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Object: To identify genes of prognostic value which associated with tumor

microenvironment (TME) in acute myeloid leukemia (AML).

Methods and Materials: Level 3 AML patients gene transcriptome profiles were

downloaded from The Cancer Genome Atlas (TCGA) database. Clinical characteristics

and survival data were extracted from the Genomic Data Commons (GDC) tool. Then,

limma package was utilized for normalization processing. ESTIMATE algorithm was used

for calculating immune, stromal and ESTIMATE scores. We examined the distribution

of these scores in Cancer and Acute Leukemia Group B (CALGB) cytogenetics risk

category. Kaplan-Meier (K-M) curves were used to evaluate the relationship between

immune scores, stromal scores, ESTIMATE scores and overall survival. We performed

clustering analysis and screened differential expressed genes (DEGs) by using heatmaps,

volcano plots and Venn plots. After pathway enrichment analysis and gene set

enrichment analysis (GESA), protein-protein interaction (PPI) network was constructed

and hub genes were screened. We explore the prognostic value of hub genes by

calculating risk scores (RS) and processing survival analysis. Finally, we verified the

expression level, association of overall survival and gene interactions of hub genes in

the Vizome database.

Results: We enrolled 173 AML samples from TCGA database in our study.

Higher immune score was associated with higher risk rating in CALGB cytogenetics

risk category (P = 0.0396) and worse overall survival outcomes (P = 0.0224). In

Venn plots, 827 intersect genes were screened with differential analysis. Functional

enrichment clustering analysis revealed a significant association between intersect

genes and the immune response. After PPI network, 18 TME-related hub genes

were identified. RS was calculated and the survival analysis results revealed that

high RS was related with poor overall survival (P < 0.0001). Besides, the survival

receiver operating characteristic curve (ROC) showed superior predictive accuracy

(area under the curve = 0.725). Finally, the heatmap from Vizome database

demonstrated that 18 hub genes showed high expression in patient samples.
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Conclusion: We identified 18 TME-related genes which significantly associated with

overall survival in AML patients from TCGA database.

Keywords: immune/stromal scores, tumor microenvironment (TME), biomarkers, immune infiltrates, acute

myeloid leukemia (AML)

INTRODUCTION

Acute myeloid leukemia (AML) is a hematopoietic clonal
malignancy characterized by uncontrolled proliferation of
hematopoietic stem cells (HSCs) and progenitor cells without
the ability to differentiate into mature cells (1). The treatment
and prognosis of patients with AML depend on accurate
cytogenetics and genetic testing (2). Recently, significant progress
has been made in the basic and preclinical studies of acute
myeloid leukemia (AML). The improvement in AML is
largely due to advances in supportive care and hematopoietic
cell transplantation rather than conventional chemotherapy.
However, due to the high recurrence rate, the 5-year survival
rate is still very low, so there is an urgent need for
novel and effective treatment methods (3). More and more
attention has been focused on identifying appropriate AML
immunotherapy strategies.

Since immune checkpoint therapies such as CTLA-4 (4)
and PD-1 (5) have developed rapidly in AML in recent
years, tumor microenvironment (TME) is an important
cellular environment for immune cells, stromal cells, and
extracellular matrix molecules and has attracted more and more
attention (6, 7).

TME is a cellular environment in which tumor lesions are
present. It consists of endothelial cells, inflammatory mediators,
mesenchymal cells, and immune and stromal cells (8, 9). Among
them, immune cells and stromal cells are two major non-tumor
components, which are of great significance in the diagnosis
and prognosis of cancer. AML tumor cells form a complex
environment of the tumor microenvironment, which ultimately
promotes the adaptability and disease progression of tumor cell
transcriptome (10). On the other hand, TME has been found to
have a severe effect on gene expression in cancer tissues therefore
affecting clinical outcomes (11–16).

