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RNA processing was recently found to affect DNA damage response. The RNA

processing factors THRAP3 and BCLAF1 play critical role in keeping DNA genomic

stability by regulating the transcription, mRNA splicing and export of DNA repair proteins

BRCA2, PALB2, Rad51, FANCD2, and FANCL in response to DNA damage. RNA

processing factors THRAP3 and BCLAF1 play critical roles in maintaining DNA genomic

stability. These factors regulate transcription, mRNA splicing and nuclear RNA export

of DNA repair proteins BRCA2, PALB2, Rad51, FANCD2, and FANCL in response

to DNA damage. Splicing factors SRSF10 and Sam68 were found to control the

DNA damage agent-induced mRNA splicing of transcripts including BCLAF1, BRCA1,

BCL2L1, CASP8, CHK2, and RBBP8 to regulate apoptosis, cell-cycle transition and DNA

repair. Splicing factors and RNA binding proteins (RBPs) were also found to play a critical

role in DNA/RNA hybrids (R-loops) formed during transcription and RNA processing

to prevent RNA-induced genome instability. At the same time, DNA repair proteins

FANCI and FANCD2 were found to regulate the nuclear localization of splicing factors

SF3B1 in the DNA damage response. In addition, tumor-derived extracellular vesicles

(Evs) enhanced by chemotherapeutic agents in cancer were found to promote cancer

metastasis and drug resistance. Inhibiting Evs from cancer cells significantly reduced

cancer metastasis and drug resistance. Furthermore, cross-talk between the DNA

damage response and the immune response was observed including the enhancement

of the efficacy of immune checkpoint blockade by PARP inhibitors and the effect of

PD-L1 on mRNA stability of various mRNAs involved in DNA damage response by acting

as a novel RNA binding protein to increase drug resistance in cancer cells. This review

will introduce recent progress on the interplay of the DNA damage response, the RNA

processing and the extracellular vesicles mediated metastasis.
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INTRODUCTION

Generally, RNA processing is not included in DNA damage response network, which is mainly
consisted of DNA repair proteins, cell cycle checkpoint regulators, PI3K-like kinases ATM, ATR,
or DNA-PK and downstream kinases Chk1 and Chk2. However, recent studies indicate RNA
processing directly involves in traditional DNA damage repair mediated by BRCA1 (1) and BRCA2
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(2, 3). Many observations indicate that there are connections
between DNA damage and immune system activation.
Intracellular immune checkpoint protein PD-L1 was fond
to regulate DNA damage response by acting as RNA binding
proteins to regulate many DNA repair proteins (4). DNA damage
also can activate immune system (5–7). In this review, we will
introduce recent progression on how RNA processing cross-talk
with cellular response to DNA damage and the connections
between immune system with cellular response to DNA damage
including how immune checkpoint protein PD-L1 regulates
cellular response to DNA damage and how DNA damage can
active immune system.

RNA Processing Factors Also Function in
Maintaining DNA Genomic Stability
RNA-processing factors function in the maintenance of genome
stability; they regulate mRNAs encoding for DNA repair proteins
or directly involve in DNA damage responses by interacting
with DNA repair proteins. For example, RBM14 is an RNAbp
and joins the PARP-dependent DSB repair by interacting with
PARP1 (8). Other RNA-binding proteins including FUS/TLS,
EWS, TARF15, and some hnRNPs also play important roles in
the PARP-dependent DSB repair process (8, 9). mRNA splicing
factor hnRNP C is another example required for PALB2/BRCA2
nucleoprotein complex function in DNA repair (3). Knockdown
of hnRNP C caused the expression reduction of DNA repair
proteins including BRCA1, BRCA2, RAD51, and BRIP1 at both
the mRNA level and the protein level (10). BCLAF1 (1) is a
BRCA1 binding partner at the BRCA1-mRNA splicing complex
induced by DNA damage, which was named as a Bcl2-associated
transcription factor to promote apoptosis. BRCA1/BCLAF1
target genes include ATRIP, BACH1, and EXO1 (1). Besides
BCLAF1, the DNA damage-induced BRCA1 protein complex
includes BRCA1, Prp8, U2AF65, U2AF35, and SF3B1 (1).
Depletion of BRCA1, BCLAF1, and U2AF65 increases sensitivity
to DNA damage and causes defective DNA repair. A high
incidence of somatic mutations of BCLAF1, U2AF65, U2AF35,
SRSF2, SF3A1, SF3B1, and PRPF40B at the BRCA1/BCLAF1
mRNA splicing complex was reported in various cancer types
(1). Most transcription and pre-mRNA splicing processes are
inhibited in response to DNA damage. However, transcription,
pre-mRNA splicing and mRNA exportation from the nucleus are
active in response to DNA damage for DNA damage response
(DDR) genes including BRCA2, PALB2, Rad51, FANCD2, and
FANCL (11). These genes are required for DNA damage repair
to maintain genomic stability and are regulated by RNAbps
THRAP3 and BCLAF1 in response to DNA damage. Depletion
of both BCLAF1 and THRAP3 leads to the reduction of mRNA
splicing, downregulation of the export of BCLAF1/THRAP3
target genes, and the loss of their encoded proteins compared

