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Heme, an iron-containing porphyrin, is of vital importance for cells due to its involvement

in several biological processes, including oxygen transport, energy production and

drug metabolism. Besides these vital functions, heme also bears toxic properties and,

therefore, the amount of heme inside the cells must be tightly regulated. Similarly,

heme intake from dietary sources is strictly controlled to meet body requirements. The

multifaceted nature of heme renders it a best candidate molecule exploited/controlled

by tumor cells in order to modulate their energetic metabolism, to interact with

the microenvironment and to sustain proliferation and survival. The present review

summarizes the literature on heme and cancer, emphasizing the importance to consider

heme as a prominent player in different aspects of tumor onset and progression.
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INTRODUCTION

The onset and progression of cancer rely on the ability of tumor cells to channel different biological
processes toward the promotion of cell proliferation, the escape from immunosurveillance and the
resistance to drugs. Inorganic iron has been reported to play pivotal roles in several aspects related
to cancer metabolic adaptation and tumor microenvironment reprogramming (1–3). Similarly,
organic iron, in the form of the iron-containing porphyrin heme, is potentially a best candidate
molecule exploited/controlled by tumor cells in order to modulate the energetic metabolism, to
interact with the microenvironment and to sustain proliferation and survival. Heme bears a series
of functions that are far beyond those mediated by its iron atom, including oxygen transport
and storage, drug and steroid metabolism, transcriptional and translational regulation, signal
transduction andmicroRNA processing (4, 5). In addition, heme synthesis is a cataplerotic pathway
for the tricarboxylic acid cycle, as it consumes succynil-CoA. However, among the different
metabolic processes that cancer cells can regulate to meet their specific demands, heme metabolism
has been so far marginally studied, and frequently the importance of heme for cancer has been
attributed to the iron atom contained in heme, rather than to specific functions mediated by the
entire heme molecule itself. The present review will summarize the literature on heme and cancer
highlighting both positive and negative effects of heme on cancer cells and on components of the
tumor microenvironment.

DIETARY HEME AND CANCER

Historically, the role of heme in cancer has been studied focusing on the effects mediated by
exogenous dietary heme on the organism. These studies contributed to the current notion that
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dietary heme is a risk factor for cancer. Heme is an iron
coordinating porphyrin contained predominantly in red and
processed meat in the form of hemoglobin and myoglobin.
Red meat refers to unprocessed mammalian muscle meat, while
processed meat refers to meat that has been transformed through
salting, curing, fermentation, smoking, or other processes
to enhance flavor or improve preservation. Recently, the
International Agency for Research on Cancer (IARC), following
an assessment of over 800 studies performed world-wide,
classified processed meat as group 1 “carcinogenic to humans”
and fresh red meat as group 2A “probably carcinogenic to
humans” (6). Conversely, no link between white meat and fish
and cancer has been found (7–9). For this reason, heme has been
proposed as the keymolecule contributing to tumorigenesis upon
red and processed meat intake.

The role of dietary heme in cancer has been highlighted in
different types of carcinomas. Indeed, high consumption of red
and processed meat has been associated with increased incidence
of esophageal, gastric, breast, endometrial, pancreas and lung
tumor (10–15), while no clear link was found for bladder and
prostate cancer (16–18). However, the majority of studies focused
on the role of dietary heme in the pathogenesis of colorectal
cancer (CRC), still a leading cause of cancer deaths in Western
Countries (19–21). Dietary heme is absorbed mostly in the upper
part of the small intestine. Once absorbed, heme is degraded
by the action of the enzymes heme oxygenases (HMOXs) into
biliverdin, carbon monoxide (CO), and iron (Fe2+), that is then
scavenged by the protein ferritin (4). However, if red/processed
meat is assumed in large amounts, all the ingested heme cannot
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be absorbed by the small intestine and it accumulates for a
considerable time in the large intestine (22, 23). In presence of
high free heme levels both ferritin and HMOXs are saturated and
cells accumulate free heme and labile iron that exert a variety of
cytotoxic effects on intestinal mucosa (24). For example, heme
is able to induce cytotoxic damage to surface epithelial cells that
changes surface to crypt signaling, resulting in hyperproliferation
and finally hyperplasia of crypt cells in heme-fed mice (25).
Furthermore, free heme and labile iron accumulation result in the
production of reactive oxygen species (ROS) that pathologically
oxidize DNA, lipids and proteins. It has been well-demonstrated
that ROS-induced DNA damage and gene mutations cause
CRC and that proteins involved in CRC development are
redox-sensitive (26). Additionally, ROS are able to induce lipid
peroxidation of intestinal cells. Reactive lipid peroxides, formed
by the action of ROS, covalently bind to the protoporphyrin
ring of heme giving rise to an extremely lipophilic molecule,
named cytotoxic heme factor (CHF) that induces cytotoxic
damage on intestinal epithelial cells (27). To note, processed
meat when in contact with gastric acid can also give rise to
lipid hydroxiperoxide (LOOHs). LOOH is then broken down
by the iron released by heme to produce free radicals and,
subsequently, aldehyde molecules like malondialdehyde (MDA)
and 4-hydroxynonenal (4-HNE) (28). MDA is toxic and it is
able to bind DNA forming mutagenic adducts. 4-HNE induces
apoptosis and kills normal cells, but not precancerous cells that
are mutated on Adenomatous Polyposis Coli (APC) gene (29).

