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Radiation pneumonitis (RP) is one of the major side effects of thoracic radiotherapy.

The aim of this study is to build a dose distribution based prediction model, and

investigate the correlation of RP incidence and high-order features of dose distribution.

A convolution 3D (C3D) neural network was used to construct the prediction model.

The C3D network was pre-trained for action recognition. The dose distribution was used

as input of the prediction model. With the C3D network, the convolution operation was

performed in 3D space. The guided gradient-weighted class activation map (grad-CAM)

was utilized to locate the regions of dose distribution which were strongly correlated with

grade≥2 and grade<2 RP cases, respectively. The features learned by the convolution

filters were generated with gradient ascend to understand the deep network. The

performance of the C3D prediction model was evaluated by comparing with three

multivariate logistic regression (LR) prediction models, which used the dosimetric, normal

tissue complication probability (NTCP) or dosiomics factors as input, respectively. All the

prediction models were validated using 70 non-small cell lung cancer (NSCLC) patients

treated with volumetric modulated arc therapy (VMAT). The area under curve (AUC) of

C3D prediction model was 0.842. While the AUC of the three LR models were 0.676,

0.744 and 0.782, respectively. The guided grad-CAM indicated that the low-dose region

of contralateral lung and high-dose region of ipsilateral lung were strongly correlated

with the grade≥2 and grade<2 RP cases, respectively. The features learned by shallow

filters were simple and globally consistent, and of monotonous color. The features of

deeper filters displayed more complicated pattern, which was hard or impossible to

give strict mathematical definition. In conclusion, we built a C3D model for thoracic

radiotherapy toxicity prediction. The results demonstrate its performance is superior

over the classical LR models. In addition, CNN also offers a new perspective to further

understand RP incidence.
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INTRODUCTION

Radiation pneumonitis (RP) is one of the most common side
effects of thoracic radiotherapy. Accurate prediction model is
desired to safely irradiate the tumor target without increasing
the risk of RP. The simple and straightforward dosimetric
factors, such as the mean lung dose (MLD) and dose volume
factors (the volume receiving dose greater than xGy, Vx), have
been proven to be closely related with RP incidence, but the
conclusions drawn from published studies differ from each other
(1–4). Compared with dosimetric factors, the normal tissue
complication probability (NTCP) factors have shown better
prediction capability (5–7) and smaller disagreement between
different institutions (8). The improvement can be possibly
explained by the utilization of more information of the dose
distribution. For instance, Vx can be interpreted as a discrete
point on the dose volume histogram (DVH) curve. On the other
hand, the NTCP factor utilizes all information of the DVH
curve. But still, the spatial information of dose distribution is
not utilized.

For medical images, such as CT, MRI, and PET, the spatial
distribution of intensity levels is visually perceived as image
“textures.” The recently emerged radiomics method extracts
the texture features from medical images, and studies their
correlation with therapeutic responses (9–14). The dosiomics
method was developed by applying the framework of radiomics
on dose distribution, i.e., to extract texture features from dose
distribution (15–17). Previous, we utilized the dosiomics method
for RP incidence prediction (18). The results demonstrate that
the dosiomics features outperform both the dosimetric and
NTCP factors.

Essentially, the radiomics (dosiomics) method first extracts
features from medical images (dose distribution) and then

FIGURE 1 | C3D network. (A) Architecture. (B) Guided Grad-Cam.

adopts classical machine learning (ML) approaches, such as
logistic regression (LR) and random forests, to construct the
prediction model. Although a large number of features are
extracted, high-order “subtle” features may possibly be neglected
in this process. With the increasing computational power of
modern computer, the recently developed deep learning (DL)
method (19) directly uses the raw data as input, and utilizes
conventional neural network (CNN) to reveal the subtle feature
hidden in original raw data. The CNN-based DL method
overwhelmingly outperforms classical ML methods, and has
been applied to pattern recognition, medical image analysis, and
bioinformatics etc. Zhen et al. first applied CNN on the unfolded
2D dose distribution of rectum surface for toxicity prediction
(17). Ibragimov et al. extended to 3D dose distribution for
hepatobiliary toxicity prediction (20). Both studies validated the
feasibility to use CNN-based DL method for toxicity prediction
after radiotherapy.

In this study, we applied the convolution 3D (C3D) network
(21) for RP incidence prediction. The C3D network was pre-
trained with UCF101 video dataset (22) for the task of action
recognition. The 3D dose distribution within total lungs was used
as the input. The performance of C3D models was compared
with three dosimetric, NTCP or dosiomics factors based models.
The guided grad-CAM method (23) was used to illustrate
the discriminative regions. In addition, we also investigated
the correlation of RP incidence and high-order features of
dose distribution.