Abbreviations: FUS/TLS, fused in sarcoma/translocated in sarcoma; EWS,

Ewing sarcoma; TARF15, TATA box-binding protein-associated factor 68 kDa;

hnRNPs, heterogeneous nuclear ribonucleoproteins; MFAP1, microfibrillar-

associated protein 1; IRF3, interferon regulatory factor 3; STING, STimulator of

Interferon Genes; TBK1, TANK binding kinase 1; IRF3, interferon regulatory

factor 3; Evs, extracellular vesicles; RNAbps, RNA binding proteins; R-loops,

DNA/RNA hybrids.

to mild effects by depletion of THRAP3 or BCLAF1 alone
(Figure 1) (11).

Splicing Factors and RNA Helicases Are Involved in

Cellular Responses DNA Damage
During the DNA damage response, splicing factors and
RNA helicases play integral roles in gene expression. mRNA
interactome capture was utilized to identify proteins that were
highly enriched in mRNA metabolic processes and components
of the nucleolar proteome, including several RNA helicases
DDX5/p68, DDX1, SLFN11, and DDX3X (9). DDX54 is one of
the 266 RBPs in the DDR proteins with increased binding to poly
(A)+ RNA upon IR exposure (9). The interaction of DDX54 with
specific proteins of core spliceosomal complexes B (CDC40),
C(DDX41), and U2 snRNP including SF3B1, DDX42, U2AF1,
andDHX8was increased upon IR exposure (9). Another example
of RNAbp in cellular responses to DNA damage is MFAP1
(microfibrillar-associated protein 1), a spliceosome-associated
factor. MFAP1 depletion induced the increase of γH2AX foci and
DNA breaks by causing alterations of mRNA splicing and gene
expression of target genes involved in cellular responses to DNA
damage (12).

DNA Damage Induces the Alterations of
RNA Splicing of Many Transcripts Involved
in Genomic Stability Maintenance
DNA damage induced by oxaliplatin was found to change the
binding and activity of several regulatory RNA binding proteins
including SRSF10, hnRNP A1/A2, and Sam68 on the Bcl-x pre-
mRNA to alter splice site selection and to increase the level
of pro-apoptotic Bcl-xS (13, 14). These RNA binding proteins
also collaborate to drive the DNA damage-induced splicing
alteration of several transcripts involved in cellular response to
DNA damage including BCLAF1, BRCA1, BCL2L1, CASP8, and
CHK2 (Figure 1) (13, 14). Mutations of the RNA processing
factors result in the increase of spicing isoforms of DNA
repair proteins including BARD1β, FANCE14, and BRCA1-
111q in cancers. BRCA1-associated RING domain protein 1
(BARD1) splice variant (SV), BARD1β, can sensitize colon cancer
cells to poly ADP ribose polymerase 1 (PARP-1) inhibition by
impairing BRCA1 mediated DNA homologous recombination
repair (15). FANCE splice isoform (FANCE14) impaired mono-
ubiquitination of FANCD2 and FANCI, which inhibits the FA-
BRCA pathway (16). A BRCA1-111q splice variant lacking part
of exon 11 still contributes to drug resistance to PARP inhibitors
and cisplatin. Spliceosome inhibitors can reduce BRCA1-111q
levels and increase sensitivity to PARP inhibitors and cisplatin in
cancer cells carrying exon 11 mutations of BRCA1 (17).