In addition to the processes described above, heme is also
able to catalyze the formation of N-nitroso compounds (NOC)
in the gastrointestinal tract (30). NOC are known carcinogens
that can determine DNA mutation through alkylation, and high
NOC concentrations have been associated to increased red meat
consumption (31, 32). However, it is important to underline that
NOC found after ingestion of red meat in humans consist mainly
of nitrosyl iron and nitrosothiols, products that have profoundly
different chemistries as compared to some tumorigenic N-nitroso
species (33). Therefore, more studies are required to clarify the
real involvement of heme in NOC pro-tumor effects.

Finally, it has been demonstrated that heme alters the normal
intestinal bacterial flora especially by decreasing the number
of gram-positive bacteria (34) leading to a state of dysbiosis
(microbial imbalance or maladaptation) that exacerbates colitis
and adenoma formation in mice (35) and is correlated to
the insurgence of CRC (35–37). Moreover, the gut microbiota
can induce per se hyperproliferation via mechanisms occurring
in the colon lumen, such as modulation of oxidative and
cytotoxic stress or by influencing the mucus barrier, and these
effects are intensified in presence of heme (38). Indeed, a
recent study showed that mice receiving a diet with heme
show an increased population of mucolytic bacteria in their
colon. These bacteria, synergistically with heme-produced CHF,
damage gut epithelium and lead to a compensatory aberrant
hyperproliferation. Conversely, mice receiving heme together
with antibiotics do not show this phenotype (38).

Overall, the studies on dietary heme and cancer support the
idea that heme contained in food can sustain cancer by different
mechanisms (Figure 1). However, it must be recognized that
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FIGURE 1 | Molecular mechanisms of dietary heme induced colorectal carcinogenesis. Heme in red/processed meat alters multiple molecular and genetic

mechanisms in the colonic epithelium resulting in colorectal carcinogenesis. Heme accumulation induces the formation of the CHF that leads to cytotoxic damage to

surface epithelial cells. Moreover, heme causes peroxidation of lipids and NOC formation resulting in free radical formation and genetic mutations. Labile iron, resulting

from heme degradation, induces the formation of ROS that lead to oxidative damage and genetic mutations. Finally, heme alters the intestinal flora enhancing the

heme-induced cytotoxic effects.

methodologies employed in some of these studies have been
challenged. Indeed, some animal studies took advantage of diets
low in calcium and high in fat, combined with the exposure of
heme frequently at doses higher than that expected with a normal
dietary consumption of red meat. Moreover, pork meat shows
low heme levels, but it has been associated with CRC. Finally, it
cannot be excluded that carcinogenesis could be ascribed to other
molecules containedmostly in redmeat, not related to heme (33).
Therefore, further research is required to clarify the role of heme
present in red and processed meat in cancer.

HEME SYNTHESIS AND CANCER

Heme can be acquired by dietary sources, but in addition,
all the cells in the organism are able to synthesize heme.
Heme synthesis includes eight different reactions occurring
partly in mitochondria and partly in the cytosol. The
first rate limiting step is based on the condensation of
succynil-CoA and glycine to produce 5-aminolevulinic
acid (ALA), a reaction catalyzed by the enzyme 5-
Amilolevulinate Synthase 1 (ALAS1). Then, by subsequent
reactions involving the enzymes ALA dehydratase (ALAD),
porphobilinogen deaminase (PBGD), uroporphyrinogen III

synthase (UROS), uroporphyrinogen decarboxylase (UROD),
coproporphyrinogen oxidase (CPOX), protoporphyrinogen
oxidase (PPOX) and ferrochelatase (FECH), heme is finally
produced (4, 39).

The study of heme synthesis in tumors has raised interest
since many years. Indeed, in nineties, it was discovered that
tumors, upon ALA administration, are able to accumulate
remarkably higher amount of protoporphyrin IX (PpIX)
as compared to normal tissues, and this property was
demonstrated to be exploitable for tumor fluorescence-
guided surgery (FGS) and to kill cancer cells by photodynamic
therapy (PDT) (40–42). Since then, extensive research has
been performed to determine the molecular mechanism
involved in enhanced ALA-PpIX accumulation in tumor
cells. Particularly, the rate of heme biosynthesis in different
kinds of tumor was dissected in several works, leading to
accumulation of conflicting results. However, ALAS1, PBGD
and UROD expression and/or activity were frequently found
up-regulated in cancer (43). Consistently, repression of
heme biosynthesis by the ALAD inhibitor succinylacetone
was shown to reduce tumor cell survival and proliferation
(44–46). Conversely, FECH levels were found often
down-modulated in tumor cells as compared to normal
cells (43, 47).
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Taking together these discoveries, it can be concluded that
tumors are characterized by high porphyrins synthesis, not
necessarily associated to final heme production. This conclusion,
however, is controversial. Indeed, cancer cells have been shown
to display high heme levels (45, 48), increased activity of heme
containing proteins (45, 46, 49) and enhanced expression of
heme exporters (45, 50), suggesting that heme, and not only its
precursors, is produced and that the entire heme biosynthetic
pathway is promoted in tumors. Therefore, the reason why
tumors accumulate more ALA-mediated PpIX than surrounding
normal tissues and why tumors enhance heme synthesis remains
a fundamental question to be answered (Figure 2).