To further investigate the molecular biological properties of

TME, algorithms for gene expression data using The Cancer
Genome Atlas (TCGA) database have been developed. The
TCGA database is a complete genome-wide gene expression
profile for categorizing and detecting genomic abnormalities
in a large population worldwide (14, 17–19). For example,
Yoshihara et al. designed an algorithm called ESTIMATE that
uses expression data to estimate stromal cells and immune cells
in malignant tumors (14). In this algorithm, the expression
characteristics of specific genes in immune cells and stromal
cells are analyzed to calculate immune and stromal score to
predict non-tumor cell invasion. Recent reports indicate that
ESTIMATE is used in the study of prostate cancer (20), breast
cancer (21), and colon cancer (22). However, the characteristics
of the TME evaluated by ESTIMATE were not observed in
the AML.

To obtain more insights, we extracted the list of
microenvironment-related genes that predicted poor prognosis
of AML patients by using the TCGA database of AML cohort
and the immune score derived from the ESTIMATE algorithm
(14). More importantly, we developed a risk scoring system to
evaluate the prognostic value of central genes. In addition, the
correlation between central gene and immune infiltration was
also discussed.

METHODS AND MATERIALS

Data Collection
Level three gene transcriptome profiles of AML patients in
The Cancer Genome Atlas (TCGA) database (https://portal.gdc.
cancer.gov/) were collected. We enrolled sample data ended
with “−03” in sample codes, which means that these data
belong to the “Primary Blood Derived Cancer-Peripheral Blood.”
RNA expression for AML Multiforme was obtained from
IlluminaHiSeq (version: 2017-10-13). After that, we downloaded
the survival data through the Genomic Data Commons (GDC)
tool from TCGA. Sex, Cancer and Acute Leukemia Group B
(CALGB) cytogenetics risk category and survival condition were
extracted. We excluded AML samples that did not end in “−03”
and samples with incomplete survival and clinical information.
We used limma package for normalization processing (23).
Scores of immune, stromal and ESTIMATE were calculated
using ESTIMATE algorithm (https://sourceforge.net/projects/
estimateproject/).

Correlation Analysis and Survival Analysis
Ordinary one-way analysis of variance was performed to
show the association between immune scores, stromal scores,
ESTIMATE scores, and the CALGB cytogenetics risk category.
Kaplan-Meier (K-M) curves with log-rank test was based on
survival package (24, 25). We used K-M curves to evaluate the
relationship between immune scores, stromal scores, ESTIMATE
scores, and overall survival. P < 0.05 was considered as
statistically significant.

Heatmaps, Clustering Analysis, and
Differentially Expressed Genes
We divided the immune scores and the stromal scores into
high and low groups by median. We set |log(FC)| >1 and false
discovery rate (FDR) <0.05 as standard of limma package which
used for standardization of transcriptome data (23). To express
the results of differentially expressed gene (DEG) screening
and cluster analysis, |log(FC)| >1 and FDR <0.05 were set in
performing heatmaps; cut |log2FC| = 1 and cut P = 0.05 were
set in performing volcano plots based on a pheatmap package,
ggplot2 package, and clustering analysis. After that, intersected

Frontiers in Oncology | www.frontiersin.org 2 January 2020 | Volume 9 | Article 1509

https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://sourceforge.net/projects/estimateproject/
https://sourceforge.net/projects/estimateproject/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ni et al. Prognostic Genes in AML

DEGs were screened among immune scores and stromal scores
by Venn plots based on VennDiagram package (26).

Enrichment Analysis of Differentially
Expressed Genes and Gene Set
Enrichment Analysis
The Database for Annotation, Visualization, and Integrated
Discovery (DAVID, https://david.ncifcrf.gov/) was used
for the construction of gene ontology (GO) analysis by
biological processes (BP), cellular components (CC), and
molecular functions (MF) (27). In addition, the Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis with
q < 0.05 was performed based on org.Hs.eg.db package,
clusterProfiler, org.Hs.eg.db, enrichplot, and ggplot2 packages.
In the gene set enrichment analysis (GSEA) with FDR <

0.25, |enriched score|> 0.35, and gene size ≥35, we selected
“c2.cp.kegg.v6.2.symbols.gmt gene sets” as gene set database and
“Illumina_Human.chip” as chip platform (28).

