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Ovarian cancer (OC) accounts for more than 150,000 deaths worldwide every year.

Patients are often diagnosed at an advanced stage with metastatic dissemination.

Although platinum- and taxane-based chemotherapies are effective treatment options,

they are rarely curative and eventually, the disease will progress due to acquired

resistance. Emerging evidence suggests a crucial role of long non-coding RNAs

(lncRNAs) in the response to therapy in OC. Transcriptome profiling studies using

high throughput approaches have identified differential expression patterns of lncRNAs

associated with disease recurrence. Furthermore, several aberrantly expressed lncRNAs

in resistant OC cells have been related to increased cell division, improved DNA

repair, up-regulation of drug transporters or reduced susceptibility to apoptotic stimuli,

supporting their involvement in acquired resistance. In this review, we will discuss the

key aspects of lncRNAs associated with the development of resistance to platinum- and

taxane-based chemotherapy in OC. The molecular landscape of OC will be introduced,

to provide a background for understanding the role of lncRNAs in the acquisition of

malignant properties. We will focus on the interplay between lncRNAs and molecular

pathways affecting drug response to evaluate their impact on treatment resistance.

Additionally, we will discuss the prospects of using lncRNAs as biomarkers or targets

for precision medicine in OC. Although there is still plenty to learn about lncRNAs and

technical challenges to be solved, the evidence of their involvement in OC and the

development of acquired resistance are compelling and warrant further investigation for

clinical applications.
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INTRODUCTION

Ovarian cancer (OC) is the fifth most lethal cancer in women and accounts for more than 150,000
deaths annually worldwide (1). According to molecular and pathological features, epithelial OCs
are stratified into type I or type II (2). Type I OC’s (including endometrioid, clear cell, mucinous,
and low-grade serous carcinomas) are genetically stable with frequent mutations in KRAS, BRAF,
CTNNB1, and PTEN. In contrast, type II (mainly HGSC) comprises more aggressive tumors with
high-grade and propensity for invasion and metastasis leading to high mortality rates (3). These
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tumors are genetically unstable, presenting a high frequency of
TP53 mutations and BRCA1/2 alterations. Originally HGSC was
thought to arise from the squamous epithelial cell layer of the
ovary. However, recent findings demonstrate that the molecular
profile of HGSCs has a closer resemblance to the epithelium
of the distal fallopian tube, suggesting that this tissue is an
alternative site of origin (4, 5). HGSC is the most common and
deadliest type of OC and will be the main focus of this review.

Due to the aggressive and invasive nature of HGSC around
70% of the patients have metastatic disease (FIGO stage III-IV)
at the time of diagnosis. Surgery combined with chemotherapy
is the primary treatment. Platinum-based chemotherapy is the
cornerstone of chemotherapeutic treatment, namely cisplatin
or carboplatin, combined with a taxane, such as paclitaxel
or docetaxel (6). Initially, most patients respond well to the
treatment; however, the majority of them will eventually acquire
resistance and experience relapse (7, 8). To improve the
prognosis, targeted therapies can be applied either as adjuvant or
second-line treatments. Bevacizumab, an inhibitor or of vascular
endothelial growth factor (VEGF) can be administered as first-
line treatment in combination with carboplatin and paclitaxel.
Inhibitors of Poly (ADP-ribose) polymerase (PARP) proteins are
often used as second-line treatment for recurrent disease, mainly
in patients with BRCA mutations. A recent randomized phase
3 trial performed in patients with a germline BRCA mutation
has shown that the addition of oral PARP inhibitor (Olaparib)
as maintenance therapy after chemotherapy prolongs the median
progression free survival (PFS) by at least 3 years (9).

Despite the comprehensive combination of chemotherapy and
maintenance treatment with targeted therapies, most patients
develop resistance to treatment. Consequently, patients with
disseminated HGSC have an extremely poor prognosis with a
5-year survival rate of only ∼20% (10). The knowledge of the
underlying molecular mechanisms involved in the development
of resistance to chemotherapy is crucial for treatment decisions
and the discovery of novel anticancer drug targets.

Advances in sequencing technologies and large-scale genomic
projects such as Encyclopedia of DNA elements (ENCODE)
(11) and The Cancer Genome Atlas Program (TCGA) (12)
have opened avenues to improve our understanding of
the mechanisms of response to treatment, development of
therapeutic resistance and cancer progression (13–15). Initial
studies focused on describing the small percentage of DNA
transcribed into RNA encoding for proteins, whereas the non-
coding RNA (ncRNA) was regarded as irrelevant and with
unknown function for cellular health and disease. However,
compelling evidence now reveals the involvement of these
transcripts in the regulation of several cellular processes (16, 17).
Furthermore, several cancer types have been associated with
dysregulated expression of lncRNAs (18).

LncRNAs IN CANCER

NcRNA comprises several different classes of molecules involved
in gene regulation and chromatin modification. MicroRNA
(miRNA), endogenous small interfering RNA (endo-siRNA)

and piwi-interacting RNA (piRNA) are different classes of
small ncRNAs involved in heterochromatin formation, histone
modification, DNA methylation targeting, and gene silencing.
Long non-coding RNAs (lncRNAs) are a subclass of non-
translated RNA-sequences defined by an arbitrary length of more
than 200 base pairs. These structurally complex RNA molecules
interact directly with both DNA, RNA, and proteins affecting
various cellular processes including genomic imprinting, gene
transcription, mRNA splicing and protein activity (19–21).
We are only beginning to understand how these molecules
regulate cellular function, and how dysregulation can lead to
malignant transformation.

The majority of lncRNAs are physically located in the
proximity of protein-coding genes. Furthermore, lncRNAs
are often classified according to their position relative to
those genes as sense, antisense, intronic, intergenic, and
bidirectional (22). Their expression levels are usually low and
often compartmentalized to the cytoplasm or nucleus (23).
Many lncRNAs exhibit low inter-species homology, and their
expression signatures are often tissue-specific, indicating the
importance of lncRNAs in cellular differentiation and embryonic
development (24–26).