Considering the fact that heme is a crucial cofactor for
complexes of the electron transport chain (ETC), one possible
explanation for increased heme biosynthesis in tumors is that it
could be exploited by cells to sustain oxidative phosphorylation
(OXPHOS). Indeed, despite the well-accepted model proposed
by Otto Warburg and co-workers, pointing to increased
glycolysis in cancer cells, many lines of experimental evidence
have shown that the function of mitochondrial OXPHOS in most
tumors is intact and that the vast majority of tumor cells generate
adenosine triphosphate (ATP) via oxidative phosphorylation
(51). Data obtained on the human lung carcinoma cell line
A549 showed that induction of heme biosynthesis by ALA
enhances OXPHOS in these cells (52). Similarly, in additional
studies on lung cancer (46) and in an in vitro model of myeloid
leukemia (45), it was demonstrated that increased heme synthesis
is associated to higher oxygen consumption, an indicator of
OXPHOS, and the effect was prevented by cell treatment
with succynilacetone.

Nevertheless, tumors like hereditary leiomyomatosis and
renal-cell cancer (HLRCC), due to mutations in the tricarboxylic
acid (TCA) cycle enzyme fumarate hydratase, show reduced
OXPHOS and sustained glycolysis but increased heme synthesis
(53). Similarly, human colon carcinomas overexpress the
mitochondrial ATPase Inhibitory Factor 1 (ATPIF1), an inhibitor
of the mitochondrial H+-ATP synthase (54) and OXPHOS, as
well as a promoter of iron incorporation into PpIX by FECH (55).
These studies support the idea that suppression of OXPHOS and
enhanced glycolysis in tumors could be associated to increased
heme biosynthesis, suggesting that heme can mediate additional
functions in cancer, unrelated to its role as a cofactor for
ETC complexes.

A complex interplay between heme and energy metabolism is
further supported by studies indicating that ALAS1 expression
is suppressed by glucose (56). Moreover, it has been recently
reported that heme can negatively regulate the activity of
pyruvate dehydrogenase (PDH) by binding the PDHA1 subunit,
favoring a switch from pyruvate oxidation in the mitochondria to
its glycolytic conversion into lactate (57). In addition, heme can
control the trafficking of ADP and ATP between mitochondria
and cytosol. The translocase involved in the ADP/ATP exchange
is the adenine nucleotide transporter (ANT), an integral protein
located in the inner mitochondrial membrane. While in rodents
only three ANTs exist (ANT1, 2, and 4), in humans there are
four ANT isoforms (ANT1, 2, 3, and 4), encoded by four distinct
genes with different promoter sequences, supporting distinct

regulatory control. In humans, ANT1 is mainly expressed in
heart, skeletal muscle and brain, while ANT3 is ubiquitous (58)
and ANT4 is expressed in testis and germ cells (58). Conversely,
ANT2 is poorly detectable in tissues, but its expression can
dramatically increase in cancer and proliferating cells with high
glycolytic rates and/or low oxygen (58, 59). ANT1 and ANT3
export ATP synthesized in mitochondria toward the cytosol,
while several evidences suggest that ANT2 may realize an
inverse exchange, translocating the glycolytic ATP synthesized
in the cytosol toward the mitochondrial matrix (59). Moreover,
ANT1 and 3 are crucial component of the mitochondrial
permeability transition pore complex and play a major role in
mitochondria-mediated cell death (60–62). Heme binds ANT1,
2, and 3 isoforms and ANTs are believed to contribute to heme
biosynthesis by transporting heme precursors into mitochondria
(63). Particularly for ANT1, it has been demonstrated that
heme binds to the center pore domain and to the residues that
associate to ADP, and binding of heme, or of the heme precursors
PpIX and coproporphyrin III, inhibits the ADP uptake in a
competitive manner (63). Moreover, heme can transcriptionally
repress the expression of ATP/ADP carrier (AAC) 3, the yeast
ANT2 orthologous, through the ROX1 factor (64). Interestingly,
human ANT2 promoter shows a negative regulatory motif,
called glycolysis regulated box (GRBOX) that is a ROX1-like
motif (59), suggesting possible heme-dependent regulation also
of human ANT2. This could be particularly relevant in cancer,
because ANT2 has been postulated to contribute to the rapid
metabolic adaptation of tumor cells to glycolysis and hypoxic
stress by preserving the mitochondrial ATP content necessary
to maintain the mitochondrial membrane potential and intra-
mitochondrial metabolic pathways when OXPHOS is impaired
(58, 65). Moreover, additional studies have highlighted an anti-
apoptotic role for ANT2 (66), its implication in the PI3K/Akt
pathway (67), frequently activated in cancer, and in the regulation
of cancer-related microRNAs (67). Finally, ANT2 is considered
a promising therapeutic target to control tumor cell growth,
migration, invasion and chemosensitization (68). Therefore, the
modulation of heme synthesis, by affecting ANTs activity and
expression, could have consequences on the transport of both
OXPHOS-derived ATP from mitochondria to cytosol or of
glycolytic ATP from the cytosol to the mitochondria.

Overall, the role of heme synthesis in themodulation of cancer
energy metabolism remains controversial.