Protein-Protein Interaction Network and
Hub Genes
Protein-protein interaction (PPI) network construction with
minimum required interaction score = 0.9 was based on the
STRING database (version 11.0) and Cytoscape software (version
3.7.1) (29, 30). We used cytoHubba to identify hub genes (31).
In cytoHubba, we selected top 10 nodes from each of the 12
algorithms, and the genes with degree <10 were ruled out.

Survival Curve and Risk Score
After hub genes were detected, we evaluated the prognostic value
by K-M analysis based on log-rank test. P < 0.05 was regarded as
statistically significant. Risk score (RS), which statistically equals
to 6 (β i

∗ Expi) (i = the number of prognostic hub genes),
was calculated for every AML patients based on multivariate Cox
regression analysis. Then, patients were separated into high- and
low-risk groups according to the median RS. In addition, K-M
curves were used to explore the association between different
RS level and overall survival. The survival receiver operating
characteristic curve (ROC) was drawn and the area under the
curve (AUC) was calculated for evaluating prognostic value (32).

Vizome Database Analysis
Vizome is the largest AML database which contains the whole-
exome sequencing of a cohort of 672 tumor specimens collected
from 562 patients (33). We verified the expression level,
association of overall survival, and gene interactions of hub genes
in the vizome database.

Statistical Analysis
IBM SPSS Statistics 20.0 was applied in multivariate Cox
regression analysis and K-M analysis. R software (version 3.5.2)
was utilized for statistical analysis. P < 0.05 represented as
statistically significant.

The flow diagram representing the work was shown in
Supplementary Figure 3.

TABLE 1 | Clinical Characteristics of 173 AML patients from TCGA cohort.

Male (%) Female (%) Total (%)

Number 93 (53.76) 80 (46.24) 173 (100)

CALGB

Favorable 16 (9.25) 16 (9.25) 32 (18.50)

Intermediate/Normal 52 (30.06) 51 (29.48) 103 (59.54)

Poor 25 (14.45) 11 (6.36) 36 (20.81)

Not Available 0 (0) 2 (1.16) 2 (1.16)

Event

Dead 56 (32.37) 49 (28.32) 105 (60.69)

Alive 32 (18.50) 26 (15.03) 58 (33.53)

Not Available 5 (2.89) 5 (2.89) 10 (5.78)

RESULTS

Immune Score Was Associated With
Cancer and Acute Leukemia Group B
Cytogenetics Risk Category and Survival
Outcome
We enrolled 173 AML samples from TCGA database with 93
males (53.76%) and 80 females (46.24%) in our study. Clinical
characteristics of AML patients were listed in Table 1. Besides,
we performed immune scores, stromal scores, and ESTIMATE
scores in Supplementary Table 1. Box plots revealed that higher
immune score was associated with a higher risk rating in
CALGB cytogenetics risk category (P = 0.0396, Figure 1A).
However, significant results were not observed based on stromal
scores and ESTIMATE scores (P = 0.8585 and P = 0.3320,
respectively; Figures 1B,C). Then, we divided AML samples
into high-score groups and low-score groups according to the
median of immune scores, stromal scores, and ESTIMATE
scores, respectively. K-M curves were performed to evaluate
the relationships between different score levels and overall
survival. The results revealed that higher immune score and
ESTIMATE score were associated with worse overall survival
outcomes (P = 0.0224, P = 0.0195, respectively; Figures 1D,F),
whereas no significant results were found in stromal scores group
(P = 0.3676, Figure 1E).

