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Kirsten rat sarcoma viral oncogene (K-ras) is a well-documented, frequently mutated

gene in lung cancer. Since K-ras regulates numerous signaling pathways related to cell

survival and proliferation, mutations in this gene are powerful drivers of tumorigenesis

and confer prodigious survival advantages to developing tumors. These malignant cells

dramatically alter their local tissue environment and in the process recruit a powerful

ally: inflammation. Inflammation in the context of the tumor microenvironment can be

described as either antitumor or protumor (i.e., aiding or restricting tumor progression,

respectively). Many current treatments, like immune checkpoint blockade, seek to

augment antitumor inflammation by alleviating inhibitory signaling in cytotoxic T cells;

however, a burgeoning area of research is now focusing on ways to modulate and

mitigate protumor inflammation. Here, we summarize the interplay of tumor-promoting

inflammation and K-ras mutant lung cancer pathogenesis by exploring the cytokines,

signaling pathways, and immune cells that mediate this process.
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INTRODUCTION

A staggering 23% of cancer-related deaths in the Unites States can be imputed to lung cancer, which
translates to upwards of 140,000 deaths per year (1). In 90% of cases, lung cancer is caused by
cigarette smoke and subsequent DNA mutations (2). One commonly mutated gene, particularly
in lung adenocarcinoma (LUAD), is Kirsten rat sarcoma viral oncogene (K-ras) (3). In the wild
type state, K-ras hydrolyzes GTP and activates the Raf-MEK-ERK signaling cascade leading to
cell survival, cell cycle progression, and cell polarity (4, 5). However, once mutated, overactive
K-ras drives these processes independently of upstream signals, thereby heavily contributing to
tumorigenesis (4). Logically, efforts have been made to pharmacologically target K-ras, yet all
treatments tried so far have proven fruitless (6). Although downstream effectors of K-ras signaling
(e.g., MEK) are being explored as alternate targets (7), another potential therapeutic modality is
emerging: targeting tumor-promoting inflammation.
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Unlike other oncogenic changes that have already become
attractive drug targets, such as EGFR mutations and ALK, ROS
and RET rearrangements, K-ras mutations are still viewed as
“undruggable.” However, studies have shown that K-ras mutant
lung cancer is strongly associated with inflammation which
renders a new target for tackling this disease. Inflammation has
been recognized as a key promoter of cancer initiation and
progression (8). The immune system can often deleteriously
impact antitumor responses by producing factors that aid
mutagenesis, tumorigenesis, and immune suppression (8).
Through the secretion of cytokines, tumor cells can reprogram
the tumor microenvironment (TME), recruit immune cells, and
then sway these cells toward non-productive immune responses
while simultaneously dampening cytotoxic responses (9). The
end result, as summarized in Figure 1, yields a protumor TME
littered with molecules and cells helping the cancer survive and
resist treatment.

Using genetically modified mouse models, researchers have
found that lung cancers with both K-ras and EGFR mutations

FIGURE 1 | The intricate interplay within the K-ras mutant lung cancer tumor microenvironment. Tumors are constantly infiltrated with immune cells which make up

important components of the TME. Tumor cells attract immunosuppressive immune cells such as M2 macrophages, neutrophils, MDSCs, Th17 and Treg cells through

secretion of soluble factors (CCL2, CCL3, CXCL1, CXCL2, IL-1β, IL-6, IL-8, IL-10, TGFβ, G-CSF, etc.). These cells promote tumor growth, angiogenesis, and at the

same time, protect tumor cells from cytotoxic effects. CD8+ T cells and NK cells attack tumor cells through secretion of perforin, granzyme B and IFNγ, and Th1 cells

act as important assistants for CD8+ T cells. However, tumor cells, MDSCs and Treg cells could render cytotoxic immune cells incompetent through expressing

immune checkpoint molecules. Moreover, immunosuppressive cells also produce soluble factors that exhaust CD8+ T cells and NK cells, such as arginase, IDO,

iNOS, TGFβ, etc.