Another possibility is that increased heme synthesis in tumors
is intended to support the activity of specific hemoproteins.
Cells are equipped with several hemoproteins (69) and
for some of them a role in cancer has been reported,
including myoglobin (70), tryptophan 2,3-dioxygenase (TDO)
and indoleamine-2,3-dioxygenase 1 and 2 (IDO1/2) (71–73),
mitochondrial cytochromes (74, 75), cytochrome P450 (76,
77), and cyclooxygenases (78, 79). Studies on lung cancer
demonstrated that the amount of oxygen-utilizing hemoproteins,
such as cytoglobin, cytochrome c, cytochrome P450 family
1 subfamily B member 1 (CYP1B1) and prostaglandin-
endoperoxide synthase 2 (COX2) are higher in tumor cells as
compared to normal cells and that, at least for cytoglobin and
cytochrome c, their levels depend on the rate of heme synthesis
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FIGURE 2 | Putative processes controlled by increased heme synthesis in cancer. The reason why tumors enhance heme synthesis is unknown. Several hypotheses

have been explored: increased heme synthesis could control energy production, ADP/ATP exchange between mitochondria and cytosol, TCA cycle cataplerosis, P53

activity and stability, as well as the activity of hemoproteins and of heme binding proteins involved in the circadian clock machinery.

FIGURE 3 | Impact of heme on tumor microenvironment. Other than sustaining cancer cells growth (1), heme could also potentially affect other processes within the

microenvironment, including macrophage polarization (2), the angiogenic potential of tumor endothelial cells (3), matrix remodeling by cancer-associated fibroblasts

(4), and nerve-cancer cross-talk (5).

and cellular heme content (46). A similar phenotype was
observed in human non-small cell lung cancer (NSCLC) tissues
(49). Moreover, in colorectal cancer cells ALA administration

results in the down-modulation of cyclooxygenase 2 expression,
although its overall enzymatic activity is maintained (80). These
hemoproteins can control oxygen availability or participate in
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crucial metabolic processes tightly modulated in cancer cells
to allow/promote cell survival and proliferation, as well as
to escape tumor immunosurveillance. Furthermore, heme can
interact and regulate the activity of additional proteins with
an already reported role in cancer. For example, heme is a
crucial regulator of the nuclear receptor subfamily 1 group D
member 1 (NR1D1 or Rev-erbα) (81), as well as an interactor
for neuronal PAS domain protein 2 (NPAS2) (82) and period
circadian regulator 2 (PER2) (83, 84). All these proteins are
involved in the circadian clock mechanism, and alterations in
circadian rhythm is typically observed in cancer, so that some of
the clock machinery components have been proposed as targets
in cancer therapy (85). Therefore, heme synthesis promotion in
tumor cells could also partly contribute to modulate this system
in order to sustain cell growth.

In addition, increased heme synthesis in cancer cells may
be promoted in order to regulate the tumor suppressor P53, a
transcription factor that controls a broad and flexible network
of biological processes, including DNA damage response,
autophagy, cellular metabolism, epigenetics, inflammation, just
to cite the most relevant ones (86). Interestingly, Shen et al.
(87) demonstrated that the stability of P53 is directly regulated
by heme. Indeed, heme binds to a C-terminal heme-responsive
motif (HRM) of P53. The heme-P53 interaction interferes with
the P53 DNA binding activity in vitro, thus suggesting that
heme may modulate the transcription of P53 target genes.
Furthermore, the binding of heme to P53 promotes its nuclear
export and degradation via the ubiquitin-proteasome system.
These findings provide mechanistic insights into the process of
tumorigenesis associated with iron excess. It is well-established
that iron excess is a hallmark of several tumor types (88). A
positive correlation between iron and heme levels in vivo has
been reported (87), leading to the hypothesis that iron excess in
cancer sustains the synthesis of heme, that in turn directly affects
P53 stability and function. Considering the increasing amount
of data showing that tumors reprogram heme metabolism
(not only iron metabolism) to achieve advantages in terms of
proliferation and survival, it is tempting to propose that the
alteration of heme metabolism that occurs during tumor onset
and cancer progression may contribute to the dysregulation of
P53 expression.

In the end, it has been proposed that heme synthesis is
enhanced in cancer in order to mediate TCA cycle cataplerosis.
By this view, enhanced heme biosynthesis is primarily intended
to consume succynil-CoA rather than to produce heme.
In HLRCC it has been demonstrated that increased heme
biosynthesis is crucial to avoid the accumulation of toxic
TCA cycle intermediates, as a consequence of mutations in
fumarate hydratase. Heme produced in this system is then
addressed to degradation by the enzyme HMOX1, indicating
that its production is not intended to increase the intracellular
bioavailable heme pool (53).

Overall, it seems clear that heme biosynthesis is frequently
enhanced in tumors and that this phenomenon could serve
different and sometimes conflicting purposes. Additional studies
are required to fully elucidate the underlying mechanism that can
reconcile all these aspects.

HEME IMPORT/EXPORT/DEGRADATION
AND CANCER

Other than being synthesized, heme can also be imported inside
the cell by three main importers: (1) the solute carrier family
46 member 1 (SLC46A1 or HCP1), a folate importer able to
transport also heme, (2) the feline leukemia virus subgroup C
receptor family member 2 (FLVCR2), and (3) the solute carrier
family 48member 1 (SLC48A1 orHRG1). Among them, FLVCR2
and HCP1 are exposed on the cell plasma membrane, while
HRG1 is localized on endolysosomes.

The role of FLVCR2 in normal cells is not well-studied and
to our knowledge there is only one paper to date in which
FLVCR2 was analyzed in cancer. In this paper, interestingly,
it was observed that FLVCR2 is overexpressed in bovine
papillomavirus-associated urinary bladder cancer (89).

