(EC0531) (122). Unlike vinblastine, tubulysin is not a substrate
for the P-glycoprotein drug efflux pump, and therefore, longer
remission times were anticipated (122). In the EC0531 study, the
maximum tolerated dose was defined, and again neutropenia and
gastrointestinal toxicity were observed at higher doses, as were
observed with folate-vinblastine treatment. Of 28 dogs treated,
three dogs had partial remission and 17 dogs had stable disease
(122). The progression free interval appeared longer than that
noted in dogs treated with folate-vinblastine, although a head-
to-head comparison would be required to confirm this. Unlike
human neutrophils, canine neutrophils were found to express
folate receptors, which contributes to the neutropenia at higher
doses of folate-targeted therapies in dogs (122). This suggest that
humans may tolerate higher, potentially more effective, doses of
folate-targeted therapies.

Evaluation of Cox Inhibitors in InvUC
An intriguing discovery was made in dogs with InvUC and
other types of cancer which is expected to translate into benefit
in humans. Briefly, non-selective cyclooxygenase inhibitors
(Cox inhibitors, i.e., non-steroidal anti-inflammatory drugs)
have had unexpected antitumor effects in dogs with cancer
(107). The interest in Cox inhibitors in dogs with cancer
stemmed from the observation of dramatic remission of a poorly
differentiated sarcoma of the thoracic wall in one dog and
of complete remission of advanced metastatic carcinoma of
unknown primary in another dog who were receiving the non-
selective Cox inhibitor, piroxicam, but no other drugs (107).
These initial observations made more than three decades ago
subsequently led to phase I, II, and III clinical trials of Cox
inhibitors in dogs with InvUC which confirmed the antitumor
effects and safety of the drugs (30, 107–110). In 76 dogs with
InvUC treated with single-agent piroxicam, tumor responses
included two (3%) complete remission (complete resolution of
all clinical evidence of cancer), 14 (18%) partial remission (≥50%
reduction in tumor volume and no new tumor lesions), 45 (59%)
stable disease (<50% change in tumor volume and no new
lesions), and 15 (20%) progressive disease (≥50% increase in
tumor volume or the development of new tumor lesions) (30).

In addition to the antitumor effects of single agent Cox
inhibitor treatment, these drugs also enhance the activity of
chemotherapy (109–111). In dogs, Cox inhibitors have enhanced
the activity of cisplatin in multiple studies including randomized
trials (109, 111, 112). The remission rate with cisplatin alone was
<20%, while the remission rate with cisplatin combined with
the Cox inhibitor ranged from 50–70% across randomized trials
(109, 111, 112). Similarly, in another randomized trial in dogs
with InvUC, the remission rate was significantly higher in dogs
receiving vinblastine combined with piroxicam (58%) than in
dogs receiving vinblastine alone (23%) (110).

The findings from the Cox inhibitor studies in dogs have
been translated into humans with InvUC (105). Intriguingly,
the biological effects associated with Cox inhibitor-induced
remission in dogs (e.g., induction of apoptosis) were found to
occur to the same degree in humans with InvUC receiving the
Cox-2 inhibitor, celecoxib prescribed between initial diagnosis
and cystectomy (105, 106). Cox inhibitors have also reduced the
recurrence of superficial bladder tumors in humans in some, but
not all studies (131, 132).