METHODS AND MATERIALS

In this section, we first briefly introduced the patient dataset,
then presented the network architecture, feature illustration
and training strategy in details, and finally described the
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comparison against LR models based on the dosimetric, NTCP,
or dosiomics factors.

Patient Data
We used the same patient dataset as previous study (18). The
dataset includes 70 non-small cell lung cancer (NSCLC) patients
treated with 6MV volumetric modulated arc therapy (VMAT) in
our institution from 2013 to 2016. The radiotherapy treatment
plans were designed via Pinnacle treatment planning system (v
9.0). The dose was prescribed to 95% of the planning target (PTV)
volume. The slice spacing of planning CT and grid spacing of
dose calculation was 5mm and 4 mm3, respectively. RP grade
(ranging from 0 to 5) was evaluated according to Common
Terminology Criteria for Adverse Events (CTCAE v3.0). The
endpoint of all prediction models presented in this study is
grade≥2 RP. For the sake of simplicity, the grade≥2 RP cases are
referred as RP cases, and the grade 0 and 1 cases as none-RP cases
in the following text.

C3D Network
C3D network was designed for the task of video classification.
The input of C3D network is 3D data volume (frame-volume)
derived by stacking up video frames. The convolution and
pooling operations are also performed in 3D. The tasks of video
classification and RP prediction appear quite different from
each other. But essentially, both tasks attempt to search for the
discriminative features using 3D convolutions. Thus, the C3D
network can be used for dose distribution based RP prediction.

Another consideration is that the C3D network comes with
a set of well pre-trained parameters. The C3D network was pre-
trainedwithUCF101 video dataset (22). UCF101 dataset contains
13320 video clips from 101 categories, which is sufficient to
“feed” the complicated deep network. In (24), Zhang et al. proved
that the fully connected (FC) layers of CNN are task-oriented,
which act like a “firewall” and guarantee the generality of the
features learned by convolution layers. Therefore, it is possible
to transfer the pre-trained model when the source domain
(frame-volume) is completely different from the target domain
(dose distribution).

Architecture
The architecture of C3D network is shown in Figure 1A, which
is composed of five convolution layers followed by two fully
connection (FC) layers. The kernel and weight dimension of the
convolution and FC layers are also denoted in Figure 1A. The
original network was designed to recognize 101 different actions
in the video. For this study, the task is to predict the probability
of the RP and none-RP cases, i.e., to discriminate the two cases.
Thus, the dimensions of FC 6, FC 7, and softmax layers are
compressed to 4,096 × 256, 256 × 256, and 256 × 2 for the sake
of redundancy reduction.

Guided Grad-CAM and Convolution Filters
The guided gradient weighted class activation mapping (grad-
CAM) method was utilized to illustrate the critical regions of
dose distribution. As shown in Figure 1B, with dose volume as
input, forward-propagation yields RP probability. If the network

is interpreted as a highly complicated non-linear function,
then back-propagation (GB) operation is the calculation of
its gradient. The global GB is the gradient of RP probability
to dose volume. And the guided GB neutralizes the negative
rectified linear unit (ReLu) neuron to further suppress the noise.
According to the definition of gradient, the guided GB locates the
critical region of dose distribution, and the increase of dose in
the critical region may lead to significant increase or decrease
of RP probability. This means that the critical region is not
discriminative for the RP and none-RP cases.

The discriminative region can be shown by the CAM
method, which replaces the two FC layers with global average
pooling (GAP) layer. The weight of GAP layer (WFM) is
retrained for each class, which represents for the importance
of corresponding feature map to particular class. Therefore, the
weighted summation of WFM and feature map highlights the
discriminate region for the RP and none-RP cases, respectively.
The grad-CAM method proves the mean gradient of FC layers
is identical with WFM, thus saves the need of retraining. And

TABLE 1 | Clinical factors.

Characteristic Value

Stage

I 4 (5.7%)

II 5 (7.1%)

III 53 (75.7%)

IV 8 (11.4%)

Sex

Male 61 (87.1%)

Female 9 (12.9%)

Age

Range 35-84

Mean ± Std. 61 ± 10

Tumor location

Left 33 (47.1%)

Right 37 (52.9%)

KPS

≤80 41 (58.6%)

>80 29 (41.4%)

Concurrent chemotherapy

Yes 38 (54.3%)

No 32 (45.7%)

Smoking history

Yes 60 (85.7%)

No 10 (14.3%)

Prescription dose (Gy)

Single fraction 2.27 ± 0.85

Total 59.10 ± 5.67

RP grade

≥2 15 (21.4%)

<2 55 (78.6%)

KPS, Karnofsky performance status.
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the guided grad-CAM is calculated as Hadamard production of
global GB and grad-CAM.