Regarding HCP1 and HRG1, their levels were reported to
be dramatically increased in lung cancer cells/tissues (46, 49),
where they contribute to import heme in order to ensure proper
activity of hemoproteins. Indeed, depletion of heme in the
culture medium of tumor cells or the use of heme-sequestering
peptides, to avoid heme uptake, result in the down-modulation
of hemoproteins activity (46, 49). In addition, high expression of
HCP1 was detected in gastric cancer cells as compared to normal
gastric cells (90). Moreover, HRG1 overexpression was observed
in HeLa cells and in highly invasive and migratory cancer cell
lines, where it can be detected not only in endolysosomes but
also on the cell plasma membrane. Its silencing in these cells
was demonstrated to result in reduced survival and migratory
capacity, while the opposite phenotype was observed upon its
over-expression (91, 92). In HeLa cells it was demonstrated that
HRG1 interacts with the vacuolar H+-ATPase and regulates
its activity, thus modulating the acidification of endosomes
(91). By this way, HRG1 has a unique role in regulating pH-
dependent endocytic pathway, with an impact on the ability of
the cells to acquire nutrients, to mediate signaling in response to
growth factor receptor activation, and to internalize and traffic
integrins and other proteins, which is necessary for cell survival,
migration, and proliferation (91). Moreover, in additional highly
invasive and migratory cancer cell lines, it was shown that, by
the interaction with the vacuolar H+-ATPase, HRG1 participates
to the regulation of cytosolic/extracellular pH gradient. Indeed,
HRG1 indirectly favors the alkalinisation of cell cytosol and the
acidification of the extracellular environment, a condition that
enhances extracellular matrix degrading enzymes expression and
activity, facilitating a more invasive phenotype of cancer cells
(92). In addition HRG1 expression in these cells was associated
to a pH-dependent promotion of glucose transporter 1 (GLUT1)
trafficking to the plasma membrane, leading to increased glucose
uptake and glycolysis, thus favoring cell growth (92).

Altogether, these studies indicate that heme import is
enhanced in cancer with the aim to promote the activity
of specific hemoproteins and to modulate pH gradient and
cell metabolism.

Together with heme import, also heme export has been
shown to be increased in cancer. Heme export is mediated by
the specific heme exporter feline leukemia virus subgroup C
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receptor family member 1 (FLVCR1). Moreover, the ATP binding
cassette subfamily G member 2 (ABCG2), a known exporter for
a broad range of molecules and xenobiotics, is also involved in
heme/porphyrins export.

The expression of FLVCR1 has been reported up-regulated
in different kinds of tumors, including bovine papillomavirus-
associated urinary bladder cancer (89), synovial sarcoma
(50), and hepatocellular carcinoma (93). For hepatocellular
carcinoma, the high expression of FLVCR1 was associated to
higher neoplasm disease staging, adjacent tissue inflammation,
vascular invasion and neoplasm histologic grade, as well as
to reduced overall survival and disease-free status (93). In
synovial sarcoma cells, the silencing of FLVCR1 was associated
to reduced cell proliferation, survival and tumorigenicity in
vitro and in vivo (50). Similarly, FLVCR1 silencing impairs the
survival of neuroblastoma cells in vitro, particularly upon ALA
administration (94).

The literature on ABCG2 and cancer is very rich; however, it
is important to distinguish between its role as a heme/porphyrins
exporter as compared to its role in the efflux of additional
unrelated substrates and xenobiotics. Focusing on heme, it has
been shown that triple negative breast cancer cell lines have
significantly reduced ALA-PpIX levels as compared with estrogen
receptor (ER) positive and human epidermal growth factor
receptor 2 (HER2) positive breast cancer cell lines because of
elevated ABCG2 activity (95). In line with this, high ABCG2
expression was considered a major cause of failure of ALA-
photodynamic therapy in different kinds of tumors, as it can
induce resistance to this kind of treatment by preventing the
accumulation of the photosensitizer PpIX inside the cells (96, 97).
Moreover, in an in vitro model of myeloid leukemia, it has been
shown that MYCN drives increased heme synthesis and that, in
this system, the excess of PpIX produced is promptly exported
out of the cells by ABCG2 to avoid cell toxicity (45). Therefore,
in these cells the forced stimulation of heme synthesis, associated
with the imposed reduction of ABCG2 expression, leads to tumor
cell death.

Overall, the literature on heme import and export in
cancer looks counterintuitive, indicating that both processes are
enhanced in tumor cells. Although an explanation for these
apparently conflicting phenomena does not exist, it could be
postulated that the two systems are both promoted in order
to establish a new equilibrium in heme homeostasis. Another
possibility is that import and export target two different pools of
heme, and that cellular heme compartmentalization could play a
role in this context. Interestingly, it has been shown that heme
export by FLVCR1 is highly associated to heme synthesis (98),
thus supporting the idea that the trafficking of endogenously
synthesized heme could be managed differently as compared to
exogenous heme imported into the cells. Additional studies are
required to fully elucidate the biological significance for these
alterations of heme trafficking in cancer.