Proposed mechanisms of the antitumor effects of Cox
inhibitors have included antiangiogenic effects, immunologic
effects, modulation of cancer stem cells, and direct induction
of apoptosis (105, 106, 133, 134). There are growing numbers
of studies of the immunologic effects. Cox-2 is upregulated in
canine and human InvUC (135, 136). Cox and the Cox product
PGE2 in tumor-associated macrophages and tumors, have been
reported to decrease the activation and proliferation of T cells
(CD4+, CD8+), increase release of IDO1, reduce the function
of NK cells, cause a shift from Th1 to Th2 response, increase
the infiltration of regulatory cells into the tumor and release
of immunosuppressive cytokines, decrease immunostimulatory
cytokines, and to drive negative DAMPs (damage-associated
molecular patterns) (137–141). Cox blockade (via knockdown
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or drugs) has been shown to reverse all of these effects (137–
141). Of special current interest, aspirin enhanced the effects of
immune checkpoint inhibitor treatment of melanoma and colon
tumors in mice (141). These and other reports prompted our
group to re-examine H&E slides from patients with InvUC in
the celecoxib trial (105). Interestingly, the number of tumor-
infiltrating lymphocytes (TILs) increased multifold in 73% of
cases receiving celecoxib, compared to 38% of control cases
(Dhawan and Knapp, unpublished data). Clearly, further studies
of the effects of Cox inhibitors in InvUC treatment are indicated,
and dogs offer an ideal animal model for this work.

GROWING ROLE FOR THE DOG MODEL
TO DRIVE ADVANCES IN EMERGING
IMMUNOTHERAPIES FOR InvUC

Emerging Role and Need for Advances in
Immunotherapy
The medical community has seen an unprecedented resurgence
in immunotherapy, as impressive remissions have been
documented in patients with advanced chemotherapy-refractory
cancer (12, 24, 25, 113–120). There is clear promise for
immunotherapies, yet a crucial need to improve the effectiveness
of these agents. This has heightened the demand for relevant
immunocompetent animal models of cancer that can predict
the outcomes (efficacy, toxicity) of immunotherapies (alone and
when combined with other agents) when given to humans.

Among emerging immunotherapies, there is particularly high
interest in immune checkpoint inhibitors (12, 24, 25, 113–120).
Immune checkpoints, including PD-L1, PD-1, CTLA-4, B7x,
and others, are critical regulatory components of the immune
system that are essential for maintaining self-tolerance (24, 113).
Immune checkpoints also modulate the amplitude and length of
physiological immune responses in peripheral tissues in order
to minimize collateral tissue damage. Many types of cancer,
however, exploit these immune checkpoints to evade immune
attack especially by T cells specific for tumor antigens (24, 113).
Cancer cells upregulate PD-L1 (and other immune checkpoints)
in response to oncogenic signals or endogenous antitumor
immune responses. The binding of PD-L1 to PD-1 on activated T
cells causes cell anergy or death (24, 113). PD-L1 is also expressed
by antigen presenting cells, natural killer cells, and T cells, and
can interfere with the function of these cells.

The finding of dramatic durable complete remissions
in heavily pre-treated patients in multiple studies provides
compelling evidence that immune checkpoint inhibitors can
drive new success in treating InvUC and other cancers (25,
113–120). Much more work must be done, however, before
immune checkpoint inhibitors reach their potential in saving
the lives of cancer patients. Although impressive remissions
are seen in patients with advanced cancer, only a minority of
patients (∼20%) have this level of benefit (25, 113, 115–120). In
addition, immune checkpoint inhibitors can unleash a plethora
of autoimmune processes, and special attention must be paid
to monitoring and treating these “toxicities” (120). Studies of
biomarkers to predict immune checkpoint inhibitor activity have

had conflicting results, indicating the need for continued study
(25, 113, 114, 142–145).

The limited rate of remission with immune checkpoint
inhibitors and the absence of clear biomarkers of response are
not surprising because the immune system can fail at multiple
points in attacking the cancer (24, 26, 114). Causes of immune
failure can include low antigenicity (e.g., lack of antigens, MHC
downregulation), deficient adjuvanticity (e.g., lack of DAMPs)
to signal the immune system, ineffective T cell trafficking,
immunosuppressive cells and cytokines, exhausted T cells, and
deficient numbers or function of immune effector cells in general
(24, 146, 147). It is expected that combining drugs that positively
affect different parts of the immune system will substantially
increase the success rate of immune checkpoint inhibitors (26–
29). This again highlights the need for relevant animal models
to help select the most promising approaches to take into
human trials.