display immune responses with 3–5 fold increase in total
infiltrating CD45+ cells compared with normal lung tissue
(10). However, EGFR mutant lung cancers exhibit myeloid cell
recruitment, but no CD8+ immune response was observed,
suggesting that EGFR mutations may not be able to generate a
sufficient antigen-driven immune response (10). In contrast, both
pre- and clinical data have shown that K-ras mutant lung cancers
demonstrate significant infiltration of multiple inflammatory
cells, such as myeloid cells, CD8+ T cells, regulatory T
cells (Tregs), IL-17-producing lymphocytes, and inflammatory
cytokines (e.g., IL-6, IL-8, CXCL1) (10, 11). The reason why K-
ras mutant lung cancer could generate a stronger CD8+ T cell
response might be the fact that it is strongly associated with
cigarette smoke and a high mutation burden that could generate
an antigen-specific response. Moreover, K-ras mutations have
been reported to be associated with increased PD-L1 expression
(12). Patients with K-ras/Tp53 co-mutations exhibit higher PD-
L1 and a higher PD-L1+/CD8A+ ratio, reaping remarkable
benefits from PD-1 inhibitors (13).
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In contrast with other subgroups of NSCLC which are
deemed “immune-cold,” the future direction for tackling K-
ras mutant lung cancer might rest on controlling tumor-
promoting inflammation. In order to combat this inflammatory
environment, it is necessary to take into account the main
signaling pathways involved, the cytokines and other soluble
factors present in the TME, and the immune cells that are
recruited. In this review, we describe the interplay between these
components in the TME and highlight ways in which future
cancer therapeutics may target tumor-promoting inflammation
in K-ras mutant lung cancer.

INFLAMMATORY SIGNALING PATHWAYS

Signaling downstream of K-ras plays a pivotal role in K-ras-
driven non-small cell lung cancer (NSCLC), especially LUAD.
In fact, studies revolving around this oncogene have identified
STAT3 and NF-κB as key pathways. In this section we will
cover the importance of each of these pathways and their
contributions to understanding the mechanisms behind this
increasingly important disease.

STAT3
An important signaling mediator downstream and associated
with K-ras mutations is signal transducer and activator of
transcription (STAT), particularly STAT3. STAT3 is triggered via
several cytokines and growth factors; one, which we discuss later,
is IL-6 (14). When IL-6 binds to its receptor, it can activate Janus
kinase non-receptor tyrosine kinases (JAKs) 1 and 2 (14). These
JAKs will cause receptor phosphorylation, which will produce
docking sites for signaling molecules, mainly STAT3 (15).
Ultimately, STAT3 will dimerize and translocate to the nucleus
in order to transcribe several target genes involved in cellular
processes like apoptosis, angiogenesis, and metastasis (14).

The role that STAT3 plays in lung cancer is controversial
due to opposite findings by various researches. Mohrherr et al.
demonstrate the presence of JAK1 and JAK2 in human LUAD
that positively correlates with disease progression and K-ras
activity. In their mouse models, they administered a JAK1/2
selective tyrosine kinase inhibitor called ruxolitinib. With the
administration of this drug they found a reduction in tumor
cell proliferation and effectively ameliorated the tumorigenic
phenotype in both immunocompetent and immunodeficient
mouse models of K-ras-driven LUAD (16). Another research
group, Grabner et al. has also interrogated the role of STAT3
during K-ras-driven lung tumorigenesis using the Cre-inducible
K-rasG12D knock-in lung cancer mouse model as well as a
human xenograft model. Their findings contrastingly indicate
that STAT3 functions as a tumor suppressor in both models.
When they genetically eliminated STAT3 in mouse lung tumors
and human LUAD cell line A549, they found increased tumor
growth, higher tumor grade, increased vascularization, and
significantly reduced survival. These results are further supported
by clinical findings where activation and expression of STAT3was
decreased in mutant K-ras patient samples compared to mutant
EGFR and wild type K-ras tumors. Essentially, higher-grade
tumors showed a significant reduction in STAT3 expression when

compared to their low-grade tumor counterparts. In addition,
low STAT3 expression had worse overall survival when compared
to patients with higher STAT3 expression levels (17, 18).

Timing also contributes to the controversy of this disease.
One particular study demonstrates how lung epithelial deletion
of STAT3 in mice before the induction of cancer by urethane,
a smoke carcinogen, resulted in increased lung tissue damage,
inflammation, and tumorigenesis, while ablation of lung
epithelial STAT3 after establishing lung cancer inhibited this
tumorigenic process (19). These results seem to indicate that
tumor heterogeneity is an important aspect in K-ras-driven
LUAD. Even though K-ras mutations may share some common
signaling, some K-ras mutations such as K-rasG12C tumors show
greater dependence on the Raf-MEK-ERK pathway compared
with K-rasG12D suggesting they may be more sensitive to MEK
inhibitors as assessed by Li et al. (20).