The lncRNA mechanisms of action usually fall into three
categories, decoys, guides, or scaffolds (Figure 1). The decoys
function as competing endogenous RNAs (ceRNAs) and
modulate gene expression by sequestering transcription factors
or miRNAs (also called sponging). Consequently, the availability
of the targeted molecule is limited and the downstream effect
reduced. The guide lncRNAs help to localize transcription factors
or chromatin modifiers to specific areas of the genome, whereby
transcription can be modulated. Dynamic scaffolds support
transient assembly of protein complexes that bind genomic
regions to affect chromatin structure (27, 28). The functions are
not mutually exclusive, and many lncRNAs have more than one
function. The single-stranded circular RNA (circRNA) is a sub-
group of lncRNA recently discovered (29). Although the function
of circRNA is still poorly understood, evidence indicates a role in
miRNA regulation by sponging and intracellular transportation.
LncRNAs are also stratified into cis- and trans-acting regulators,
where the cis-regulators, exert their effect on neighboring genes
on the allele from which they are transcribed, and the trans-
regulators control gene expression at distant genomic sites.

Unsurprisingly, aberrant expression of lncRNAs has
been associated with several diseases, including cancer.
Dysregulated lncRNAs can exert oncogenic or tumor suppressor
functions through transcriptional regulation impacting cellular
proliferation, differentiation, invasiveness, apoptosis, and
metabolism (30).

Many cancer-associated lncRNAs display similar expression
patterns in different cancer types. Overexpression of Hox
transcript antisense RNA (HOTAIR) was first described in breast
cancer, where it was associated with increased invasiveness
and metastasis (31). Subsequent studies revealed an association
of increased expression of HOTAIR with disease progression
and poor prognosis in colorectal (32), non-small cell lung
(33), hepatocellular (34–36), gastric (37, 38), pancreatic (39),
and ovarian (40) carcinomas. Single nucleotide polymorphisms
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FIGURE 1 | Functions of lncRNAs in gene regulation. (A) Decoys can sequester transcription factors (TF) or complementary RNA transcripts, such as miRNAs (also

called miRNA sponging). The consequence of TF sequestration is attenuated expression of the genes regulated by that TF. The effect of miRNA sponging is the

release of the molecule e.g., mRNA which is targeted by that miRNA. The mRNA is then translated. (B) Guides recruit molecules, such as TFs or chromatin-modifying

enzymes to their target areas of the genome, which leads to the regulation of gene expression. (C) Scaffolds support transient assembly of protein complexes at

genomic regions, which can promote histone modifications and DNA methylation.

(SNPs) in HOTAIR were recently correlated with increased
susceptibility to develop OC in a Chinese population (41, 42).
In ovarian cancer, HOTAIR overexpression was associated with
poor differentiation, advanced FIGO stage and lymph node
metastasis (40, 43).

Metastasis associated lung adenocarcinoma transcript 1
(MALAT1) is another lncRNA widely overexpressed in various
solid tumor types (44, 45), including OC (46–49). Several
studies on OC cell lines showed that depletion of MALAT1
suppresses viability, proliferation, migration, and invasion (46,
47, 50). MALAT1 is highly conserved among mammals and is
primarily known to localize to nuclear splicing speckles, where
it interacts with splicing factors to regulate alternative splicing
(51). In OC, MALAT1 was demonstrated to suppress alternative
splicing of pro-apoptotic factors, causing apoptotic and anoikis
resistance (50).

HOTAIR and MALAT1 are examples of widely
expressed lncRNAs with oncogenic potential. Several
other well-studied lncRNAs are found to be involved in
the regulation of cellular processes such as proliferation,
genomic stability, metabolism, and apoptosis to ensure
homeostasis. These functions are executed through
the lncRNAs directly or indirectly influence on the
transcription of various proteins, which can lead to context-
dependent oncogenic or tumor-suppressive properties. For
a comprehensive overview of lncRNA’s involved in cancer
see (52–54).

A better understanding of the interplay between coding-
and non-coding RNA and the integration of more molecular
markers could potentially improve the predictive value of the
molecular subtypes and provide a stronger tool for personalized
therapeutic approaches.
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THE MOLECULAR LANDSCAPE OF HGSC

The most prominent molecular feature of HGSC is high genomic
instability (55), possibly initiated by TP53 dysregulation and its
associated effects in DNA damage repair (56). Mutations of TP53
were reported in up to 96% of HGSC cases, mostly missense
mutations (70.4%), which can result in a dominant-negative
effect, gain or loss of protein function. Frameshift (12%), non-
sense (8.67%), and splice site (5%) mutations, leading to loss of
protein function have also been described (57). Only a few other
genes were reported as commonly mutated in HGSC, including
BRCA1 (12.5%) and BRCA2 (11.5%) (58).

Genetic predisposition is recognized in a minority of the
patients with HGSC, with around 70% of familial cases
presenting inherited pathogenicmutations in BRCA1 and BRCA2
(59). These mutations contribute to an increased risk of
developing ovarian cancer (44% for BRCA1 and 27% for BRCA2
carriers), compared to the normal population.Mutations in other
genes with low penetrance also have an important role in ovarian
cancer development. The increased lifetime risk for women
harboringmutations in genes involved in theDNAdamage repair
by homologous recombination (HR), such as BRIP1 (5.8%) (60),
RAD51C (5.2%), and RAD51D (12%) have been reported in OC
(61). Alterations in genes involved in DNA mismatch repair
associated with Lynch syndrome (MSH2, MLH1, PMS2, and
MSH6), in rare cases prompt HGSC development (59, 62, 63).