There are multiple reports of the expression of immune
checkpoints in InvUC and other cancers in dogs (148–157). In
addition to the well-known checkpoints PD-1, PD-L1, CTLA-
4, other checkpoints have been identified in canine InvUC (59,
157). B7x (B7-H4/B7S1/VTCN1), for example, is an inhibitory
immune checkpoint molecule and is considered a potential
therapeutic target because of its immunosuppressive effects
and well-known expression in cancers (157). The expression
of B7x in canine InvUC has recently been reported (157). In
RNA-seq analysis, a 5–7-fold increase in the expression of B7x
in canine InvUC was noted compared to the expression in
the normal bladder. B7x protein expression was confirmed by
immunohistochemistry (IHC) with medium to high expression
in 18 of 50 (20%) canine InvUC samples studied (157). For
comparison, TCGA and Genotype-Tissue Expression (GTEx)
data sets were used to examine B7x expression in 599 human
urothelial carcinomas. B7x expressionwas significantly (p= 0.02)
associated with worse overall survival in humans (157).

The scientific community is eagerly awaiting the availability
of immune checkpoint inhibitors for studies in dogs. Human
monoclonal antibodies that target immune checkpoints have
not yet been shown to bind and functionally disrupt canine
checkpoints. In addition, neutralizing antibodies would form in
dogs in response to the administration of human antibodies,
i.e., foreign protein, making the antibody treatment ineffective
and potentially leading to allergic and anaphylactic reactions in
the dogs.

There are reports of canine PD-L1 (cPD-L1) antibodies
developed by academic laboratories (155, 156). A canine chimeric
PD-L1 antibody has been administered to nine dogs with
oral melanoma or soft tissue sarcomas (155). Although tumor
regression was observed in two dogs, the extent of the cPD-L1
inhibitor’s activity is not known because the dogs were allowed
to receive concurrent non-steroidal anti-inflammatory drugs that
have been documented to have antitumor effects in those cancers
in dogs and in canine xenograft models (107, 158, 159). The lack
of immune-mediated toxicity (which is common in humans) in
the dogs also calls the drug’s activity into question.

As immune checkpoint inhibitors become available for
dogs, studies to evaluate the antitumor effects, determine
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mechanisms of response and resistance, test potential
combination therapies, and develop strategies to minimize
adverse events will be high priorities. It is likely that dogs
will develop adverse events similar to the autoimmune-
related adverse events in humans because dogs naturally
develop immune mediated diseases such as hemolytic
anemia, thrombocytopenia, myasthenia gravis, polyarthritis,
inflammatory bowel disease, and others (160). The adverse
events are expected to be manageable in dogs, just as they are
in humans. Dog studies of the antitumor effects, safety, and
mechanisms of response and resistance to immune checkpoint
inhibitors are anticipated to be key to advancing these therapies
in humans.

Next to immune checkpoint inhibitors, chimeric antigen
receptor T cells (CAR T cells) which are T lymphocytes
engineered to express a specific chimeric antigen receptor, are
gaining the most attention in immunotherapy, and are perhaps
showing more promise than other current immunotherapy
strategies (161). CAR T cell therapy has been successfully
delivered to dogs with naturally-occurring lymphoma (162).
Briefly, autologous RNA-transfected CAR T cells were generated,
expanded, and administered to pet dogs with relapsed B cell
lymphoma. The treatment was well-tolerated and resulted in
reduction of CD20+ B cells in target lymph nodes. The results
from this proof-of-concept study validate further evaluation of
CAR T cell therapy in dogs, and the opportunity to fill the gap
between mouse models and translation into humans (162).

Monitoring the Immune Response in Dogs
With InvUC
Although the fairly extensive “tool kit” available to assess immune
cells and the activity of the immune system in humans is much
more limited in dogs, methods do exist to analyze immune cells
and cytokines in circulation and in the tumor masses. A few of
those used to study the immune infiltrates in the tumor will be
highlighted in this review.