Comparison of Gene Expression Profiles
With Immune Scores and Stromal Scores
in Acute Myeloid Leukemia
We constructed a heatmap of clustering analysis in Figure 2A.
The right side of the samples was the low immune score
group, while the left half was the high immune score
group. Besides, DEGs based on the immune score group
were reflected in volcano plot (Figure 2B). In the stromal
score group, the heatmap and volcano plot were shown in
Supplementary Figure 1. Furthermore, we screened 331 up-
regulated DEGs and 889 down-regulated DEGs in the immune
score group (Supplementary Table 2) and screened 195 up-
regulated DEGs and 870 down-regulated DEGs in the stromal
score group (Supplementary Table 3). In the Venn plots, 147
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FIGURE 1 | Immune score is associated with CALGB cytogenetics risk category and survival outcome. The distribution of immune scores (A), stromal scores (B), and

ESTIMATE scores (C) in CALGB cytogenetics risk category were shown in box plots. K-M survival curves in immune score group (D), stromal score group (E), and

ESTIMATE score group (F) revealed the relationships between different score levels and overall survival. CALGB, Cancer and Acute Leukemia Group B; F, favorable;

I/N, intermediate/normal; P, poor; K-M, Kaplan-Meier; L, low score group; H, high score group.

up-regulated intersected genes (Figure 2C) and 680 down-
regulated intersected genes were screened (Figure 2D).

Functional Enrichment Analysis
Functional enrichment clustering analysis revealed a significant
association between intersected genes and the immune response.
We selected top 10 GO terms in each of the biological process
(Figure 3A), cellular component (Figure 3B), and molecular
function (Figure 3C). Inflammatory response, immune response,
plasmamembrane, receptor activity were topGO terms identified
in our analysis. In the KEGG pathway annotation (Figure 3D)
and enrichment analysis (Figure 3E), we found pathways

associated with immunity, cancer, and tuberculosis. The top 20
pathway enrichment analysis was shown in Figure 3F, where
bubble size represented gene number and color represented
Q value.

Protein-Protein Interaction and Hub Gene
Identification
PPI network contained 786 nodes and 1,774 edges. Results
from STRING were further analyzed by Cytoscape. The
results of algorithms from cytoHubba applied in hub gene
identification were shown in Figure 4. Circle size was represented
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FIGURE 2 | Comparison of gene expression profiles with immune scores and stromal scores in AML. In immune score group, heatmap (A) and volcano plot (B) were

used to demonstrated differential expressed genes. Venn plots were performed to reveal up-regulated intersect genes (C) and down-regulated intersect genes (D).

by node degree. Finally, 18 TME-related hub genes were
identified as follows: ITGAL, ITGAM, HLA-DRB1, HLA-DRB5,
FPR1, CX3CR1, TNFRSF1B, CXCL16, CTSB, CTSS, HLA-DRA,
P2RY13, ITGB2, CEACAM3, SLC11A1, C5AR1, ADORA3,
and GNGT2.

Gene Set Enrichment Analysis
The results of GSEA revealed that antigen processing and
presentation, B cell receptor signaling pathway, chemokine
signaling pathway, FcγR mediated phagocytosis, graft vs.
host disease, hematopoietic cell lineage, intestinal immune
network for IgA production, natural killer cell mediated
cytotoxicity, nucleotide binding oligomerization domain (NOD)
like receptor signaling pathway, T cell receptor signaling
pathway, and Toll like receptor signaling pathway were main

pathways enriched by intersected genes related to tumor
immunity (Figure 5).

Risk Score and Survival Analysis
According to the results of the Cox regression analysis,
the RS calculation formula is as follows: RS = ITGAL ∗

0.177 + ITGAM ∗ 0.315 + HLA-DRB1 ∗ 0.371 + HLA-
DRB5 ∗ (−0.009) + FPR1 ∗ 0.034 + CX3CR1 ∗ (−0.074)
+ TNFRSF1B ∗ 0.172 + CXCL16 ∗ (−0.104) + CTSB ∗