While acquisition of these tumorigenic processes are often
found in K-ras mutant mice, a previously unknown function
of STAT3 in regards to epithelial identity and differentiation
was recently discovered. This study associates aggressive tumor
behavior and acquirement of mesenchymal-like phenotypes with
the loss of STAT3 function, while persistent STAT3 activation
bestows a differentiated epithelial morphology to cells that can
affect their potential for tumorigenesis (21). Receptor-interacting
serine/threonine protein kinase 4 (RIP4) is an ankyrin repeat-
containing kinase that is in charge of keratinocyte differentiation
and delays cell migration during wound healing. It has recently
been found to be a likely regulator of tumor differentiation in
LUAD and contributes to epithelial identity and differentiation
(22). This study demonstrated that poorly differentiated tumors
correlate with low expression of RIP4, whereas high expression
correlates with better overall survival. Cells from their in
vitro studies associate reduced RIP4 expression with elevated
activation of STAT3 signaling and had an overall increased
capacity for tissue invasion. In comparison, overexpression
of RIP4 inhibited STAT3: after tail vein injections of RIP4-
overexpressing cells, tissue invasion and tumor formation were
reduced, which was restored by co-expression of STAT3 (22).

Our own group has interestingly shown a gender-specific
role for lung epithelial STAT3 signaling in the pathogenesis
of K-ras-driven LUAD. Decreased tumorigenesis was found
in female mice lacking epithelial STAT3, yet loss of epithelial
STAT3 in male littermates led to an opposite effect of enhanced
malignancy, an effect driven by induction of an NF-κB-mediated
IL-6/CXCL2 associated neutrophilic response and reduction of
immune-mediated cytotoxicity (23). Zhou et al. used mouse
models of myeloid-specific STAT3 deletion to highlight the
importance of STAT3 as a major driver of myeloid-derived
suppressor cell (MDSC) andmacrophage pro-tumorigenic states.
They found that the antitumor T helper 1 (Th1) and CD8+ T
cells shared an inverse relationship in the development of lung
cancer. Promotion of tumorigenesis was caused by induction of
Tregs, inhibition of dendritic cells (DCs), and polarization of
macrophages toward a pro-tumorigenic M2 phenotype due to
activation of STAT3 in MDSCs and macrophages. Conversely,
deletion of myeloid STAT3 boosted antitumor immunity and
suppressed lung tumorigenesis (24).
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A great amount of effort has gone into the development
and identification of STAT3 inhibitors that can be applied in a
clinical setting. The first ones developed were direct inhibitors
of STAT3, which bind to the SH2 domain of STAT3, disrupting
STAT3 dimerization and DNA-binding activity (25). However,
their use has been limited in patients with NSCLC since
studies showed issues with tolerability (26). The use of antisense
oligonucleotides, most notably AZD9150, has emerged to provide
an alternate approach to inhibition of STAT3 and has shown
promising results when compared to direct STAT3 inhibitors as
they mitigate end-organ damage and other adverse effects (27).
Indeed, with the favorable safety profile and preliminary data,
further evaluation of this therapy should be investigated in order
to proceed to its use in a clinical setting.

NF-κB
Another frequently activated pathway in NSCLC is the nuclear
factor-κB (NF-κB) transcription factor pathway. Five members
compose this dimeric transcription factor including: RelA (p65),
RelB, c-Rel, p50/p105, and p52/p100 (28). These five members
are capable of forming diverse homo- and heterodimers in order
to variably control gene expression which is directed by signaling
from cytokines, bacterial and viral byproducts, stressful stimuli,
and growth factors (29). In naïve cells, the NF-κB complex is
kept in a dormant state through its interaction with inhibitor
of κB (IκB) proteins. IκB is phosphorylated by the IκB kinase
(IKK) complex due to cytokine signaling or other relevant
stimuli and afterwards undergoes rapid degradation. NF-κB
subunits are freed and then released into the nucleus where
they control various gene transcription targets that are crucial
in cell proliferation, cell survival, inflammation, and immune
responses (30, 31).

When looking at data obtained from lung cancer patients,
high levels of NF-κB activation in NSCLC was significantly
associated with TNM stages: In particular, NF-κB p65 expression
level was significantly increased in TNM stages III and IV when
compared to stages I and II (32). Additionally, the presence
of nuclear RelA and cytoplasmic phosphorylated IκB (pIκB)
significantly correlated with poor patient prognosis and survival
(33). Song et al. have interrogated the mechanisms behind the
IκB complex specifically IKKα which is essential for NF-κB
activation. They found that its inhibition upregulates NOX2 and
downregulates NRF2, leading to reactive oxygen species (ROS)
accumulation and blockade of cell senescence which ultimately
accelerates LUAD development (34). Their work demonstrates
a unique pathogenesis mechanism mediated through ROS. Our
own studies have likewise shown that NF-κB is activated in
tumor and surrounding inflammatory cells in our K-ras-driven
mouse model of LUAD (35). Bassères et al. also demonstrate
that NF-κB is important in K-ras-driven tumorigenesis because
the absence of p65/RelA significantly impairs K-ras-driven lung
tumorigenesis. Also, inhibition of IKKβ expression stops NF-κB
activation in K-ras-driven lung cells (31). The researchers further
support the importance of the IκB complex by administering
an IKKβ inhibitor in primary human lung epithelial cells
transformed by K-ras and K-ras-mutant lung cancer cell lines.