The deficiency in DNA damage repair pathways is compatible
with the high genomic instability observed in epithelial OC, with
copy number alterations (CNA) affecting a significant fraction
of the genome. Recurrent focal amplification of CCNE1, MYC,
andMECOM genes are frequently identified in the TCGA cohort
(58). Cases showing CCNE1 amplification are mutually exclusive
with BRCAmutated cases suggesting the involvement of different
pathways in the tumorigenesis of HGSC (58). Deficiency of the
HR pathway was described in around 50% of HGSC cases, which
has been associated with BRCA1 (20% of cases) and BRCA2
(5%) germline or somatic mutations and, BRCA1 promoter
hypermethylation (10%). Genomic alterations in other genes
involved in the HR repair pathway, such as amplification or
mutation of EMSY (8%), focal deletion or mutation of PTEN
(7%), hypermethylation of RAD51C (3%), mutation ofATM/ATR
(2%), and mutation of Fanconi Anemia genes (58) have also
been reported.

Some sporadic ovarian tumors share the phenotypic
traits with tumors harboring germline mutations in BRCA1/2
(BRCAness phenotype), which may reflect molecular similarities.
The BRCAness phenotype predicts responsiveness to platinum-
based chemotherapy (64) and PARP inhibitors (65). In a
population-based study that evaluated the mutational profile of
HR genes, a better overall survival in BRCAness patients was
described (66). Another approach to identifying HR deficiency
was performed based on scores of the CNA profile of tumors,
named “genomic scars,” which was very high in HGSC, and also
correlated to PARP inhibitors or platinum-based chemotherapy
sensitivity (67).

The integrative analysis of CNA, mutations, and gene
expression alterations of HGSC identified RB1 and PI3K/Ras

pathways deregulated in 67% and 45% of the cases, respectively
(58). Amplification of PIK3CA, PIK3CB, and PIK3K4 was
correlated to the decreased overall survival of OC patients.
The analysis of PIK3CA protein product p110α and p-Akt
confirmed the involvement of the PIK3/AKT pathway in survival
(68). The PIK3A/AKT/mTOR pathway was also shown to be
implicated in therapy resistance. Advanced OC patients who did
not respond to subsequent chemotherapy presented activation
of the pathway compared to responsive patients (69). Besides,
GAB2, a signaling intermediate of PI3K and MAPK pathways,
was reported as amplified in 44% of ovarian cancer samples
(70). Although HGSC rarely exhibits mutations in KRAS or
BRAF, the main activators of the MAPK pathways, almost
half of tumors display an expression of active downstream
MAPKs (71).

In addition to the specific pathways and genes altered in
HGSC, distinct molecular subtypes were identified based on
the differential expression profiles (72). The expression analysis
of 489 tumors performed by TCGA and compared to an
external cohort revealed four HGSC subtypes: proliferative,
mesenchymal, immunoreactive, and differentiated (58). The
proliferative subtype was characterized by low expression of
ovarian tumor markers and high expression of transcription
factors and proliferation markers. The mesenchymal
subtype presented a high expression of HOX genes and
markers suggestive of increased stromal components. The
immunoreactive subtype was characterized by T-cell chemokine
ligands, CXCL11 and CXCL10, and the receptor, CXCR3. The
differentiated subtype was related to high expression of MUC16,
MUC1, and SLPI (the secretory fallopian tube maker), suggesting
a more mature stage of development (58). Patients with the
HGSC immunoreactive subtype presented better prognosis,
while patients with the mesenchymal or proliferative subtypes
showed worse overall survival (73, 74).

LncRNAs SIGNATURE OF OVARIAN
CANCER

Lately, the predictive value of differentially expressed lncRNAs
has received increased attention due to their presence in liquid
biopsies and potential as biomarkers for therapeutic response
and prognosis (49, 75, 76). A meta-analysis including 1,333
OC patients established that altered lncRNAs are, in general,
associated with decreased overall survival (76). In this analysis,
11 lncRNAs (HOTAIR, TC010441, AB073614, ANRIL, MALAT1,
NEAT1, CCAT2, UCA1, HOXA11-AS, SPRY4-IT1, and ZFAS1)
were identified with significantly increased expression in OC
patients (76). Additional data have been reported to support
the role of lncRNAs in OC. Eight lncRNAs were significantly
correlated with overall survival, in a comprehensive analysis of
lncRNA expression profiles of 544 OC patients from TCGA (75).
Six of them (RP4-799P18.3, RP11-57P19.1, RP11-307C12.11,
RP11-254I22.1, RP1-223E5.4, and GACAT3) were positively
correlated with overall survival, while the last two (PTPRD-
AS1 and RP11-80H5.7) were inversely correlated. The eight-
lncRNA signature showed prognostic value and was able to
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stratify patients according to clinical outcome into high- and low-
risk groups. Furthermore, this signature demonstrated predictive
value for the response to platinum-based chemotherapy (75).
A prognostic signature was identified for recurrent disease
based on datasets extracted from the Gene Expression Omnibus
(GEO). The signature comprised four well-known cancer-related
lncRNAs, RUNX1-IT1, MALAT1, H19, andHOTAIRM1, and two
less well-described transcripts LOC100190986 and AL132709.8.
These lncRNAs were confirmed as differentially expressed in
validation cohorts independently of tumor stage, tumor grade
and histology type (49).

In silico analysis of RNA sequencing data derived from 391
patients retrieved from TCGA revealed three additional lncRNAs
(NBR2, ZNF883, and WT1-AS) associated with recurrent OC
(77). Based on the results, two interesting interactions were
predicted; WT1-AS-miR-375-RBPMS and WT1-AS-miR-27b-
TP53, suggesting that WT1-AS regulates two important tumor
suppressors RBPMS and TP53, through miRNA sponging (77).

Several lncRNAs identified in large-scale studies have also
been validated individually (46, 78–82), and across different
cancer types (83). Also, functional studies have revealed that
many of the dysregulated lncRNAs associated with OC are
involved in one or several hallmarks of cancer such as increased
proliferation, alteredmetabolism, evasion of apoptosis, migration
or invasion (Figure 2) (79, 84–86).