(−0.38) + CTSS ∗ (−0.201) + HLA-DRA ∗ (−0.353) +

P2RY13 ∗ 0.003 + ITGB2 ∗ 0.038 + CEACAM3 ∗ (−0.051)
+ SLC11A1 ∗ (−0.034) + C5AR1 ∗ (−0.049) + ADORA3
∗ 0.213 + GNGT2 ∗ 0.208. We divided 163 eligible AML
patients into low-RS group and high-RS group according to
the median. The result of survival analysis demonstrated that
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FIGURE 3 | Functional enrichment analysis. Top 10 GO terms in each of biological process (A), cellular component (B), and molecular function (C) were performed

for functional enrichment clustering analysis. KEGG pathway analysis were performed as pathway annotation (D), enrichment barplot (E), and bubble chart of top 20

pathway enrichment analysis (F). GO, gene ontology; BP, biological processes; CC, cellular components; MF, molecular functions; KEGG, Kyoto Encyclopedia of

Genes and Genomes.
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FIGURE 4 | Results of algorithms from cytoHubba. The PPI network data from STRING was further analyzed by Cytoscape and hub genes identification was

performed by cytoHubba based on 12 algorithms. PPI, protein-protein interaction.

high RS was related with poor overall survival (Figure 6A). To
evaluate the prognostic value of RS, we drew the ROC curve
and calculated the AUC. From Figure 6B, AUC was 0.725,
which revealed superior predictive accuracy in overall survival.
Besides, we constructed survival curves of 18 hub genes for
exploring prognostic value (Figure 7). The results showed that
the high expression level of hub genes was associated with poor
overall survival.

Vizome Database Analysis
We verified the expression levels of hub genes in the
Vizome database. The heatmap demonstrated that 18 hub
genes showed high expression in the samples from the
database (Figure 8A). In addition, four gene interactions of
the hub genes were shown in Figure 8B. Furthermore, the

expression level of hub genes in overall survival was shown in
Supplementary Figure 2.

DISCUSSION

In recent years, since the rapid development of immunological

checkpoint therapy such as CTLA-4 (4) and PD-1 (5) in
AML, TME has attracted more and more attention as

a key cell environment for immune cells, extracellular

matrix molecules, and stromal cells (6, 7). Immunotherapy

for cancer destroys cancer cells and destroys the immune
system. There is increasing evidence that the key mechanism
of interaction between the immune system and AML
is the immune checkpoint in immune dynamics (34).
Immune checkpoint, which is defined as co-stimulatory
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FIGURE 5 | Results of GSEA analysis. GSEA analysis was performed to further screen the significant pathway between higher immune scores group and lower

immune scores group. GSEA, gene set enrichment analysis.

FIGURE 6 | Prognostic value of RS. K-M curve (A) based on low-RS group and high-RS group and ROC curve (B) with AUC = 0.725 represented the prognostic

value of RS. K-M, Kaplan-Meier; RS, risk score; OS, overall survival; ROC, operating characteristic curve; AUC, area under the curve.
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FIGURE 7 | K-M curves of 18 hub genes. K-M curves were applied to explore the association between expression levels of hub genes and overall survival. K-M,

Kaplan-Meier.
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FIGURE 8 | Vizome database analysis. We verified the expression levels of hub genes in the Vizome database by heatmap (A) and gene-interaction plot (B).

and co-suppressor molecules that regulate immune cell
activity, could be coordinated as a regulatory loop to
self-tolerate the immune system under normal physiological
conditions (35, 36).

In our current study, we calculated the immune score, stromal
score, and ESTIMATE score for each AML sample extracted
from the TCGA database by applying the ESTIMATE algorithm.
The results show that the immune scores for malignant
tumor cases are statistically higher and are associated with
worse survival outcomes, advanced tumor grades, and higher
pathological stages. ESTIMATE algorithm-derived immune
score was first calculated in AML to assess prognostic value
and provide additional evidence for the biological basis of
immunotherapy. In our research, the PPI network was built
using the SRING tool and Cytoscape software. Finally, 18 TME-
related hub genes were selected and the potential pathways
such as immune response, inflammatory response, plasma
membrane, and receptor activity were identified. We explored
the associations between hub genes with immune infiltration
in AML TME by using the deconvolution algorithm based
on the TIMER database. We found that 18 hub genes
including ITGAM, TNFRSF1B, HLA-DRB1, HLA-DRB5, and
CX3CR1 were related to hematopoietic cell lineage, intestinal
immune network for IgA production, natural killer cell
mediated cytotoxicity, NOD like receptor signaling pathway,
T cell receptor signaling pathway, and Toll like receptor
signaling pathway.