Afterwards, they tested this drug in mouse models of K-ras-
driven LUAD which resulted in smaller and lower grade tumors
than mice treated with placebo in conjunction with reduced
angiogenesis and inflammation (31). These studies point toward
targeting IKKα and IKKβ as potential therapeutic approaches for
K-ras-driven LUAD.

NF-κB may originate from myeloid cells, specifically
macrophages where it plays a crucial role in mediating cytokine
synthesis and secretion (36). Therefore, it is reasonable to think
that myeloid cell-derived NF-κB may promote lung cancer
through a mechanism of inflammatory cytokine secretion, which
ultimately would lead to an inflammatory microenvironment
predisposed to cancer. Inhibiting NF-κB in myeloid cells
significantly decreased inflammatory chemokines and cytokines
that were induced by cigarette smoke including tumor necrosis
factor (TNF), CCL2, CCL3, and IL-6 as well as inflammatory cell
infiltrate, which is associated with reduced size and multiplicity
of the lung tumors (37, 38).

NF-κB is an important signal for humans to defend
themselves from environmental insults, and it has important
roles in both innate and adaptive immunity. Therefore, systemic
administration of NF-κB inhibitors may negatively affect the host
immune response and actually be detrimental to patient health.
This is why currently there is no standalone therapy and in fact
combination treatments are a better alternative for lung cancer
chemoprevention (30, 39).

CYTOKINES AND THEIR RECEPTORS

Lung cancer has been associated with many cytokine signatures
that aid in the survival of tumor cells. As a rule of
thumb, cytokines that promote type 1 immunity are anti-
tumorigenic, whereas those that lead to type 2/3 immunity
or immunosuppression are typically pro-tumorigenic. The
complexity of the TME response has shown us that many
cytokines play different roles in tumor cell death or nurturing,
and our understanding of how this complex network behaves
could help us devise different therapeutic strategies. In this
section, we briefly review the role of six important cytokines in
the pathogenesis of lung cancer.

Interleukin 1β
Interleukin 1β (IL-1β) is a member of the IL-1 family of proteins.
Two receptors have been reported to interact with IL-1β: type
I and type II IL-1 receptors (IL-1RI/II). It is believed that
both receptors mediate different actions with IL-1RI as the
main signal transducer and IL-1RII as a decoy factor. Upon
complex formation, the IL-1RI cytosolic domain signals through
different adaptor proteins such as myeloid differentiation
primary response gene 88 (MYD88) and interleukin 1 receptor-
activated protein kinases 1, 2, and 4 (IRAK1/2/4). These proteins
help in signal transduction of several pathways including NF-κB,
PI3K/Akt/PKB, MAPK, and mTOR (40, 41).

IL-1β is expressed by many cells including natural killer (NK)
cells (42), macrophages (43), endothelial cells (44), neutrophils
(45), T cells, and fibroblasts (46). It has been traditionally
associated with the promotion of inflammation during acute
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and chronic tissue injuries. Many of its immunological
functions include promotion of monocyte to conventional DC
differentiation, macrophage polarization toward an M1-like
antitumor phenotype, and activated B cell clonal expansion and
differentiation into plasma cells. IL-1β secreted by activated
antigen presenting cells (APCs) induces type 1 responses by
increasing interferon gamma (IFNγ) producing cytotoxic T
lymphocytes (CTLs) and increasing the polarization of T cells
toward Th1 (47).

Despite benefiting the type 1 immune response, IL-1β
often exerts adverse effects in the context of cancer. Cytokine
profiling of patients with NSCLC has shown increased levels
of IL-1β in tumor specimens (48). In a NSCLC cancer study
of patients treated with radiotherapy, increased levels of IL-
1β showed a direct correlation with worse overall survival
compared to patients with lower levels (49). Mechanistically, it
has been shown in different types of cancer models that IL-
1β augments intratumoral immunosuppressive macrophages and
increases levels of VEGF and fibroblast growth factor (FGF),
supporting angiogenesis and metastasis (50, 51). Moreover, IL-
1β-deficient mice show increased DC infiltration and increased
CD8+ lymphocytes supporting antitumor cytotoxic responses
(52). GATA2, a transcription factor directly known to regulate
the IL-1β signaling pathway, has been shown to function as
a link between IL-1β signaling and tumor cell proliferation,
since GATA2 genetic depletion diminishes tumor burden
and progression in K-ras-induced lung cancer models (53).
Additionally, urethane-induced lung cancer mouse models, in
which myeloid NF-κB was inhibited, displayed increased levels
of IL-1β and cell proliferation (54).