Two lncRNAs are described specifically in ovarian cancer,
ovarian adenocarcinoma amplified (OVAL) (87) and human
ovarian cancer-specific transcript 2 (HOST2) (88). An intergenic
region encompassing the full OVAL gene was found amplified
in higher frequency in OC patients in comparison to other
cancers.OVAL amplification and its increased expression suggest
an oncogenic function in OC (87). So far no mechanisms or
functional interactions have been described for OVAL. The
expression of HOST2 is dramatically increased in OC tissues
and cell lines, compared to normal ovarian tissues and non-
ovarian cell lines (88). Furthermore, HOST2 was associated
with increased proliferation, migration and invasion in OC. The
mechanism of action of this potential driver is suggested to
be through sequestration of miRNA let-7b, which is known to
promote the expression of several oncogenes (89).

The involvement of dysregulated lncRNAs in the development
of OC is well-documented. Considering the described oncogenic
and tumor suppressor functions of lncRNA, their role in
the development of resistance to therapy is expected (90–92).
Differential lncRNA expression profiles were demonstrated in
cisplatin-resistant and cisplatin sensitive OC, supporting their
role in acquired resistance to chemotherapy (93). However, the
mechanism by which lncRNAs contribute to acquired resistance
remains incompletely understood. More detailed insights might
lead to discoveries of new biomarkers or therapeutic targets.
Signatures with the potential to predict therapeutic resistance
would be valuable tools for clinicians, aiding the selection
of the optimal treatment strategies for individual patients.
In the following section, the involvement of lncRNAs in the
development of therapeutic resistance will be highlighted, with
a focus on platinum and taxane-based treatment regimens.

LncRNAs INVOLVED IN
PLATINUM-RESISTANCE

The development of anti-cancer drug resistance is often complex
and multifactorial, depending on the specific drug and the
histological subtype of cancer. Carboplatin and cisplatin are
the most commonly used drugs for the first-line treatment of
advanced stages of HGSC. These platinum-based agents interact
with DNA forming mono adducts or interstrand, intrastrand,
and protein crosslinks mainly at guanine. The crosslinking affects
DNA repair and synthesis and leads to the accumulation of
single and double-strand breaks, which results in cell cycle arrest
and apoptosis (94, 95). Moreover, the release of reactive oxygen
species that activates inflammatory pathways may also contribute
to the cytotoxic effects of these compounds (96).

Resistant clones can arise through a clonal selection of cells
able to prevent, repair, or withstand DNA damage. The tumor
suppressor p53 and its related nuclear transcription factors
are important mediators of the cytotoxic effects of platinum
therapy. DNA damage normally leads to a p53-dependent
release of pro-apoptotic factors. Consequently, reduced activity
of p53 or the related pathways is associated with platinum-
resistance (97). Platinum-induced DNA damage can also be
repaired by HR, and hence, the activity of the BRCA1/2
genes reduces the responsiveness to platinum therapy (98). In
accordance, reversions of BRCA1/2 germline mutations have
previously been reported as a mechanism of resistance to
therapy (8). The mismatch repair system is another mechanism
by which the cell can detect platinum induced lesions. Loss
of mismatch repair-related genes such as MLH1 and MSH2
prevents the cells from recognizing the damage caused by
platinum therapy. Consequently, apoptosis is not initiated and
the cells are therefore less sensitive to the treatment (99,
100). Furthermore, platinum resistance was associated with
epithelial to mesenchymal transition (EMT) (101), implying a
range of molecular alterations promoting invasive properties
and resistance to oncogene-induced senescence. The major
pathways involved in EMT are TGF-β, HIF1-α, Wnt/β-catenin,
and Notch, which have also been associated with platinum
resistance (102, 103). General resistance mechanisms include
reprogramming of metabolism and mitochondrial dysregulation,
suppression of apoptotic mediators, up-regulated efflux pumps,
reduced drug uptake, or intracellular detoxification (104).
The molecular alterations leading to the platinum-resistant
phenotype rarely include single nucleotide mutations in the
known driver or resistance genes. Instead, it appears that the
resistance arises from a highly patient-specific and adaptable
pattern of altered methylation, gene amplifications, reversion of
BRCA1/2 mutations, promotor fusion, and translocation, and
differential expression of ncRNAs (8, 105, 106).

Although several lncRNAs have been associated with platinum
resistance in OC (Table 1), the resistance-associated molecular
mechanisms have been elucidated in only a few of them
(Figure 3). Next, we will present the current knowledge of the
functions and roles of a set of lncRNAs associated with platinum
resistance in OC.
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FIGURE 2 | LncRNAs described in OC associated with the hallmarks of cancer. The hallmarks of cancer include increased proliferation (gray), migration/invasion (red),

evasion of apoptosis (blue), and altered metabolism (green). The Venn diagram shows the lncRNAs associated with these four hallmarks with several of them involved

in more than one hallmark of cancer.

HOTAIR located within the HOXC gene cluster (mapped
on12q13.13) was previously introduced due to its involvement
in OC. HOTAIR recruits lysine-specific demethylase 1 (LSD1)
and Polycomb Repressive Complex 2 (PRC2) and guide them to
promote epigenetic silencing ofHOXD genes (126). Additionally,
HOTAIR regulates other HOX genes including HOXA7, which
is consistently overexpressed in several tumor types (40, 127,
128). The knockdown of HOTAIR led to reduced expression of
HOXA7, which increased susceptibility to apoptosis and restored
cisplatin sensitivity in resistant OC cells (107). In general,
HOTAIR is more abundant in advanced OC tissues and was
also overexpressed in cisplatin-resistant OC cell lines, compared
to sensitive controls (108). Furthermore, HOTAIR expression
was correlated with poor survival in patients who received
carboplatin compared with untreated patients (109). Knockdown
of HOTAIR in a mouse xenograft model, enhanced the effect of
treatment with cisplatin, suggesting its potential as a target to re-
sensitize ovarian cancer cells to platinum treatment. This effect
has been attributed to reduced activation of the Wnt/β-catenin
pathway, which is known to promote excess stem cell renewal and
EMT (110). Thus, overexpression of HOTAIR might contribute
to platinum resistance by increased transcription of HOXA7 and
Wnt/β-catenin dependent induction of EMT. Overexpression

of three additional lncRNAs DNM3OS, MEG3, and MIAT have
been associated with EMT in ovarian cancer (129). However, the
direct link between dysregulation of these transcripts and the
development of platinum resistance is unexplored.