Finally, intracellular heme homeostasis benefits of an
additional system to control heme levels, which is the degradation
of the molecule. As described above, HMOXs, the rate-
limiting enzymes in heme catabolism, catalyze the stereospecific
degradation of heme to biliverdin, with the concurrent release

of ferrous iron ions and CO. There are two main HMOXs
isoforms, encoded by two distinct genes: HMOX1 and HMOX2.
HMOX2 is a constitutively expressed protein, while HMOX1
can be strongly induced in many tissues in response to cellular
stress caused by a wide spectrum of stimuli including, but not
restricted to, heme. The literature on HMOXs and cancer is
wide, and a comprehensive summary of works on this topic
can be found in several reviews (99–101). Nevertheless, also
in this case it is important to distinguish between HMOXs
role as heme degrading enzymes as compared to their non-
catalytic role. Indeed, it has been shown that enzymatically
inactive HMOX1 could translocate to the cell nucleus and
exerts gene expression regulatory functions (102, 103). The
role of HMOX1 in tumor cell proliferation is controversial: its
expression in tumors was found very frequently up-regulated
and a role for HMOX1 as a mediator of ROS-promoted cell
proliferation was established; on the other hand, however, in
other kinds of tumors an HMOX1 anti-proliferative action
was demonstrated, often associated to effects mediated by CO
and biliverdin (99, 101). However, most experiments support
a permissive role of HMOX1 in tumor growth. What seems
to be clear is that HMOX1 can affect different aspects of
tumorigenesis, encompassing regulation of cell proliferation and
differentiation, promotion of cytoprotection and inhibition of
apoptosis, induction of angiogenesis and metastatization, as well
as immunosuppression (99–101). Moreover, HMOX1 activity
may affect anti-tumor therapies, as its expression is further
elevated in response to radio-, chemo-, or photodynamic therapy
and is involved in resistance to them (100, 101). Summarizing,
the expression of HMOX1 and the activity of its byproducts can
provide the selective advantage for tumor cells to overcome the
increased oxidative stress occurring during tumorigenesis and/or
as a consequence of anti-tumor therapies.

HEME AND TUMORMICROENVIRONMENT

Other than acting directly on tumor cells, heme can exerts its
functions in cancer by modulating the tumor microenvironment
(TME) (Figure 3). The TME is composed by tumor cells,
endothelial cells of surrounding blood vessels, myofibroblasts,
stellate cells, adipose cells, peritumor nerve cells, immune
cells, endocrine cells, fibroblasts, and the extracellular matrix
(104, 105). All the cell types in the TME contribute to tumor
progression mainly by releasing factors, which establish a
favorable environment for the cancer cell and promote tumor cell
survival and migration, metastasis formation, chemo-resistance,
and the ability to evade the immune system responses (104).

Heme has been reported to modulate the activity of
tumor-associated macrophages (TAMs). Macrophages have
heterogeneous phenotypes that range from the “classically-
activated” pro-inflammatory M1-cells to the “alternatively-
activated” anti-inflammatory M2-cells (106). If on one hand M1-
like macrophages have anti-tumor properties, on the other hand
macrophage polarization toward a M2-like phenotype correlates
with pro-tumor activities, such as enhanced angiogenesis, matrix
remodeling, and immune suppression (107, 108). Due to the
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FIGURE 4 | Potential effects of heme-based therapies. The multifaceted role of heme in cancer suggests the possibility to develop novel therapies targeting heme

metabolism. The picture highlights the potential beneficial effects of heme-based therapies on cancer cells as well as tumor microenvironment.

specific cues that characterize the tumor microenvironment,
TAMs are induced to preferentially acquire a M2-like specialized
phenotype that protects cancer cells from targeted immune
responses (109). Notably, M. Costa da Silva and colleagues
demonstrated that TAMs exposed to haemolytic red blood cells
(RBCs), a condition sometimes observed in cancer due to the
extravasation of RBCs from the abnormal tumor-associated
vessels (110), accumulate iron intracellularly and acquire a M1
pro-inflammatory phenotype, which in turn promotes tumor
cell death (111). This is in line with studies on haemolytic
diseases, such as sickle cell disease, where it has been observed
that macrophage exposure to free heme, released by damaged
erythrocytes, leads to M1-reprogramming (112). Moreover, these
findings are in agreement with additional studies reporting the
concept that iron can drive macrophages polarization toward
a pro-inflammatory M1-phenotype (113, 114). The effects on
TAMs described can be mainly ascribed to the iron atom
contained in heme. However, another important aspect that
should be taken into account is the role exerted by CO in the
control of myeloid cell differentiation. Indeed, the CO produced
upon heme degradation by HMOXs has been reported to cause
tumor regression and increased drug sensitivity in prostate and
lung cancer models (115), and this can be partly attributed to CO
effects on macrophages within the TME. Specifically, it has been
shown that CO treatment in mice leads to an increased number

of M1-like macrophages and reduced tumor growth (116). Taken
together, these works have led to the implementation of strategies
able tomodulate the exposure of macrophages to heme or iron, as
the use of iron oxide nanoparticles (109, 111), for cancer therapy.

Another fundamental component of the tumor
microenvironment is represented by tumor-associated
endothelial cells (TECs). TECs strongly differ from their
normal counterparts (117) as they display a high pro-angiogenic
potential that mostly relies on their enhanced ability to
proliferate and migrate. The switch of TECs from quiescence
to a highly active state is favored by a specific metabolic
reprogramming (118–120). The cross-talk between cancer
cells and TECs promotes aberrant neo-angiogenesis, which is
required to sustain tumor growth, by providing oxygen and
nutrients, and to favor metastatization (117, 121, 122). To
our knowledge, there are no studies in literature analyzing
the role of heme in TECs. However, we demonstrated that
alterations in endothelial intracellular heme metabolism strongly
affect the angiogenic process during development (98, 123).
Consistently, another study highlighted the critical role of the
heme biosynthetic pathway in supporting endothelial functions
(124). In addition, tumor angiogenesis is also promoted by the
increased stiffness of the extracellular matrix (ECM) found in
TME (125, 126). High ECM stiffness is mainly due to increased
collagen deposition and increased cross-linking within the
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tumor stroma. Matrix remodeling is primarily controlled by the
activity of a group of zinc-dependent endopeptidases, named
matrix metalloproteinases (MMPs), which are mainly released
by cancer-associated fibroblasts (CAFs). However, recent studies
highlighted the involvement in this process of peroxidases
released by immune cells, such as myeloperoxidase (MPO) and
eosinophil peroxidase (EPO). In particular, MPOs and EPOs
have been reported to be able to directly induce the secretion of
collagen I and collagen VI by CAFs (127), thus increasing matrix
stiffness and promoting tumor angiogenesis and metastatization
(128). Notably, MPOs and EPOs are heme-containing enzymes,
thus suggesting that changes in the amount of available heme
within the cells could affect the activity of these enzymes in
matrix remodeling. Taking together all these considerations, it is
tempting to speculate that heme could affect different processes
involved in tumor angiogenesis and future studies will help to
verify this hypothesis.