Recently, clinical trials targeting IL-1β in patients with
atherosclerosis using the monoclonal antibody canakinumab
(anti-IL-1β) have shown a direct correlation with decreased
incidence of lung cancer, decreased mortality, and better
prognosis when compared to patients treated with placebo (55).
In addition, new ongoing clinical trials for patients with NSCLC
are targeting IL-1β. A phase II clinical trial (NCT03968419)
is combining canakinumab with pembrolizumab (anti-PD-1)
(56), and a phase III clinical trial (NCT03631199) is exploring
the safety and efficacy of pembrolizumab and conventional
chemotherapy with or without canakinumab.

Interleukin 6
The glycosylated polypeptide interleukin 6 (IL-6) is the main
member of the IL-6 family cytokines. Its receptor (IL-6R)
dimerizes with another IL-6/IL6R complex and forms a
hexameric structure that requires glycoprotein-130 (gp130, also
called IL6-Rβ) membrane protein dimers (57). Trans-signaling
occurs when IL-6 binds to a soluble form of IL-6R (sIL-6R)
making a complex that later can bind to intramembranous gp130.
Signal transduction can proceed through different pathways, with
JAK/STAT (mainly JAK2/STAT3) predominating, though other
pathways such as Raf-MEK-ERK, mTOR, Akt, and PI3K also play
roles in cell survival, cell proliferation, and protein synthesis (58).

IL-6 expression is triggered by different inflammatory stimuli
that are associated with tissue stress or damage (e.g., ROS,
ultraviolet radiation, or ionizing radiation) and is mainly

regulated by activation of the NF-κB pathway. IL-6 has
been shown to induce immune cell recruitment, modify the
TME (59), and help tumor cells with functions such as
survival, apoptosis, angiogenesis, invasiveness, and metabolism.
Immunological changes are also a hallmark of IL-6 expression,
mainly characterized by protumoral changes with a decrease
in CD8+ T cell responses and cytotoxicity (60), M1 to M2
macrophage polarization, induction of T helper 17 (Th17) and
Treg cell responses, as well as increased migration of MDSCs.
There is also evidence supporting a role for IL-6 in promoting
epithelial-mesenchymal transition (EMT) (61).

Overexpression of IL-6 has been found in most cancer types,
particularly NSCLC (62, 63), and has been shown to have an
inverse correlation with patient prognosis (64, 65) and higher
resistance to chemotherapy (66). NSCLC patients with higher
TMN staging and worse prognosis exhibited higher serum levels
of IL-6 compared to patients with lower disease stages (67–
69). In lung cancer mouse models, blocking or deleting IL-6
reveals a delay in tumor progression and metastasis through
deactivation of the IL-6/STAT3 pathway and cell proliferation
regulator cyclin D1, as well as through enhancement of tumor cell
apoptosis (70). Mice with K-ras mutant lung tumors treated with
anti-IL-6 antibodies have shown an overall reduction in tumor
burden and a shift to a TME with a less proliferative and a less
protumor inflammatory context: fewer Th17 cells, fewer Tregs,
and more M1-type polarization (62). Paradoxically, some models
show evidence of accelerated tumorigenesis in early stages of
IL-6 depletion (70, 71). However, therapeutic antibodies against
IL-6R have decreased tumorigenesis and increased apoptosis in
numerous human cancer cell lines synergistically with other
targeted therapies such as EGFR inhibitors (71, 72). A clinical
trial (NCT03337698) using tocilizumab (anti-IL-6R) is underway
in patients with metastatic disease who have or have not received
previous therapy with conventional chemotherapy plus anti-PD-
1/PD-L1 therapy (73).

Interleukin 8
Interleukin 8 (IL-8) is also called neutrophil chemotactic factor or
CXCL8. Its receptors, CXCR1 and CXCR2, are G-protein family
members expressed mainly on neutrophils but also cells like
fibroblasts, neurons, and epithelial cells (74). IL-8 expression is
initiated and regulated by the NF-κB pathway, with its strongest
activators being IL-1β and TNF (75). It is mainly secreted
by immune cells such as macrophages, neutrophils, T cells,
and non-immune cells like epithelial and endothelial cells. IL-8
secretion has several physiologic functions including chemotaxis,
induction of phagocytosis, degranulation of neutrophils, DC
migration, and potentiation of acute inflammatory reactions (76).