Integrin alphaM (ITGAM) is a cell surface receptor selectively
expressed on leukocytes (37), also known as differentiation 11b
(CD11b), macrophage-1 antigen alpha subunit or macrophage
receptor 1 alpha subunit (MAC1a), complement component
3 receptor alpha chain (CR3a). In the GENE database of the
National Center for Biotechnology Information (NCBI), the
protein is also named as systemic lupus erythematosus type
6 (SLEB6) or MO1A (38–40). It is a protein subunit that
forms the heterodimeric integrin alpha-M beta-2 molecule with
cluster of differentiation 18 (CD18), also known as complement
receptor 3 (CR3) orMO1,macrophage-1 antigen ormacrophage-
1 antigen (Mac-1) (38–40). This protein is involved in cell
activation, chemotaxis, cytotoxicity, phagocytosis, and regulates
the interaction between leukemic cells and microenvironment
by binding to its ligand, such as deactivated complement
component 3b (iC3b), intercellular adhesion molecule (ICAM),
fibrinogen, beta-glucan, coagulation factor X, etc. (41–46).
More recently, ITGAM has also been defined as a marker

for myeloid suppressor cells, which has been reported to be
used by malignant cells to suppress anti-tumor immunity
and promote malignant expansion or refractory therapy (47–
49). Therefore, it can be speculated that ITGAM may be
involved in the regulation of malignant AML cell biology,
and its expression level may affect the prognosis of AML
patients. Recently, a meta-analysis included 13 studies with
a total of 2,619 patients (37). Results of the meta-analysis
showed that ITGAM positivity was associated with lower
complete remission rate (OR = 0.44; 95% CI, 0.25–0.79; p
= 0.006) and shorter OS (HR = 0.66; 95% CI, 0.55–0.80;
p < 0.0001), Consistent with our analysis, ITGAM positivity
predicts a poor prognosis of AML patients. Therefore, ITGAM
expression level might be considered a prognostic biomarker for
AML patients.

TNF receptor superfamily member 1B (TNFRSF1B) is one of
type I transmembrane receptors, which is also named as CD120b,
TBPII, TNF-R-II, TNF-R75, TNFBR, TNFR1B, TNFR2, TNFR80,
p75, p75TNFR (50). TNFRSF1B promotes tumor progression
by maintaining a pro-tumor immune-microenvironment or
by promoting the proliferation and survival of malignant
cells. In the tumor microenvironment, TNFRSF1B is widely
expressed in many types of cells, including immune cells
and malignant cells (51). TNFRSF1B usually accelerates the
malignant transformation and growth of tumor cells, rather
than inducing cell death through apoptosis (52). Similar to
tumor cells, TNFRSF1B protects immunosuppressive regulatory
T (Treg) cells and myeloid-derived suppressor cells (MDSC) from
the death-inducing TNF and thus enhances the proliferation and
function of those tumor-promoting cells (53). To make matters
worse, TNFRSF1B worsens the programmed death of phagocytic
macrophages responsible for clearing of tumor cells. Mediating
those direct and indirect effects, TNFRSF1B exacerbates cancer
progression (54).