Immune cells infiltrating the tumor can be visualized with
IHC (163–166). While all of the markers for various immune
cells in humans are not available for dogs, CD3 IHC is
a popular approach to assess tumor infiltrating lymphocytes
(TILs) in canine cancer, including application to formalin fixed
tissues (166). IHC protocols have also been described to detect
regulatory T cells in canine tumors (167, 168). More specific
immune cells can be detected in frozen sections of canine tumors
(169). Using IHC, the pattern of TILs in human InvUC have been
classified in some studies as: (1) immune desert (no or very few
TILs observed), (2) immune excluded (TILs on the periphery
of the tumor mass but no TILs within the mass itself), or (3)
immune infiltrated (TILs in the mass), with further distinctions
made for the presence of TILs in the stroma in and around the
tumor or between tumor cells in the tumor mass (163–165). An
effective immune attack is expected to require TILs within the
tumor mass, and there is great interest in developing strategies
to convert the immune desert or immune excluded state to an
immune infiltrated state. It is therefore important to note that

FIGURE 3 | Immunohistochemical detection of T lymphocytes with an antibody to CD3 in canine invasive urothelial carcinoma. In (A) all areas examined

(intraepithelial, tumor stroma, and peritumoral) contain CD3 positive cells. In (B) a detail of the triphasic pattern of CD3 expression is noted. In (C) only the peritumoral

lymphoid infiltrate expresses CD3 in this tumor. In (D) the tumoral stroma contains numerous CD3 positive lymphocytes, but the tumor epithelium is negative. TE,

tumoral epithelium; TS, tumoral stroma; PT, peritumoral stroma; Small arrow, intraepithelial T-lymphocytes; Large arrow, tumoral stroma T lymphocytes.
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these same patterns of TILs have been observed in canine InvUC
(Figure 3).

Sequencing studies have also been used to characterize the
immune state in InvUC tissues (13, 16, 54, 59, 170–173). Whole
exome sequencing analyses can be used to determine tumor
mutation burden and neoantigen load, factors that are thought to
influence the immune attack on the cancer (171–173). Patterns
in RNA-seq data have been defined to classify tumors broadly
as “immune hot” (immune infiltrated) or “immune cold” (non-
infiltrated), with mixed patterns also present (13, 16, 163, 170).
The immune hot tumors are expected to be primed to respond
well to immunotherapy and other therapies, whereas the immune
cold tumors are thought to be largely incapable of responding
to immunotherapy. Similar RNA-seq analyses have been used
to demonstrate an immune hot vs. cold state in canine InvUC
(Figure 4) (59). This demonstrates that the canine InvUC model
can be used to develop and test strategies to convert immune cold
tumors to immune hot tumors in order to sensitize the tumor to
immunotherapy. There are also intriguing initial findings from
single cell RNA-seq analyses of canine InvUC (Figure 5) (174,
175).When performing single cell RNA-seq on InvUC tissues, the
tumor biopsy is digested into a single cell suspension. The cells
are segregated into CD45+ (immune cells) and CD45– (tumor
cells, stromal cells). Each cell is barcoded and the sequence of

each cell generated. This makes it possible to identify the different
immune cell populations present in the cancer, to determine the
gene expression in those immune cells indicating the activity of
the cells, and to determine changes in the number and activity
of the immune cells in each population over time. In the future,
this is expected to allow the characterization of each step in the
immune response in the individual patient. This could facilitate
the development of interventions aimed at specific parts of the
immune response in need of “help” in the individual.

While canine tumor immunology has lagged behind human
tumor immunology, the field is advancing rapidly and will
set the stage for high impact studies in dogs to improve
immunotherapies across both species.