Finally, an additional promising aspect to dissect in the
future is the possible implication of heme in the control of
tumor innervation. The peripheral nervous system is nowadays
gaining growing interest in cancer research due to its role
in modulating both cancer cells and TME. This is achieved
through the reciprocal interaction between nerves and cancer
cells (nerve-cancer cell cross-talk), as well as between nerves
and the TME (129–131). Indeed, recent data clearly indicate
that tumor onset and progression is accompanied by increased
innervation, through a mechanism largely dependent on the
secretion of neurotrophic factors by cancer cells. Furthermore,
nerves influence tumor onset, progression and metastasis
formation, mainly through the secretion of neuropeptides and
neurotransmitters in TME, where they interact with receptors
expressed by cancer cells and by other cells of the TME (131–
136). Heme is required for the survival of different types of
neuronal cells (137, 138); however, the specific role of heme
in the peripheral nervous system and its potential implication
in tumor innervation is completely unknown. Several evidences
suggest that heme is crucial for the maintenance of the peripheral
nervous system, particularly for sensory neurons, one of the
types of nerves that actively innervates tumors (139–141).
Notably, mutations in genes encoding proteins involved in
heme synthesis and export have been reported in diseases
characterized by the degeneration of sensory neurons (94, 142–
145). Finally, heme may also regulates pathways important for
nerve-cancer cell cross-talk. Indeed, heme is involved in the
regulation of gene expression in neurons via nerve growth
factor (NGF) signaling (146), thus suggesting that heme may
modulate nerve outgrowth in the tumor microenvironment.
Furthermore, heme also regulates the metabolism of some
neurosteroids and neurotransmitters (137), with a potential
implication in nerve-cancer cross-talk. In addition, other than
sustaining cancer, tumor innervation is also one of the main
cause of chronic pain in oncologic patients, particularly those
in the advanced stage of the disease (147, 148). Interestingly,
mutations in the heme exporter FLVCR1 have been reported
in patients with peripheral sensory neuropathy (94, 149, 150),
thus indicating an involvement of heme in pain perception.
Furthermore, CO produced upon heme catabolism can act as

an atypical neurotransmitter or neuromodulator in the nervous
system and is involved in nociception regulation (151). Overall,
these evidences support the idea that heme could be implicated
in different aspects of tumor innervation. Future targeted in
vitro and in vivo experiments will definitively verify whether this
hypothesis is correct.

ADDITIONAL HEME FUNCTIONS
POTENTIALLY RELEVANT FOR CANCER

In the previous paragraphs, we discussed the works that
contributed to explore the role of heme in tumor growth and
metastatization. However, we believe that heme could be involved
in additional aspects of tumor biology, not investigated so far.
Indeed, emerging evidences indicate that heme is required for
the processing of microRNA (miRNA) that, by regulating more
than 50% of the mammalian genome are implicated in several
pathways crucial for cancer onset, growth and metastatization
(152). Specifically, the RNA-binding protein DiGeorge critical
region-8 (DGCR8), which is essential for the first processing
step of pri-miRNAs, is a heme-binding protein (153–156). Heme
binding to DGCR8 is required for its dimerization and activation
(153) and the modulation of heme availability was reported
to affect pri-miRNA processing in vitro (157). A correlation
between alterations of heme and miRNAs expression was also
reported. For instance, ALA-mediated sonodynamic therapy
or PDT is associated with the altered expression of selected
miRNAs (158–161). Although, further studies are required to
fully understand the physio-pathological implications of these
findings, these data suggest that mysregulation of miRNAs may
represent an additional mechanism through which alterations of
heme metabolism sustain and promote cancer progression.

In addition, several data support a potential involvement
of heme in epigenetic modifications, that control multiple
processes essential for cancer cells (162, 163). This is suggested
by the observation that heme regulates the transcriptional and
demethylase activity of the yeast histone demethylase GIS1
(GIS1), that belongs to the lysine demethylase 4 (jmjd-2/KDM4)
subfamily of demethylases implicated in histone methylation,
cellular signaling and tumorigenesis (164). The yeast GIS1
protein is conserved from yeast to mammals, suggesting a
possible role for heme in the regulation of this protein also in
mammals. Furthermore, several heme-regulated proteins of the
circadian rhythms machinery are epigenetic modifying enzymes
themself. For instance, clock circadian regulator (CLOCK)
is a histone acetyltransferase and Rev-erbα functions as a
transcriptional repressor by forming a complex with the nuclear
receptor corepressor (NCOR) and the histone deacetylase 3
(HDAC3) (165). Finally, the activity of epigenetic modifying
enzymes relies on the availability of specific metabolites (like α-
ketoglutarate) and cofactors (acetyl-CoA, S-adenosylmethionine,
and nicotinamide adenine dinucleotide). Most of them are
produced by the TCA cycle. Since heme biosynthesis is a TCA
cycle cataplerotic pathway (166), it is reasonable that alterations
of heme homeostasis may affect the availability of metabolites
to epigenetic modifying enzymes. Based on the role of heme in
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the control of cellular metabolism (166) and circadian rhythms
(81), we propose that the alterations of heme metabolism
observed in cancer may also contribute to the mysregulation of
cancer epigenetics.