Overexpression of IL-8 and its receptors have been shown
to play a pivotal role in promoting tumorigenesis in several
neoplasia such as gliomas (77), cervical cancer (78), colorectal
cancer (79), and lung cancer (17). Its main roles comprise
autocrine and paracrine alterations of the TME, with one main
mechanism being the recruitment of MDSCs (80). Other roles
include angiogenesis through promotion of VEGF expression
(81), induction of tumor growth, and facilitation of metastasis
(82). Furthermore, IL-8 plays a central role in the promotion and
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induction of lung cancer cell proliferation (83), which is achieved
through EGFR transactivation and increased MAPK pathway
signaling (84).

High levels of IL-8 have been described within tumors of lung
cancer patients with K-ras mutations, correlating with decreased
disease-free survival and overall survival when compared to
patients with low levels of IL-8 (85). K-ras mutant IL-8-
overexpressing cell lines showed a sharp decrease in IL-8
expression when treated with K-ras-shRNA and MEK inhibitors,
suggesting a direct relationship between activating K-ras
mutations and upregulation of IL-8 expression. In these cell lines,
inhibiting IL-8 led to decreased cell proliferation and migration,
further indicating a role for IL-8 in promoting K-ras mutant lung
cancer (86). Similarly, studies in which the CXCR2 receptor was
inhibited through the use of neutralizing antibodies or selective
inhibitors have shown a decrease in tumorigenesis, suppression
of neutrophil migration, and induction of apoptosis in vascular
endothelial cells in K-ras mutant mice (87, 88). Additionally,
several NSCLC non-K-ras mutant cell lines where shown to have
an increased proliferative rate and increased growth through
the action of IL-8 in an endocrine fashion (83). Furthermore,
high levels of IL-8 have been associated with resistance to lung
cancer therapies such as EGFR inhibitors (89), conventional
chemotherapy (90), and anti-PD-1 immunotherapy (91).

Interleukin 17A
Interleukin 17A (IL-17) is a 155 amino acid glycoprotein, which
is secreted mainly by Th17 cells as a homodimer (92, 93). It can
also be produced by other cells, such as CD8+ T cells, NK cells,
type 3 innate lymphoid cells (ILC3s), γδ T cells and in some
cases epithelial cells (94–96). Its receptor, IL-17R, is ubiquitously
expressed and usually forms multimeric complexes (97).

IL-17-mediated responses have been shown to produce
tumorigenic effects in the early stages of multiple cancers,
including lung (98), gastric (99), and prostate cancer (100).
Specifically, IL-17 acts to recruit MDSCs (101) through increased
levels of IL-8 and encourages angiogenesis in tumor-surrounding
endothelial cells and fibroblasts via production of VEGF, TGF-
β, CXCL1, and CXCL5 (102). IL-17 also elevates levels of IL-
1β, IL-6, and TNF, and its signaling activates the NF-κB and
MAPK pathways (103, 104). Paradoxically IL-17 has also shown
antitumor activity, in which IL-17-mediated responses had
higher effects than Th1-driven responses in ovarian carcinomas.
This antitumor response was highly dependent on high levels of
IFNγ, IL-21, IL-22, and chemokines such as CCL20 (103, 105).

Several studies have shown that increased IL-17 levels in
patients with lung cancer are associated with poor prognosis and
higher TNM staging (106). The use of lung cancer murinemodels
confirmed an increased infiltration of Th17 cells in tumors. These
cells promoted tumorigenesis through production of IL-17 and
subsequent recruitment of myeloid cells. IL-17 deletion reduced
K-ras mutant lung tumorigenesis, tumor cell proliferation, and
angiogenesis (98). This was associated with decreased levels of
inflammatory mediators such as IL-6 and different chemokines
related to neutrophil and monocyte migration such as CXCL1,
CXCL2, CCL2, and GM-CSF, resulting in fewer myeloid cells
(98). IL-17 has also been shown to promote metastasis of

NSCLC xenograft models due to its direct association with the
IL-6/STAT3 pathway (106). Recently IL-17 has been found to
promote resistance to immune checkpoint blockade in lung
cancer through a neutrophil-dependent modification of the lung
TME (107).

Interleukin 22
Interleukin 22 (IL-22) is classified inside the IL-10 related
cytokines. It is secreted primarily by Th17 cells (108); however,
other immune cells such as γδ T cells, natural killer T cells,
neutrophils, macrophages, and ILC3s secrete IL-22 (109). IL-
22 expression is highly dependent on the activation of aryl
hydrocarbon receptor (AHR) (110) and transcription of STAT3.
Signaling pathways activated by IL-22 include the JAK-STAT
pathway (particularly JAK1/2) resulting in the activation of
STAT1, STAT3, and STAT5 (111, 112). Other pathways activated
include MAPK, mTOR, Akt, and PI3K.