PREVENTION, EARLY DETECTION, AND
EARLY INTERVENTION, AND VALUE OF
CANINE STUDIES

Challenges in Cancer Prevention Research
It is well-recognized that prevention of cancer holds the
greatest promise for reducing cancer morbidity and mortality,
as well as decreasing health care costs (176). This includes
primary cancer prevention aimed at stopping cancer from

FIGURE 4 | Canine invasive urothelial carcinoma (InvUC) samples display gene expression patterns classifying the tumors as immune infiltrated (immune “hot”) or

non-immune infiltrated (immune “cold”). A list of immune signature genes known to be upregulated in T-cell inflamed human InvUC samples were used (170) to

visualize the immune patterns that exist in canine InvUC. Normalized intensity values were used for supervised hierarchical clustering using Euclidean distance metrics

and Ward’s linkage algorithm as a distance metric. Note the predominantly high expression of immune genes in the right cluster of the canine InvUC samples (n = 15,

45%) classifying them as immune “hot” (immune infiltrated).

Frontiers in Oncology | www.frontiersin.org 12 January 2020 | Volume 9 | Article 1493

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Knapp et al. Canine Bladder Cancer - Translational Model

FIGURE 5 | Single cell RNA-seq analysis of canine invasive urothelial carcinoma. Unsupervised clustering of the canine InvUC sample was performed (Seurat

package, Satija Lab). The cells segregated into seven different clusters. Putative cell type assignment was based on marker gene expression and abundance within

the cluster. The gene expression heatmap focused on the CD45+ cells (immune cells) shows the cell clusters with putative immune cell type assignments on x-axis

and top 10 marker genes in each cluster on Y-axis. The split dotplot on right shows the intensity (dot color) and percentage of cells expressing (dot size) 13 marker

genes (x axis) analyzed in InvUC tissue across clusters before and after treatment (y axis). This type of data can be used to study mechanisms and generate new

hypotheses. For example, GPR183 which increases in cluster 1 cells, is known for its role in lymphoid organ development and positioning of activated CD4T cells in

lymphoid follicles, but its role in the immune state of InvUC has not been elucidated (174).

developing, and secondary cancer prevention aimed at detecting
cancer early and intervening early to stop its progression. In
order to most effectively prevent cancer, crucial information
is needed including: (1) environmental and host (genetic)
risk factors and gene-environment interactions that lead to
cancer, (2) effective methods for screening and early detection,
and (3) successful strategies for early intervention (i.e.,
chemoprevention, diet, drugs, others). This crucial information
is very difficult to elucidate in humans. Unlike the case
for breast cancer and colon cancer, specific well-defined
groups of people with high familial susceptibility for InvUC
have not been identified (15). Heritable risks which are
likely to exist have not yet been defined, and therefore,
cohorts of people who would provide the best study subjects
and who would most likely benefit from prevention, early
detection, and early intervention have not been established.
To further complicate matters, more than half of bladder
cancer patients are not aware of any exposures or risk
factors that contributed to their cancer (15, 34). And, for
people with known carcinogen exposures, the latency period
between the carcinogen exposure (i.e., cigarette smoke, specific
chemicals) and the development of bladder cancer can extend to
decades (15, 33, 34, 177).

Testing prevention strategies can also be challenging. Such
research would often require more years of study than would
be feasible. If an investigator wanted to test a cancer prevention
strategy in humans that would be applied from middle age to
the age of typical cancer diagnosis (e.g., from age 40 to age 65
years), the study would require 25 years or more for completion.
Clearly, relevant animal models with more compressed life
spans are needed for prevention studies in order to select the
strategies most likely to be successful in humans. There are many
compelling reasons why dogs who have InvUC or who are at risk
for developing InvUC can be key models in prevention research.

Unique Opportunities for Studies in Dogs
to Advance Cancer Prevention Research
There are many reasons why dogs are ideally suited to study
strategies for prevention, early detection, and early intervention
of InvUC (30). The similarities between InvUC in dogs and
humans have been detailed in this review. The compressed life
span in dogs makes prevention studies feasible in a reasonable
length of time. Further, dogs of specific breeds have a much
higher risk for developing InvUC than mixed breed dogs as
summarized in Table 5 (30).
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TABLE 5 | Breed-associated risk for InvUC in dogs (30)*.