As previously mentioned, MALAT1 plays an important
oncogenic role in multiple cancers (44, 45). Recently, MALAT1
has also been associated with resistance to therapy (130).
In OC, MALAT1 knockdown increased cell death during
treatment with cisplatin, indicating its potential involvement in
resistance (111). MALAT1 was demonstrated to correlate with
NOTCH1 expression, which is also up-regulated during platinum
resistance in OC (112). NOTCH1 knockdown attenuates
cisplatin resistance by directly down-regulating the expression
of the multidrug resistance-associated protein 1 (ABCC1) in OC
(131). ABCC1 encodes a transporter of molecules across cellular
membranes, including the efflux of a range of drugs (132). In
lung adenocarcinoma and colorectal cancer, MALAT1 promotes
resistance to taxane- and platinum-based drugs, respectively. In
these cases, EMT was identified as a mechanism of resistance
(130, 133); however, this effect has not yet been investigated
in OC.

The imprinted maternally expressed transcript H19 gene is
located in a well-conserved gene cluster also containing the
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TABLE 1 | List of lncRNAs associated with platinum-resistance in ovarian cancer.

lncRNA Category Expression in OC tissue* Expression in

platinum-resistant cell

lines**

Mechanisms of

resistance***

References

HOTAIR Antisense ↑ (cisplatin resistance or treated

with carboplatin)

↑ (cisplatin/carboplatin) ↑ HOXA7 (107–110)

MALAT1 Intergenic ↑ ↑ (cisplatin) ↑ Notch1 → ↑ abcc1 (111, 112)

H19 Intergenic ↑ (recurrent disease) ↑ (cisplatin) ↑ GSH pathway (113)

ZFAS1 Antisense ↑ (platinum resistance) ↑ (cisplatin) ↓ miR-150-5p → ↑ SP1 (80, 114)

UCA1 Intergenic ↑ (cisplatin resistance) ↑ (cisplatin) ↑ SRPK1

↓ miR-143 → ↑ FOSL2

(115–117)

PANDAR Antisense ↑ (disease recurrence +

wt-p53)

↑ (cisplatin) ↓ NF-YA

↑ SFRS2 - ↓ p53

(118)

PVT1 Intergenic circRNA ↑ (cisplatin resistance) ↑ (cisplatin) ↑ c-MYC (119)

ZBED3-AS1 Antisense ↑ (platinum resistance) ↑ (cisplatin/carboplatin) N/A (120)

F11-AS1 Antisense ↓ (platinum resistance) ↓ (cisplatin/carboplatin) N/A (120)

GAS5 Intergenic ↓ (platinum resistance) ↓ (cisplatin/carboplatin) N/A (120)

BC200 Intergenic ↓ ↓ (carboplatin) N/A (121)

LINC00312 Intergenic ↓ (cisplatin+paclitaxel resistance) ↓ (cisplatin) ↑ Bcl-2/Caspase-3 pathway (122)

BX641110 N/A ↑ (cisplatin) N/A (123)

CRNDE Intergenic N/A ↑ (cisplatin) N/A (123)

HOXC-AS3 Antisense N/A ↑ (cisplatin) N/A (123)

RP11-384P7.7 Intergenic N/A ↑ (cisplatin) N/A (123)

PLAC2 Intronic N/A ↑ (cisplatin) N/A (123)

RP11-6N17 Intergenic N/A ↑ (cisplatin) N/A (123)

RP11-65J3.1-002 Intergenic N/A ↓ (cisplatin) N/A (123)

AC141928.1 Intergenic N/A ↓ (cisplatin) N/A (123)

GS1-600G8.5 Intergenic N/A ↓ (cisplatin) N/A (123)

SNHG15 Intergenic ↑ ↑ (cisplatin) N/A (124)

EBIC Processed pseudogene ↑ ↑ (cisplatin) ↑ Wnt/β-catenin pathway (125)

The order of the lncRNAs corresponds to the appearance of the individual descriptions in the manuscript. Only the first 7 lncRNAs are described in detail in the manuscript, and are

selected based on substantiating evidence in the literature.

*The expression of the lncRNAs in OC tissue is indicated by arrows, ↑ for higher and ↓ for lower expression in platinum-resistant patients (patient characteristics indicated in parenthesis),

compared to expression in platinum-sensitive patients. If no patient characteristics are indicated, the expression was determined in ovarian cancer tissue from patients with unspecified

sensitivity to platinum drugs and normalized to adjacent or normal ovarian tissue.

**The expression in resistant OC cell lines is indicated by arrows; ↑ for higher and ↓ for lower expression in platinum-resistant, compared to expression in platinum-sensitive cell lines.

The drug the cell lines are resistant to is indicated in parenthesis.

***The effect of lncRNAs on associated pathways, miRNAs, genes or transcription factors involved in resistance mechanisms are indicated by arrows: ↑induction and ↓ repression.