TNFRSF1B is mainly expressed on malignant cells and
in the immunosuppressive cell compartment within the
tumor microenvironment. It is involved in promoting tumor
development and facilitated metastasis (50). Therefore,
TNFRSF1B represents an attractive target for tumor
therapy. Specifically, blocking the ligand TNF is an option.
As TNFRSF1B is more highly expressed than TNFR1 in
tumors and tumor-related cells, TNF is likely to have a tumor-
promoting function instead of an inhibitory impact. TNF
ablation effectively reduces tumor growth (55). In preclinical
studies, the use of TNFRSF1B+ Treg cells enhanced the efficacy
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of chemotherapy (56). In a clinical trial of patients with AML,
patients received the demethylating agent, azacitidine, and the
histone deacetylase inhibitor, panobinostat, which effectively
eliminated TNFRSF1B+ Treg cells in peripheral blood and
bone marrow (57). These TNFRSF1B+ Treg cells were earlier
found as potent suppressive immune cell subset with enhanced
migratory ability that promote disease progression and hamper
tumor therapy (57, 58). Beneficial clinical responses are derived
from more active effector T cells, as determined by increased
production of interferon-γ and IL-2. Immunosuppressive
microenvironment is the main obstacle to tumor therapy. In
the past decade, immunotherapy using checkpoint closures
and engineered t-cells has been a huge success (10). TNF is
abundant in any tumor microenvironment. Tumor cells with
high expression of TNFRSF1B resist TNF-induced cell death by
ligand binding to TNFRSF1B. TNFRSF1B is highly expressed
not only in tumor cells but also in immunosuppressive cells,
including MDSC and Treg cells (54–59). Therefore, TNFRSF1B
is closely related to the immunosuppression ability of tumor
promoting cells. All of these characteristics make TNFRSF1B
an ideal candidate for targeted cancer therapy. Several studies
(56, 57, 60) targeting TNFRSF1B already proved its great
potential in tumor treating. Future investigations will provide
more detailed knowledge about all facets and on the cell-type
dependency of TNFRSF1B’s immunosuppressive effects that we
need to translate it into the treatment of malignant diseases.

Notably, the risk model was calculated based on 18 hub
prognostic genes associated with AML TME. The AUC of the
ROC curve reveals satisfactory prediction efficiency of risk
signature. This new TME central gene-related risk scoring model
provides a new theoretical basis for the prognosis assessment
of AML patients, and is expected to be further applied in
future clinical management. Immunotherapy is one of the most
expensive cancer treatment groups and it is not clear how patient
and disease-specific characteristics should guide the selection
of immunotherapy. In addition, questions remain about their
use in treatment, support and maintenance environments. In
order to establish the role of immune-based therapy in managing
highly heterogeneous diseases such as AML, costly and large,
randomized trials are needed which requires the identification
of adequate biomarkers to help predict treatment response and
toxicities, and to accurately select patients for accrual (10).
In our current work, we focused on genes characteristic of
microenvironment, which in turn affect the development of AML
and hence contribute to patients’ overall survival. Our resultsmay
provide additional data in decoding the complex interaction of
tumor, immunotherapies and tumor environment in AML.

It is important to note that limitations existed in our current
study. Firstly, we only selected target data from the TCGA public
database through biological algorithm approaches. We should
validate the results of this article in clinical patients in further
study. Secondly, 18 hub genes related to immune cells infiltration
should be further studied to clarify the regulatory mechanism
in immune infiltrates of AML. Finally, considering the choice
of analytical approaches, we included a limited database for the
screening of hub genes in the immune ecosystem, whichmay lead
to biased results due to the neglect of other databases.

In summary, TME-related hub genes were identified from
functional enrichment analysis of TCGA database based on
ESTIMATE algorithm. We believed that these hub genes
might become potential biomarkers of AML according to
survival analysis and prognostic value evaluation. In addition,
RS provided a novel theoretical basis for predicting survival
conditions of AML patients. Finally, further investigation of
TME-related hub genes might contribute to new insights into
the potential association of TME with AML prognosis in a
synthetical way.

CONCLUSION

In our study, we selected the transcriptional profiles from
public databases based on bioinformatic algorithm and identified
specific signatures associated with matrix and immune cell
infiltration in AML TME.
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