Breed Number of

dogs in that

breed in

VMDB

Number of

InvUC cases

in that breed

OR

compared to

mixed breed

95%

confidence

intervals

Mixed breed dog

(reference

category)

42,777 269 1.0 NA

Scottish Terrier 670 79 21.12 16.23–27.49

Eskimo Dog 225 9 6.58 3.34–12.96

Shetland

Sheepdog

2,521 93 6.05 4.76–7.69

West Highland

White Terrier

1,234 44 5.84 4.23–8.08

Keeshond 381 10 4.26 2.25–8.07

Samoyed 471 10 3.43 1.81–6.49

Beagle 3236 62 3.09 2.34–4.08

Dalmatian 1253 19 2.43 1.52–3.89

*Data are summarized from the Veterinary Medical Database (VMDB). The odds ratios

(ORs) of InvUC risk compared with the risk in mixed breed dogs are included for breeds

with an OR > 2.0 and at least nine cases of InvUC in the breed recorded in the VMDB.

Scottish Terriers especially stand out for having a 20-
fold increased risk for InvUC compared to mixed breed
dogs (30). This provides a unique resource to identify
existing genes and new genes that have not yet been
characterized that contribute to cancer risk and to then assess
the expression of those genes in human InvUC patients. Dogs
offer a great opportunity to assess environmental risk and
gene-environment interactions leading to InvUC. In Scottish
Terriers, for example, exposure to lawn chemicals increases
the risk of InvUC 7-fold on top of the already existing
heritable risk (178). On a more positive front, Scottish
Terriers who consume vegetables three times per week in
addition to regular dog food have a 70% reduced risk for
InvUC (179).

Dogs can also be used to track chemical exposures. With
interest arising from the association between lawn chemical
exposure and InvUC risk, a study was undertaken to track
herbicide exposure and specifically to measure herbicide
concentrations in the urine of exposed pet dogs in a
community setting. In one study, three chemicals used in
lawn care products (2,4-dichlorophenoxyacetic acid, 4-chloro-
2-methylphenoxypropionic acid, dicamba) were measured on
the grass and in the urine of dogs from 25 households that
used lawn chemicals and from eight control households that
did not use lawn chemicals (180). Urine samples from the dogs
were collected prior to lawn treatment and at 24 and 48 h after
lawn treatment. The results were concerning in that after lawn
chemicals were applied, the chemicals were detected in the urine
of dogs in 19 of 25 treated households. Of even greater concern,
chemicals were found in the urine of dogs in 14 of the 25
households before the lawn was treated, and in four of eight

control households. This indicated widespread exposure to the
chemicals, most likely due in part to chemical drift from other
treated areas.

The compressed lifespan of dogs greatly facilitates timely
prevention studies. A study in humans from age 40–65 (25 years)
could be accomplished in dogs of “similar physiological ages”
in 2–4 years. Shorter term interventional strategies could be
tested over weeks to several months in dogs. Also, in conducting
research to assess the value of a prevention strategy in dogs, it is
muchmore feasible to control other variables (diet, smoking, etc.)
than is possible in humans. Regarding establishing the means
for cancer screening and early detection, dogs again offer an
excellent opportunity because of the compressed life span of dogs,
the motivation by pet owners to have cancer detected early in
their dog, and the feasibility of non-invasive screening tests and
then follow-up confirmatory tests to determine if cancer is or is
not present.

CONCLUSIONS

In conclusion, there is strong evidence that dogs with naturally-
occurring InvUC can represent a relevant predictive model
for InvUC treatment and prevention. Further validation of the
canine model could come from parallel human and canine
InvUC trials in which the outcome in dogs is predictive of the
outcome in humans. Dogs are anticipated to fill an essential
niche in cancer drug development and prevention research, and
to ultimately transform the outlook for humans (and dogs)
facing InvUC.
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