N/A, information not available.

insulin-like growth factor 2 (IGF2). Both genes are regulated
by genomic imprinting, and H19 is only transcribed from
the maternal allele, whereupon it plays an important role in
embryonic development and growth control (134). Aberrant
expression of H19 has been demonstrated in several different
cancers (135, 136); although its exact carcinogenic role is
still under debate (137). The understanding of its function is
challenged by the variety of transcriptional products deriving
from the H19 gene locus and its complex regulation. As an
example, the miR-675 is transcribed from the first exon of
H19 (138) and has been associated with EMT and metastatic
progression in colorectal and pancreatic cancers (139, 140).
Furthermore, H19 is directly induced by the c-Myc oncogene
(141) and its expression has been associated with the hypoxic
stress response, involving p53 and hypoxia-inducible factor 1-
α (HIF1-α) (142). Transcriptome analysis revealed differential

expression of H19 in cisplatin-resistant OC cells compared to
their sensitive progenitors. The involvement of H19 in platinum
resistance was validated in tissues from 41 cases of HGSC treated
with either cisplatin or carboplatin. The patients were divided
into two groups according to their recurrence-free survival
(threshold of 12 months), whereH19 expression was shown to be
significantly higher in patients with early recurrence (113). The
role of H19 in cisplatin resistance was related to oxidative stress
and induction of the glutathione (GSH) pathway, where H19
regulates several targets (GSR, G6PD, GCLC, GCLM, GSTP1, and
NQO1) of the nuclear factor erythroid 2 (NRF2), an important
factor in the antioxidant defense (113). The glutathione pathway
has been suggested as a detoxifying mechanism to platinum-
induced oxidative toxicity and is often up-regulated during the
development of resistance (143, 144). H19 overexpression has
also been correlated with cisplatin resistance in other cancers,
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FIGURE 3 | The lncRNAs involved in platinum resistance in OC. Aberrant expression of the lncRNAs depicted on top (green circles) leads to platinum resistance

through four main mechanisms: improved DNA damage response, upregulation of drug transporters leading to efflux of the drug, epithelial-mesenchymal transition or

evasion of apoptosis. The molecular mechanisms suggested linking the lncRNAs to these resistance mechanisms involve interactions with miRNAs (light blue) and

direct or indirect regulation of transcription factors and signaling pathways (black), as illustrated above.

including seminomas (145) and non-small cell lung cancer (146),
where it was associated with evasion of apoptosis.

ZNFX1 antisense RNA 1 (ZFAS1) is transcribed from the
antisense strand close to the protein-coding gene ZNFX1,
including three C/D box small nucleolar RNAs (Snord12,
Snord12b, and Snord12c) (147). The role of the lncRNA
ZFAS1 (zinc finger antisense 1) varies among human cancers.
ZFAS1 is downregulated in breast tumors compared to normal
mammary tissue (147), whereas it is overexpressed in colorectal
cancer (148), indicating tissue-specific functions. In OC, ZFAS1
overexpression was identified as part of an eight-lncRNA
expression signature predictive of platinum-sensitivity, based on
transcriptome data from 258 patients with HGSCs (114). The
authors also found increased ZFAS1 expression in cisplatin-
treated OC cell lines. Functional studies in OC cell lines revealed
that the ZFAS1 knockdown resulted in increased sensitivity
to cisplatin. This effect was shown to involve sequestration
of miR-150-5p, which prevents binding of the transcription
factor specific protein 1 (SP1) (80). SP1 has been appointed
an important oncogene and a potential therapeutic target in
several tumor types (149). Additionally, SP1 is involved in
DNA damage response (150), and regulation of a copper

transporter (hCtr1), which is associated with platinum drug
transport (151).

Urothelial carcinoma associated 1 (UCA1) is expressed
during embryonic development and subsequently abolished in
most tissues, including ovarian epithelia. In OC tissue and
several other cancers, UCA1 is re-activated and overexpressed
(115, 152). In cancer tissues, UCA1 is regulated by HIF1-
α, indicating its involvement in the response to hypoxia
(153). Through sponging of miR-143, UCA1 prevents the
repression of FOSL2, a subunit of the Activator protein 1 (AP-
1) also involved in the hypoxic regulation. Consequently, UCA1
overexpression might lead to the up-regulation of the hypoxic
response involving AP-1. Hypoxia has been shown to promote
cisplatin resistance, through HIF1-α and p53 activation (154). A
significant UCA1 overexpression in OC tissues from cisplatin-
resistant patients (116) was reported. In vitro assays revealed that
stable transfection of OC cells with UCA1 promotes resistance
toward cisplatin (115). In addition, UCA1 was shown to affect
the activity of the serine/arginine-rich protein-specific kinase 1
(SRPK1), an oncogene that suppresses apoptotic factors (115).

UCA1 is also associated with resistance to Paclitaxel in OC
(155, 156), which can be reverted by UCA1 knockdown in cell
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lines (156). This effect was related to reduced sponging of miR-
129 and, subsequently down-regulation of the ABCB1 gene that
encodes an efflux pump previously correlated with multidrug
resistance in cancer (156, 157). These findings suggested that
the mechanism of resistance involving UCA1 is multifactorial,
and could include improved response to DNA damage, reduced
activation of apoptotic factors and increased efflux of the drugs.

The promoter of CDKN1A Antisense DNA damage Activated
RNA (PANDAR) is a widely acknowledged oncogene mainly
involved in regulating the response to DNA damage (158). The
transcription of PANDAR is p53-dependent and promotes cell
survival by impeding apoptosis through sequestering of the
NF-YA transcription factor (159). In OC cell lines, an inverse
relationship was demonstrated between PANDAR expression and
cisplatin sensitivity. This effect involved interaction between
PANDAR and the splicing factor arginine/serine-rich 2 (SFRS2),
which led to negative feedback regulation of TP53 (118). Patients
with wild type TP53 showed increased expression of PANDAR
and SFRS2 at disease recurrence, compared to the time of
diagnosis (118). The PANDAR-dependent suppression of p53
in resistant cells prevents the normal DNA damage response,
whereby the cells can evade apoptosis. Since HGSCs have a
very high occurrence of inactivating TP53 mutations, the role of
PANDAR in platinum resistance remains to be elucidated.