Recently it has been described that IL-22 is secreted in
high amounts in different cancers of the lung, liver, skin, and
colon (56, 113, 114). It has been shown to be upregulated in
tumor tissues and bronchoalveolar lavage fluid of patients with
recurrent NSCLC, and its abrogation decreases the proliferative
and migratory capabilities of tumor cells (115, 116). IL-
22R overexpression in NSCLC has also been associated with
poor prognosis in patients with LUAD (117). In mice, it
has been shown that IL-22 also increases levels of other
cytokines such as IL-6, IL-10, TGF-β, and TNF, inducing an
immunosuppressive environment. Studies in a murine K-ras
mutant lung cancer model have confirmed the promoting role of
IL-22 in tumorigenesis and its pro-inflammatory function that is
mediated through activation of different cytokines including IL-6
and IL-17 (113). It has also been shown to trigger upregulation
of stemness markers (113). Increased expression of IL-22 and
its receptor IL-22R1 and increased activation of STAT3 in
human lung cancer cell lines mediate resistance to standard
chemotherapy (118), which could be linked to the role of IL-22
in induction of stemness properties.

Tumor Necrosis Factor
TNF is comprised of a 233 amino acid homodimeric
transmembrane protein (119). It is mostly produced by
immune cells such as CD4+ T cells, mast cells, eosinophils,
neutrophils, NK cells, and macrophages (120). TNF is a cytotoxic
molecule that serves as an acute phase reaction protein that
chemotactically attracts neutrophils and increases levels of
endothelial adhesion proteins (120, 121). Several pathways
are activated by TNF including NF-κB, Akt/PKB, MAPK, and
the apoptosis pathways (73, 119, 122, 123). TNF expression is
ubiquitous in different organs including lung epithelial cells,
fibroblasts, and stromal tissue (121).

Chronic increase of TNF has been historically related to
cancer-associated cachexia due to its effects on hypothalamic
structures (124), and high serum TNF levels have been associated
with worse prognosis in lung cancer (125, 126). TNF increases
the number of MDSCs and neutrophils in the TME, leading
to increased tumor growth, angiogenesis, and amplification of
inflammation (127, 128). To model these effects, murine studies
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have used epithelial-specific TNF overexpression and deletion
using a TNF knockout mouse in a K-ras mutant model of lung
cancer to show the importance of TNF in recruiting MDSCs
and promoting lung cancer (129, 130). It has also been shown
that TNF neutralization impairs inflammatory cell migration
and angiogenesis with an overall decrease in tumor size but not
number in a urethane-induced lung cancer mouse model (131).
Efforts to combine TNF agonists with other cancer therapies
such as 17-allylamino-17-demethoxygeldanamycin (17AAG)
have been tested in several human cancer cell lines in vitro (132).

Currently anti-TNF therapy is being used in different types
of cancers, including lung cancer, and has been shown to
enhance chemotherapeutic effect by decreasing inflammation,
proliferation, and metastasis (133). Clinical trials using anti-TNF
with or without chemotherapy have shown prolonged disease
eradication in patients with ovarian cancer (134) and breast
cancer (135).

IMMUNE CELLS

As we have previously mentioned, inflammation significantly
augments tumorigenesis (8) and in the process recruits
various immune cells. Tumors are constantly infiltrated with
immune cells with diverse functions which make up important
components of the TME. Cells with cytotoxic activities, such as
CD8+ T lymphocytes and NK cells, generally exert antitumor
functions, whereas Tregs, Th17 cells, MDSCs, neutrophils, and
macrophages are usually pro-tumorigenic. Lung cancer driven
by K-ras activation in the airway epithelium elicits a formidable
inflammatory response distinguished by macrophagic and
neutrophilic infiltration accompanied by increased chemokines
like CCL2, CXCL1, and CXCL2 (11). In this section, we will
discuss the function and importance of each immune cell in the
pathogenesis of K-ras mutant lung cancer.

Macrophages
Macrophages are innate immune cells resident in tissues
originating from peripheral, circulating monocytes. They
are involved in the detection, phagocytosis, and destruction
of foreign organisms. They also present antigens to T cells
and initiate inflammation through secreting cytokines that
activate other immune cells. As crucial drivers of chronic
inflammation, they have been reported to be involved in
almost every step of cancer progression including early
carcinogenesis, metastatic progression, and therapeutic
resistance. Tumor-associated macrophages (TAMs) constitute
the majority of infiltrating immune cells in tumors, and their
presence usually negatively correlates with clinical outcome
(136). In lung cancer, higher TAM density is related to
worse patient survival, and patients with recurrent disease
display elevated macrophage infiltrates in their primary
tumors (137, 138).