In addition, the features learned by each filter were also
investigated. These features were represented by the input
images which product the largest output when subjected to
the convolution of corresponding filter. The input image with
maximal output was derived by gradient ascent.

Training Strategy
Transfer learning was used to address the issue of dataset scarcity.
The C3D network was pre-trained with the UCF101 dataset
for the task of action recognition. The dose volume was first
sampled to 64 × 64 × 64, and then copied to 64 × 64 × 64
× 3 to accommodate the architecture of C3D network. In order
to prevent overfitting, the following strategies were adopted: 1.
mini-batch size was set to 10; 2. only 1 epoch was used; 3. L2
regulation penalty were added on the weights of FC layers; and
4. a random dropout was added on FC 6 layer. For the issue
of data imbalance, the RP cases in the training dataset were
oversampled. And the training dataset was augmented by flipping
along three directions. Three different strategies were tested: (1)
training from scratch (Scratch), (2) training the FC layers only
(FC), and (3) fine-tuning the convolution layers and training the
FC layers simultaneously (Both). The learning rate of training
and fine-tuning was set to 10−3 and 10−4, respectively.

Multivariate LR Prediction Models
The C3D prediction model was evaluated by comparing with
the three LR prediction models presented in our previous study
(19). All the three models were built using multivariate LR, and
the inputs were 1. dosimetric factors, 2. NTCP factors and 3.
dosiomics factors, respectively. The dosimetric factors include
V5, V10, V15, V20, and MLD. The NTCP factors are two sets
of equivalent uniform dose (EUD) and NTCP factors of Lyman
(25) and parallel/serial (PS) models (26). The dosiomics factors
include 27 indices derived from the gray level co-occurrence

matrix (GLCM) and 16 indices derived from gray level run length
matrix (GLRLM). The calculation formulas can be referred in
(27). All the features were calculated for the dose distribution
within ipsilateral, contralateral and total lungs, separately. 1,000-
time’s bootstrap was used as training dataset, and the original
dataset as validation dataset.

For all the three models, the number of predictors was
fixed to 2 to avoid overfitting (28). All possible two-factor
combinations were traversed. The combinations with mean
Spearman correlation >0.8 or lower than −0.8 were excluded
to prevent overfitting. And the optimal combination was
determined as the combination with maximal mean training
AUC. The final coefficient of LR model was determined as the
median coefficient derived by training dataset.

Data pre-processing was implemented with Matlab
software (MathWorks, Natick, MA). The C3D network
was built and trained using tensorflow library in python
language (v1.4.0) (29). The dosiomics features were
extracted using the python pyradiomics package (v2.0.0)
(27). Multivariate LR was implemented using the R
stats package (v3.4.1) (30). Transparent reporting of a
multivariable prediction model for individual prognosis
or diagnosis (TRIPOD) statement can be found in the
Supplementary Material.

TABLE 2 | Multivariate LR prediction model*.

Significant factors

Dosimetric MLDI, VC
5

NTCP NTCPI
PS, EUD

C
PS

Dosiomics GLCMI contrast, GLRLMT low gray level run emphasis

*The superscripts “I,” “C” and “T” denote the features are extracted from ipsilateral,

contralateral and total lungs, respectively.

FIGURE 2 | Prediction ability evaluation. (A) ROC curve. (B) Precision-Recall curve.
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RESULTS

Fifteen out of seventy patients (21.4%) were diagnosed with
grade≥2 RP. The median prescription dose was 60Gy (ranging
from 50Gy to 70Gy). Other clinical factors are listed in Table 1.

Prediction Ability Evaluation
The mean AUC and standard deviation of 50-time random
10-fold cross validation is 0.566 ± 0.039 (Scratch), 0.778 ±

0.024 (FC) and 0.842 ± 0.049 (Both), respectively. And the
95% confidence interval is [0.533, 0.556], [0.772, 0.786], and
[0.830, 0.863]. The p-value of paired t-test between Both against
FC and Scratch is 1.238 × 10−11 and 1.031 × 10−51. Figure 2
shows the receiver operating characteristic (ROC) and precision-
recall curves of the partition with mean AUC. The ROC and
precision-recall curves of the three multivariate LR prediction
models are also plotted in Figure 2. As the number of patient
cases of this study is far from sufficient to feed the complicated
C3D network, the prediction performance of training from
scratch is only slightly better than random guess. The AUC
of only training the FC layers indicates that directly using the
set of parameters trained via the video dataset may not yield
satisfactory result, since the 3D dose distribution is quite different
from the frame-volume. Fine-tuning the convolution layers and
training the FC layers simultaneously achieves the best prediction
performance. The standard deviation of 50-time random 10-fold
cross validation is relatively small, which validates the stability
and also excludes the possibility of overfitting.