Finally, heme metabolism has been reported as an apoptosis
modifying pathway in acute myeloid leukemia (AML) (167).
This is relevant, because it suggests the possibility to target
heme metabolism in order to increase drug sensitivity in cancer
cells. In addition, we observed that the modulation of heme
metabolism induces paraptosis (123), at least in endothelial cells.
This suggests the possibility to potentially exploit the regulation
of heme metabolism in cancer therapy, as the availability of
compounds inducing alternative forms of programmed cell death
could be very useful to counteract the resistance to apoptosis in
tumors (168). Similarly, the identification of heme as an inhibitor
of the proteasome (169) appears as a promising property to be
exploited for therapeutic purposes, particularly considering that
proteosome inhibitors are successfully currently used in cancer
therapy (170).

CONCLUSIONS

By the present review, we attempted to provide a comprehensive
overview of the literature on heme in cancer, highlighting
heme participation in multiple processes that sustain tumor
growth and metastatization, encompassing the control of
mitochondrial metabolism, the function of hemoproteins and
P53 signaling.

Summarizing, the studies on dietary heme and cancer,
although affected by some limitations, support the idea that
heme contained in food can sustain cancer by different
mechanisms. Conversely, the impact of endogenous heme in
cancer is much more complex to envisage. On the one hand,
heme biosynthesis is frequently enhanced in tumors, but this
phenomenon could serve different and sometimes conflicting
purposes. Moreover, both heme import and export are increased
in tumor cells, but the reason is unclear. In addition, heme
degradation by HMOX1 in tumor cells seems to support cancer
by counteracting oxidative stress during tumorigenesis and
upon anti-tumor therapies, but concomitantly to promote TAMs
acquisition of a M1-like phenotype, favoring tumor regression
and increased drug sensitivity. Finally, heme-containing enzymes
like MPOs and EPOs can promote tumor angiogenesis
and metastatization, and heme could also potentially affect
cancer epigenetics, miRNAs and tumor innervation. Therefore,
targeting heme metabolism is promising because it could
have a broad impact on different aspects of cancer. For this
reason, we envision that future work should be directed to
the development of novel therapeutic strategies based on heme
(Figure 4). However, the choice of the appropriate strategy
is challenging, due to possible conflicting effects obtained by
the block or the promotion of heme-related processes. To
overcome these problems, further work is required in order
to classify the precise tumor subtypes that can benefit of each
single strategy.

Anyhow, according to present literature, the targeting of
heme metabolism has already been exploited for cancer therapy.
In particular, the stimulation of heme synthesis with ALA has
been widely used for PDT (171). In addition, the indirect
inhibition of heme synthesis through iron chelation therapy
has been recently proposed for selected cancer types. Iron
chelation therapy has emerged as an important chemotherapeutic
strategy, because of the strong link between iron excess and
tumorigenesis. However, iron-deprivation therapy was successful
only on selected tumor types. The discovery that heme directly
regulates P53 stability (87) explained the selective therapeutic
efficacy of iron deprivation-based chemotherapy. Indeed, Shen
et al. demonstrated that this selectivity was due to the P53 status
of the tumor types (87). Specifically, iron chelation therapy,
by decreasing heme levels, leads to the stabilization of P53
proteins only in tumors with wild-type P53, and not in case
of P53 mutations. As already suggested by Shen et al., these
findings will allow the discrimination of the types of tumor
that should benefit of iron chelation therapy (87). The targeting
of heme synthesis through the deprivation of iron required
for heme synthesis (iron chelation therapy) remains the best
therapeutic strategy to date. However, because iron is essential
for multiple processes beyond heme synthesis, a key challenge
of chelation therapy is to balance iron levels in order to avoid
excessive iron chelation. Moreover, it has to be underlined that
emerging studies demonstrate that some kinds of tumor could
be counteracted by iron supplementation, rather than by iron
chelation therapy (172). Therefore, more specific strategies to
blunt heme synthesis are required, not based on iron. The
discovery that the beneficial effects of iron-chelation therapy on
the growth of certain tumor types depends on the regulation
of P53 by heme raises the possibility to directly target heme
synthesis to counteract tumor growth. Several compounds, like
succinylacetone or N-methyl protoporphyrin, are used to inhibit
heme synthesis in vitro. Although these compounds are not yet
used in the clinic, we cannot exclude that new drugs based
on them will be developed. Similarly, it could be possible
that, in the future, drugs aimed at blocking/stimulating heme
importer/exporter/degrading proteins will be identified, in order
to perturb heme-related mechanisms in cancer.

In conclusion, we hope that, in the next future, the growing
awareness on heme role in processes relevant for cancer will
stimulate research aimed at implementing innovative therapeutic
approaches and at identifying the tumor subtypes sensitive to
these treatments.
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