DNA Repair Proteins Function to Prevent
Co-transcriptional R-loop-Associated DNA
Damage
RNA–DNA hybrids (R-loops) have been associated with genomic
instability in human diseases including cancer and neurological
diseases. RNases H are a family of endonucleases that hydrolyze
RNA residues in RNA/DNA hybrids to prevent the accumulation
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FIGURE 1 | DNA damage response and repair proteins and RNA binding proteins act coordinately to maintain genome stability.

of R-loops for the maintenance of genome stability (18). The
ssDNA-binding protein replication protein A (RPA) interacts
with RNaseH1 at R loops in cells. RPA acts as a sensor of R loops
and a regulator of RNaseH1 in suppression of genomic instability
(19). Genome-wide RNA-loops are studied by S9.6 antibody
CHIP against RNA–DNA hybrids and RNAse H1 R-ChIP. A
catalytically inactive RNASEH1 that can bind RNA–DNAhybrids
but not resolve them is used in RNAse H1 R-ChIP (18). In
contrast to the S9.6 antibody, RNASEH1 has a higher affinity for
RNA-DNA hydrids (20). Using S9.6 antibody coupled to mass
spectrometry, SRSF1, FACT, and Top1, were identified as R-loop-
associated factors. DHX9 helicase promotes R-loop suppression
and transcriptional termination. Endonuclease RNase H and
helicases DHX9 (20) and SETX are known to resolve the R-
loop (21). The RNA/DNA hybrid interactome is a useful resource
to study R-loop biology (22). R-loops at CTG.CAG tracts are
vulnerable to cause DNA instability (22–25). Enhanced R-loops
formation are observed at gene-specific repeat expansions in
many genetic disorders such as Huntington’s disease [CAG
repeats], and fragile X mental retardation or fragile X syndrome
(FXS). These well-known neurological diseases are associated
with abnormal R-loops accumulation at trinucleotide repeat (22–
25). Splicing factors and RNA binding proteins (RBPs) play
critical role in DNA/RNA hybrids (R-loops) to prevent RNA-
induced genome instability (26). Although no clear mechanisms
have been identified, many DNA repair proteins, RNA binding
proteins and long non-coding RNAs are involved in suppression
R-loops formation as shown in Table 1.

The BRCA1 and SETX Complex Suppresses

R-loop-Associated DNA Damage
Senataxin (SETX) is a RNA/DNA helicase and a BRCA1
interacting protein identified by yeast two hybrid assays and MS-
based BRCA1/protein interaction screens (21). Knockout SETX
gene leads to a defect in reproduction in male mice. Mutations of

TABLE 1 | Known factors involved in R-loops.

Factors Function

BRCA1 and SETX complex Suppresses R-loop associated DNA

damage

BRCA2 and PAF1 Prevent R-loops accumulation

FA pathway Prevent R-loops accumulation

RECQ like helicases Sgs1and BLM Regulate R-loop-associated genome

instability

WRN Prevents R-loop-associated genomic

instability

RNA helicases DDX1, DDX21, and

Ddx19

Reduce R·loops formation

RNA processing proteins FUS and

TDP43

Inhibit R loops-associated DNA damage

GA0045A R-loops dependent TET1 binding CpG

islands at promoters

Long non-coding RNAs (dilncRNAs) Required for R-loop-driven DNA

damage repair

SETX is found in two distinct neurological disorders including
ataxia with oculomotor apraxia type 2 (26) and a juvenile
form of ALS (27). BRCA1 and SETX complex is recruited to
suppress co-transcriptional R-loop-associated DNA damage (21).
A deficiency in BRCA1/SETX complex results in unrepaired
ssDNA breaks and increases of γ-H2Ax signal.

Inactivated BRCA2 and Depleted PAF1 Cause the

R-loops Accumulation
R-loops are frequently found in BRCA2-deficient cancer cells.
BRCA2 is involved in the release of RNA polymerase II
(RNAPII) from promoter-proximal pausing (PPP) sites. BRCA2
inactivation decreases RNAPII-associated factor 1 (PAF1)
recruitment and impedes nascent RNA synthesis. PAF1 depletion
also causes the R-loop accumulation (2, 3).
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The FA Pathway Plays a Role in Preventing R-loop

Accumulation
The FA pathway prevents R loop accumulation that hinders
replication fork (RF) progression and results in DNA breaks.