Table 2 lists the most significant predictors of the three
multivariate LR prediction models. All the three prediction
models extracts the twomost significant predictors from different
lung volumes. This is because the factors extracted from the
same lung volume are strongly correlated, and the corresponding
combinations are excluded to prevent overfitting. Detailed
correlation analysis can be found in LeCun et al. (19). The C3D

model outperforms the three LR models. The comparison of
C3D model and the three LR models suggest that the prediction
ability improves with the utilization of the information of the
dose distribution.

Guided Grad-Cam and Convolution Filter
Figure 3 shows the dose distribution, grad-CAM, global GB and
guided grad-CAM of the RP and none-RP cases, which were
averaged along axial, sagittal, and coronal directions for the
sake of clearance. The dose distribution within ipsilateral lung
is higher than the dose distribution within contralateral lung.
The global GB locates the regions that have greater influence
on RP probability. As shown in Figure 3, both the high-dose
region within ipsilateral lung and the low-dose region within
contralateral lung are critical for RP prediction. The grad-CAM
shows the discriminative region for the RP and none-RP cases.
The low-dose region of contralateral lung and the high-dose
region of ipsilateral lung are more correlated with the RP and
none-RP cases, respectively.

Figure 4 shows the representative features learned by the
convolution filters, which are actually the input producing
the largest output at corresponding filters. The pattern or
texture of the features extracted by shallow filters is simple
and globally consistent, and the color is also monotonous. As
the filters getting deeper, the extracted features show more and
more complicated pattern. The patterns are no longer globally
consistent. Meanwhile, the features also become richer in color.
It is hard or impossible to give strict mathematical definition of
these high-order and unnatural features.

DISCUSSION

In our pervious study, we have validated that the predictive ability
is positively correlated with the utilized information of the dose
distribution. This conclusion is further validated by comparing

FIGURE 3 | Comparison of RP and None-RP cases. (A) RP grade 2 case, (B) RP grade 0 case.
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FIGURE 4 | Convolution filters.

the performance of dosiomics based prediction model and the
C3D network presented in this study. Numerous features are
extracted from the dose distribution by the dosiomics method,
but do not include the high-order features learned by the C3D
network as shown in Figure 4. The comparison also suggests that
the CNN-basedDLmethod outperforms the classicalMLmethod
on RP prediction, as it does in the field pattern recognition.
The CNN-based DL method saves the need of hand-craft feature
extraction and selection. The framework is more general than
the dosiomics method, and is more suitable for radiotherapy
outcomes, either positive (survival, control rate) or negative
(normal tissue damage, complication).

Our results are consistent with published literatures on CNN-
based DL based radiotherapy toxicity prediction. In Ibragimov
et al. (20), reported that the AUCof CNN-based predictionmodel
was 0.85. Zhen et al. reported that the AUC was improved to 0.89
(17). Zhen et al. also found that the VGG-16 network, which is
pre-trained for image classification, can be “transferred” to 2D
dose distribution based toxicity prediction. The best prediction
performance is achieved by fine-tuning both the convolution
and FC layers simultaneously, which agrees with the finding of
this study.

The lack of large-scale labeled patient cases make it impossible
to train the complicated CNN from scratch, and also increases
the risk of overfitting. In Zhang et al. (24), proved that the
FC layers are task-oriented, which act like a “firewall” and
guarantee the generality of the features learned by convolution
layers. Therefore, it is possible to transfer the pre-trained
network when the source domain is completely different from the
target domain.

The AUC is increased from 0.782 to 0.842 when switching

from dosiomics method to DL technique. However, we see
vague or no possibility of further improvements of any dose

distribution based prediction models. This is because the dose
distribution, even strongly correlated with radiotherapy toxicity
incidence, is not the unique factor. Other clinical factors, such as
the age and chemotherapy, are also associated with radiotherapy
toxicity incidence.

Although the DL prediction model demonstrates satisfactory
prediction capability, the understanding of the model is not
clear. For now, we could only qualitatively assert that the spatial
features of low-dose and high-dose regions are critical for RP
cases and none-RP cases, respectively. The clinical meaning of
the finding is unclear. Furthermore, how to utilize the finding for
treatment plan design also needs to be further studied.
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