Plasmacytoma variant translocation 1 (PVT1) is a well-
established oncogene in OC (160, 161), as well as other cancers
such as gastric (162) and breast (163). PVT1 is located in
proximity to theMYC locus, where it encodes several alternative
splice isoforms. In addition, the PVT1 locus contains a cluster of
at least six miRNAs (miR-1204,−1205,−1206,−1207-3p,−1207-
5p, and−1208) (164). Transcription of PVT1 can be regulated by
p53 through a canonical binding site, indicating its involvement
in the response to DNA damage. PVT1 is often co-expressed
with MYC, with which it interacts and stabilizes to potentiate its
activity (165).MYC has been suggested as a potential therapeutic
target in platinum-resistant OC, as its overexpression confers
resistance toward cisplatin (166). The role of PVT1 in the
development of therapeutic resistance in OC is ambiguous since
it was both demonstrated to promote cisplatin resistance by
suppressing apoptotic factors (119), but also to be an effector
in the cytotoxic response to treatment with carboplatin and
docetaxel, by activating p53 and potentially promoting apoptosis
(167). However, since p53 is often affected by the loss of function
mutations in HGSC, the cytotoxic effect of PVT1 in response
to carboplatin and docetaxel might be blunted in these cases.
Studies in other cancers support the involvement of PVT1 in
cisplatin resistance (168, 169). The opposing effects described
for PVT1 could be due to the differences in the mechanisms of
action of the two treatment regimens and underlines the need for
further investigation.

Other mechanisms of resistance than the ones reported
here have been suggested to involve lncRNAs. As an example,
the lncRNAs MPRL (170), LINC00312 (122), and SNHG3
(84) are involved in mitochondrial function and altered
expression of these have been associated with platinum
resistance, either through effects on energy metabolism
or mitochondrial-dependent apoptosis. In general, the

interactions between lncRNA and the mitochondrial
genome is not yet well-understood and should be
further investigated.

LncRNAs INVOLVED IN THE TAXANE
RESISTANCE

Taxanes are microtubule-stabilizing agents that bind to
the β-subunit of tubulin dimers to promote and stabilize
polymerization. This mechanism inhibits microtubule
disassembly that is a necessary event in mitosis; consequently,
mitotic arrest and eventually apoptosis are promoted (171, 172).
Paclitaxel is most often used in combination with the platinum-
based chemotherapy as a first-line treatment, or as a single
agent in platinum-resistant OC patients. Unfortunately, repeated
exposure often leads to acquired resistance. Docetaxel, a second-
generation taxane, can be used in some cases; however, shared
resistance mechanisms result in low response rates. In vitro
experiments have demonstrated that an inverse relationship
exists between resistance to platins and taxanes, suggesting
separate resistance mechanisms and emphasizing the benefits
of combined treatments (173). The most common resistance
mechanisms to taxanes comprise structural changes in the
β-tubulin target region, altered expression of apoptotic and
mitotic factors and overexpression of the multidrug resistance
genes (ABC-transporters) (174, 175).

Since the taxanes are rarely used as a single agent in the
treatment of OC, only a few studies have investigated the
role of lncRNAs in the development of paclitaxel resistance
in tissues. A combined analysis of two expression datasets
comparing (1) patients with complete and incomplete response
to chemotherapy and (2) two OC cell lines with paclitaxel
resistance with two sensitive OC cell lines was performed.
The combined analysis identified a panel of seven lncRNAs
(XR_948297, XR_947831, XR_938728, XR_938392, NR_103801,
NR_073113, and NR_036503) differentially expressed in both
cell lines and tissues, and had predictive value for resistance to
therapeutic regimens containing paclitaxel (176). However, the
signature described in this study needs further validation and the
functional implications for differential expression of the selected
lncRNAs should be explored.

A list of lncRNAs associated with taxane resistance in OC is
detailed in Table 2. Few of these lncRNAs have well-described
functions and will be presented below. The interplay between
the described lncRNAs, their molecular pathways, and resistance
mechanisms are illustrated in Figure 4.

The Fer-1-like family member 4 (FER1L4) pseudogene is a
lncRNA associated with tumor-suppressive properties in cancer
(183). FER1L4 acts as a decoy for miR-106a-5p which also
interacts with the tumor suppressor PTEN (184). In OC, FER1L4
is expressed at low levels compared to normal ovarian epithelial
cells and, at even lower levels in paclitaxel-resistant cell lines.
Transfection with FER1L4 led to MAPK pathway suppression
and restored the sensitivity to paclitaxel, indicating an important
role in the development of resistance (177). Overall, PTEN-AKT-
mTOR and MAPK are major cancer driver pathways deeply
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TABLE 2 | List of lncRNAs associated with taxane-resistance in ovarian cancer.

lncRNA Category Expression in OC tissue* Expression in paclitaxel-resistant cell lines** Mechanisms of resistance*** Reference

UCA1 Intergenic N/A ↑ ↓ miR-129 → ↑ abcb1 (155, 156)

FER1L4 Pseudogene ↓ ↓ MAPK (177)

LINC01118 Intergenic ↑ ↑ ↓ miR-134 → ↑ abcc1 (178)

NEAT1 Intergenic ↑ (paclitaxel resistance) ↑ ↓ miR-194 → ↑ ZEB1 (179)

Xist Intergenic ↓ (recurrent disease) ↓ N/A (180)

KB-1471A8.2 Antisense ↓ ↓ ↓ CDK4 (181)

OIP5-AS1 Antisense N/A ↓ N/A (182)

The order of the lncRNAs corresponds to the appearance of the individual descriptions in the manuscript. Only the first 4 lncRNAs are described in detail in the manuscript and are

selected based on substantiating evidence in the literature.

*The expression of the lncRNAs in OC tissue is indicated by arrows, ↑ for higher and ↓ for lower expression in resistant patients (patient characteristics are indicated in parenthesis),

compared to expression in sensitive patients. If no patient characteristics are indicated, the expression was determined in ovarian cancer tissue from patients with unspecified sensitivity

to platinum drugs and normalized to adjacent or normal ovarian tissue.

**The expression in paclitaxel-resistant OC cell lines is indicated by arrows; ↑ for higher and ↓ for lower expression and the drug they are resistant to is indicated in parenthesis.

***The effect of lncRNAs on associated pathways, miRNAs, genes or transcription factors involved in resistance mechanisms are indicated by arrows: ↑ induction and ↓ repression.

N/A, information not available.