FANCD2 foci increase in untreated and MMC-treated cells
defective in FANCD2 or FANCA indicates that the FA functions
at R loop. FANCD2 was found to interact and recruit RNA
processing (28–30) enzymes hnRNPU and DDX47 to R-loops
during mild replication stress (33). BRCA2/FANCD1 and
FANCD2/FANCI were found to protect stalled replication forks,
indicating that the Fanconi Anemia (FA) pathway may take a
role in preventing R loop-dependent genome instability. The
Fanconi anemia (FA) pathway is critical to repair inter-strand
DNA cross-links (ICLs). However, a 5′ exonuclease, SAN1, is
involved in ICLs independent of the FA pathway. Knockout of
SAN1 increases sensitivity to ICLs. SAN1 was found to interact
with senataxin (SETX) to resolve R-loops to prevent cross-link
sensitivity (28–30).

R-loop-Associated Genome Instability Is Regulated

by RECQ-Like Helicases Sgs1 and BLM
Sgs1 is the ortholog of human Bloom’s syndrome helicase BLM
in yeast. The loss of SGS1 increases R-loop accumulation. BLM
has been confirmed in suppressing R-loop in Bloom’s syndrome
fibroblasts or by depletion of BLM in human cancer cells (31).

WRN Is a Regulator for R-loop-Associated Genomic

Instability
Werner syndrome (WS) is a rare, autosomal recessive disorder
characterized by the appearance of premature aging caused
by deficiency of Werner protein (WRN). WRN deficiency
sensitizes cells to replication- transcription collisions and
promotes accumulation of R-loops.WS cells show impaired ATR-
mediated CHK1 activation to mild replication stress. WS cells
prevent chromosomal instability by ATM mediated activation of
CHK1 (32).

RNA Helicases DDX1, DDX21, and Ddx19 Are

Involved in Reducing R-loops
RNA helicase DDX1 is necessary to maintain the single-stranded
DNA generated by end resection. DDX1 plays a role in resolving
RNA-DNA structures accumulated at sites of active transcription
with DSBs (33). Knockdown of SIRT7 as well as depletion
of DDX21 leads to the increased formation of R loops and
DNA double-strand breaks, indicating that DDX21 and SIRT7
mediated deacetylation of DDX21 cooperate to prevent R-loop
accumulation (34). The nucleopore- associated mRNA export
factor Ddx19 was activated by ATR/Chk1 and re-localized to
the nucleus to remove nuclear R-loops upon replication stress
or DNA damage. Ddx19 resolves R-loops in vitro via its helicase
activity (35).

RNA Processing Proteins FUS and TDP43 Are

Involved in R-loop-Associated DNA Damage
FUS and TDP43 are linked to Amyotrophic lateral sclerosis
(ALS), a progressive motor neuron dysfunction disease.
FUS or TDP43 depletion leads to an accumulation of

transcription- associated DNA damage and increased sensitivity
to a transcription-arresting agent. FUS or TDP43 normally
contribute to the prevention of transcription-associated DNA
damage (36).

GADD45A Is Involved in R-loops Dependent TET1

Binding CpG Islands at Promoters
R-loops are enriched at CpG islands (CGIs) to regulate chromatin
states. GADD45A (growth arrest and DNA damage protein
45A) is an epigenetic R-loop reader to recruit the demethylation
machinery at promoter CGIs. GADD45A binds to R-loops and
recruits TET1 (ten-eleven translocation 1) to promote DNA
demethylation at the promoter of tumor suppressor TCF21. The
antisense long non-coding (lncRNA) TARID (TCF21 antisense
RNA inducing promoter demethylation) forms an R-loop at
the TCF21 promoter and the binding of GADD45A to the R-
loop triggers local DNA demethylation and TCF21 expression.
Thousands of R-loop-dependent TET1 binding sites at CGIs is
identified in embryonic stem cells by genomic profiling (37).

Long Non-coding RNAs (dilncRNAs) Are Required for

R-loop-Driven DNA Damage Repair
Damage-induced long non-coding RNAs (dilncRNAs) are
transcribed from broken DNA ends to pair with the resected
DNA ends, form DNA:RNA hybrids and promote homologous
recombination (HR) repair by contributing to the recruitment
of the HR proteins BRCA1, BRCA2, RNase H2, and RAD51.
BRCA2mediates the localization of RNase H2 to DSBs by directly
interacting with RNase H2 (38).

DNA Repair Proteins Control the Nuclear
Distribution of Splicing Factors in
Replication Stress
Both FANCD2 and FANCI were co-purified with SF3B1 and
yielded strong signals of interaction with SF3B1 in the nucleus
in proximity ligation assay (PLA) (39). FANCI and SF3B1 yielded
strong PLA signals throughout the cell cycle, whereas PLA signals
between FANCD2 and SF3B1 were restricted to the chromatin
of interphase cells (39). Therefore, it is hypothesized that FANCI
associates with and regulates the dynamics of the nucleoplasmic
pool of SF3B1, whereas FANCD2 associates with the chromatin-
bound pool of SFs.

TUMOR-DERIVED EXTRACELLULAR
VESICLES AFFECT BYSTANDER CELLS IN
TUMOR MICRO-ENVIRONMENT

Tumor-derived Evs secreted from cancer cells treated with
chemotherapy carry distinct type of damage-associated
molecular patterns (DAMPs) that activate innate immune
cells including natural killer (NK) cells. Stress-induced ligands
from tumor-derived Evs bind with activating receptor NKG2D
to activate NK cells in the tumor microenvironment (40).
Activated NK cells promote the clearance of drug-treated tumor
cells (40). The Evs is necessary for the RNA clearance step
in homologous recombination repair of DNA double-strand
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breaks (DSBs). Chemotherapy stress promotes extracellular
vesicles (Evs) secretion from tumor cells. The released
Evs from cells treated with cisplatin were found to induce
invasion and increased resistance to cisplatin via p38 and
JNK signaling when taken up by bystander cells in tumor
microenvironment. Evs uptake inhibitors heparin, amiloride,
and dynasore were shown to prevent Evs-mediated adaptive
response and sensitize cells to cisplatin (41). MiR-21 in
the exosomes released from cisplatin- resistant oral cavity
squamous cell carcinoma (OSCC) cells was reported to
decrease the DNA damage signaling in response to cisplatin
and increase drug resistance to cisplatin by targeting PTEN
and PDCD4 (42). Annexin A6 enriched tumor-derived Evs
secreted from cancer cells treated with chemotherapeutic
compounds taxanes and anthracyclines were found to promote
cancer metastasis to lung by inducing the activation of
NFκB and CCL2. Inhibiting annexin A6 in Evs from cancer
cells significantly reduced cancer metastasis (43). Exosomes
generated from breast cancer cells lead to the generation
of reactive oxygen species, DNA damage response, and the
stabilization of p53 and autophagy in primary mammary
epithelial cells (44). Exosomes released by ovarian cancer
regulate intercellular communication between tumor cells
and local immune cells, cancer-associated fibroblasts and
normal stroma, within the tumor microenvironment to
accelerate pre-metastatic niche formation and metastatic
invasion (45). Preoperative administrations of the non-steroidal
antiinflammatory drug ketorolac and/or resolvins induced
T cell responses and eliminated micrometastases in multiple
tumor-resection models. Ketorolac and resolvins exhibited
synergistic antitumor activity (46). A similar observation was
also found in leukemia. Exosomes secreted from acute myeloid
leukemia (AML) cells create a leukemic niche at the bone
marrow (BM) to promote leukemic cell proliferation by inducing
DKK1 and suppress normal hematopoiesis through exosome
secretion. Disruption of exosome secretion delayed leukemia
development by targeting the exosome release regulator Rab27a
in AML cells (47).

CROSSTALK BETWEEN THE DNA
DAMAGE RESPONSE AND IMMUNE
CHECKPOINT INHIBITION

PD-L1 (B7-H1) Regulates the DNA Damage
Response
PD-L1 has been well-known as immune checkpoint inhibition
to the activation of T cells by interacting with PD1. PD-
L1 was recently found as a novel RNA binding protein to
increase drug resistance in cancer cells by increasing mRNA
stability of various mRNAs encoding for proteins involved in
DDR and repair (4). Luo lab reported that PD-L1 acts as an
RNA binding protein to protect target RNAs from degradation
by interacting with EXOSC10 and EXOSC4, which are key
components of the RNA exosome (4). Knockdown of PD-
L1 by small hairpin RNAs (shRNAs) increases sensitivity to
the chemotherapy agent, cisplatin. Knockdown of PD-L1 also