FIGURE 4 | The lncRNAs involved in taxane resistance in OC. Aberrant expression of the lncRNAs depicted on top (green circles) leads to taxane resistance through

three main mechanisms: cell cycle regulation, upregulation of drug transporters leading to efflux of the drug, or epithelial-mesenchymal transition. The molecular

mechanisms linking the lncRNAs to these resistance mechanisms involve interactions with miRNAs (light blue) and regulation of transcription factors or signaling

pathways (black), as illustrated above.

involved in resistance to chemotherapy (including paclitaxel) in
several cancers (185).

Long Intergenic Non-Coding RNA 1118 (LINC01118) was
recently identified as overexpressed in paclitaxel and cisplatin-
resistant cell lines and OC compared with normal and benign
tissues (178). These findings were supported by in vitro studies

showing that knockdown conferred increased sensitivity to
paclitaxel, whereas overexpression led to resistance. MiR-134
was predicted as a direct target, and functional assays showed
that LINC01118 was able to regulate the ABCC1 gene through
miR-134 repression (178). As previously described, ABCC1
upregulation is associated with multidrug resistance in cancers
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(132). No additional studies have been performed correlating
LINC01118 with drug resistance or even cancer, warranting
further investigations of this lncRNA.

Nuclear paraspeckle assembly transcript 1 (NEAT1) is
transcribed from the MEN1 (familial tumor syndrome multiple
endocrine neoplasia type 1) locus on chromosome 11 and
is a well-described oncogene (186). NEAT1 is overexpressed
in OC tissue and cell lines accordingly and is correlated
with metastatic potential and poor prognosis (79, 187). In
paclitaxel-resistant OC cells, NEAT1 acts as a decoy for miR-
194, promoting upregulation of ZEB1 (zinc finger E-box-
binding homeobox 1) (179). ZEB1 is an important transcription
factor and mediator of EMT and was previously associated
with drug resistance (188). Besides, paclitaxel resistance was
attenuated by NEAT1 knockdown, which was associated
with suppression of the efflux pump P-glycoprotein encoded
by the ABCB1 gene. This effect was also related to the
interaction between NEAT1 and miR-194, since the suppression
of the efflux pump was rescued by miR-194 knockdown.
The involvement of NEAT1 in resistance to paclitaxel was
validated in OC xenografts in mice, where knockdown restored
paclitaxel sensitivity (179). These results substantiate the role
of NEAT1 in paclitaxel resistance and indicate the potential for
therapeutic targeting.

PERSPECTIVES AND FUTURE
DIRECTIONS

Collectively, the present review provides compelling evidence
of the association between lncRNA expression pattern and
therapeutic response in OC, indicating that the etiology of
acquired resistance is more complex than originally described.
We are just beginning to understand the biological role and
function of some of these lncRNAs, and how they can be
exploited for clinical purposes.

Two of the most obvious applications for lncRNAs in OC
is the establishment of biomarker panels with predictive value
for prognosis and/or drug response, or for therapeutic targeting
to prevent or reverse resistance to chemotherapy. The presence
of circulating lncRNAs in body fluids such as blood and urine
at detectable levels, suggests that they could represent excellent
biomarkers (189, 190). Several lncRNA signatures with predictive
value for platinum-sensitivity in OC have recently been identified
(49, 114, 120). However, further studies are needed to determine
their clinical applicability.

The oncogenic behavior of some lncRNAs, combined with
their tissue specificity and content of targetable residues,
emphasize their potential as targets for therapeutic intervention.
Furthermore, lncRNA targeting is one of the only therapeutic
approaches to upregulate tumor suppressors in a locus-specific
manner (191). Artificially synthesized polymers of nucleic acids,
known as peptide nucleic acids (PNAs) are thermally stable,
not affected by nucleases and can be modified for in vivo
administration. Also, PNAs specific for RNA targets is much
easier to design and synthesize than small-molecule oncogene
inhibitors (192). For example, HOTAIR was targeted with a PNA,

designed to prevent the interaction between HOTAIR and the
EZH2 subunit of PRC2, in mice with platinum-resistant ovarian
tumor xenografts. The treatment reduced HOTAIR expression
and re-sensitized the tumors to treatment with cisplatin, which
resulted in prolonged survival. The study provided proof of
concept for targeting oncogenic lncRNAs as a strategy for
precision medicine (193). However, more conclusive evidence
of the complex molecular interactions of individual lncRNAs
is paramount to determine the physiological impact of targeted
treatments before clinical testing.

So far, the molecular profiling of lncRNAs and the
identification of functional interactions have proved to be
difficult to replicate in different studies. The main platforms for
high throughput analysis of lncRNAs, such as RNA sequencing
and expression arrays, offer different advantages and drawbacks,
and the downstream bioinformatics is not yet standardized.
Although RNA sequencing offers the advantage of including all
potential lncRNA transcripts, the complexity of the following
sequence assembly often hampers the correct annotation (194).
In contrast, array-based methods provide a more standardized
workflow and a much simpler downstream analysis but are
limited to a selection of annotated transcripts. Several studies
revise old data sets from publically available sources to
perform in silico investigations. However, the experimental
setup behind these data sets was rarely designed for the
identification of lncRNAs. The low expression of lncRNA
transcripts requires specific methodological considerations for
optimal results. Furthermore, computational prediction of
functional interactions should always be validated experimentally
in the specific tissue of interest.

The studies investigating lncRNAs are increasing
exponentially and both, experimental and bioinformatic
methods are constantly improving. Several lncRNA-targeting
therapeutics are already in the clinical pipeline (191), and
some have reached clinical trials (195, 196). GENCODE (23), a
spin-off from ENCODE is currently attempting to annotate all
non-coding transcripts of the entire human genome. Complete
annotation of human lncRNAs, standardization of experimental
procedures and bioinformatic analysis combined with improved
insights into the functional roles of lncRNAs in the development
of resistance, will provide a novel paradigm for biomarker
discovery and precision medicine in OC.
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