increases sensitivity to ionizing radiation (IR) (4). Genome-
wide RNA transcripts interacting with PD-L1 were identified by
the crosslinked RIP sequencing (RIP-seq) by PD-L1 antibody.
PD-L1 knockdown on the alteration of gene expression in
genome wide was identified by comparing control and PD-
L1 knockdown cells by RNA sequencing (RNA- seq). About
135 genes were found to be enriched in both datasets of
the RNA-seq analysis and RIP-seq analysis, including ATM,
BRCA1, and FANCL and other genes involved in cellular
responses to DNA damage metabolic, transcriptional, and
protein modification pathways (4). A PD-L1 antibody, H1A,
was developed to destabilize PD-L1 by disrupting the PD-
L1 stabilizer CMTM6. This disruption resulted in PD-L1
degradation through the lysosome and increased sensitivity
to radiotherapy and cisplatin (4). These studies indicate that
targeting intracellular PDL1 may enhance the efficacy of
chemotherapy or radiotherapy by overcoming PDL1 mediated
drug resistance (Figure 2).

FIGURE 2 | Crosstalk between DDR and immune system. (A) PD-L1 can

increase mRNA stability of DNA damage response genes as a RNA binding

protein in cancer cells. PD-L1 antibody H1A can increase sensitivity to DNA

damage agents by reducing PD-L1 mediated stability of DDR transcripts. (B)

DNA damage agents and PARP inhibitors can induce STING pathway to

activate immune system.
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Activation of Immune System by DNA
Damage Response
Immune System Is Activated by PARP Inhibitors
Recent studies show that PARP inhibitor or Chk1 inhibitor
promotes antitumor immunity of PD-L1 blockade in NSCLC.
PARP inhibitor selectively triggers anti-tumor immunity in
ERCC1- or BRCA-defective contexts, indicating that PARP
inhibitors might promote therapeutic effects by inhibiting DNA
damage repair and activating anti-tumor effect in populations
with DNA repair defect (Figure 2) (48, 49). PARP inhibitor was
also found to trigger the STING-dependent immune response
independent of BRCAness (50).

Activation of Immune System by DNA Damage

Activated STING
In addition to causing the activation of cell cycle checkpoint
and DNA repair and the induction of cell death, DNA damage
response network induced by chemotherapy and radiotherapy
can also activate the immune system. Damaged cancer cells
secrete type I interferons and proinflammatory cytokines
transcriptionally activated by IRF3 or NFB. The cytosolic
damaged DNA from micronuclei can be recognized by the
DNA sensor cGAS (cyclic guanosine monophosphate adenosine
monophosphate synthase) to activate type I interferons by
STING/TBK1/IRF3 pathway (5–7). Homologous recombination
repair protein RAD51 also plays a role in initiating immune
signaling by preventing the fragmented nascent DNA
accumulates in the cytoplasm and initiation of the STING-
induced innate immune response (51). Etoposide-induced DNA
damage can induce the activation of NF-κB by an alternative
STING- dependent and cGAS-independent pathway. The
alternative STING signaling pathway includes the DNA damage
response proteins ATM (ataxia telangiectasia mutated), PARP1
(poly-ADP-ribose polymerase 1), DNA sensor IFI16 (interferon-
inducible protein 16), Tp53, and the E3 ubiquitin LIGASE
TRAF6 (52). The efficacy of immune checkpoint blockade (ICB)

is enhanced by ATM inhibition and further potentiated by

radiation in pancreatic cancer (52).

CONCLUSION

In summary, there are cross-talks between cellular responses to
DNA damage, RNA processing, and the extracellular vesicles
related to immune checkpoint inhibition. RNAbps involved in
RNA processing play critical roles in maintaining DNA genomic
stability by regulating the transcription, mRNA splicing, and
export of DNA repair proteins. On the other hand, DNA
repair proteins can regulate the nuclear distribution of splicing
factors in response to DNA damage. Splicing factors, RNAbps,
and DNA repair proteins also work coordinately to prevent
RNA-induced genome instability by resolving R-loops formed
during transcription and RNA processing. Cross-talk between
the immune response and cellular responses to DNA damage
includes the enhancement of the effect of immune checkpoint
inhibitors by PARP inhibitors or STING pathway. Tumor-
derived Evs enhance cancer metastasis and drug resistance
partially due to PD-L1 delivered from tumor-derived Evs, which
acts as a novel RNA binding protein to increase drug resistance
in cancer cells by affecting mRNA stability of various mRNAs
involved in cellular response to DNA damage.
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