Activated macrophages are classified into two phenotypes by
their roles: pro-inflammatory M1 type or anti-inflammatory M2
type (139). During early tumorigenesis, M1 macrophages play
a role in the elimination of more immunogenic tumor cells,
whereas less antigenic tumor cells survive and skewmacrophages

toward the M2 phenotype to promote tumor survival and
metastasis through angiogenesis, EMT, and immune evasion
(136, 140–142).

In an analysis of infiltrated immune cells in subtypes of
lung cancer, researchers found that LUADs with K-ras or
EGFR mutations were more densely infiltrated by cells of
myeloid lineage, whereas small cell lung cancers (SCLCs)
were mostly infiltrated by T cells. Moreover, in K-ras mutant
LUAD macrophage content increases with time (10). This
finding suggests that K-ras mutated cancer cells can modulate
the TME to facilitate their growth through recruiting and
remodeling macrophages. Actually, lung epithelial activation of
K-ras signaling led to LUAD development and pronounced
pulmonary inflammation with a 14-fold increase in macrophage
content and a 100-fold increase in neutrophil count (11). Further
analysis showed that macrophage chemoattractants MCP-1
(CCL2) and MIP-1α (CCL3) and neutrophil chemoattractants
MIP-2 (CXCL2) and KC (CXCL1) were significantly elevated,
and these chemokines were secreted by K-ras activated
tumor cells (11). After being recruited to tumor sites, these
macrophages were reshaped into an M2 protumor phenotype
(i.e., increased Arg1, Fizz1, and Mrc1 expression) to promote
tumor progression (62).

Macrophages promote tumor progression through multiple
mechanisms such as boosting angiogenesis, stimulating
proliferation and EMT, remodeling the extracellular matrix
(ECM), enhancing immunosuppression, and inhibiting
antitumor cytotoxic activities (136, 143). In NSCLC patients,
tumor-infiltrating macrophage density correlated significantly
and positively with intratumor microvessel counts and negatively
with patient survival. Recent studies using K-ras mutant LUAD
models found that skewing from M2 to M1 in the TME resulted
in reduced angiogenesis (143), and knocking out TLR9 in
mononuclear cells led to reduced microvessel density and lower
VEGF expression (144). Macrophages also undergo bidirectional
crosstalk with lung cancer cells through CCR2-CCL2 and
CX3CR1-CX3CL1 signaling axes to facilitate tumor growth
as well as establish a nurturing tumor microvasculature and
metastasis (145).

On the other hand, M2 macrophages promote an
immunosuppressive TME, as remodeling from M2 to M1
results in an attenuated immunosuppressive environment and
boosts the efficiency of antitumor T cell function characterized
by lower PD-L1 expression and decreased levels of IL-6
and TGF-β (143). Sustained activation of NF-κB signaling
led to chronic inflammation and adenoma development
accompanied by increased M2 macrophage infiltration, and
these macrophages induced Treg differentiation through
expression of IL-10 and TGF-β (146). In a cigarette smoke-
induced K-ras mutant LUAD mouse model, myeloid cells
were able to promote LUAD cell proliferation, angiogenesis,
IL-6/STAT3 signaling, and infiltration of neutrophils (37).
Furthermore, M2 macrophages maintain an immunosuppressive
TME through downregulation of MHC II and costimulatory
proteins (CD80 and CD86) and increased arginase (Arg1) and
indoleamine 2,3-dioxygenase (IDO) activity to prevent the
activation of antitumor immunity (147).
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Neutrophils
Chemotactic factors like IL-8, which we discussed earlier, that
are produced in inflamed tissues are instrumental in recruiting
neutrophils. These cells are the backbone of pathogen clearance,
phagocytosing their targets while releasing antimicrobial
proteins, proteases, and even their own DNA into the
microenvironment in an effort to mitigate infection (136, 148).

It has been widely recognized that tumor-associated
neutrophils (TANs) play an important role in cancer
promotion (149). High levels of neutrophil infiltration and
high neutrophil/lymphocyte ratio are negatively associated
with prognosis in different malignancies including lung
cancer (150–152). Similar to M1 and M2 macrophages,
neutrophils are also thought to exist in two distinct phenotypes,
“N1” and “N2” (153); however, there are no biomarkers
yet to specifically identify these two phenotypes (136). N2
neutrophils are pro-tumorigenic by influencing angiogenesis
and immune surveillance, secreting various cytokines, and
generating ROS (154). Under certain conditions such
as TGF-β blockade, TANs can take on an antitumor N1
phenotype (149).

TANs are recruited to the TME through cytokines and
chemokines secreted by cancer cells and stromal cells, such as
TGF-β, TNF, and CXCL1/2/5 (155–157). TANs are a crucial
component of the lung cancer TME. Actually, neutrophils
comprised 20% of all CD45+ cells in NSCLC samples, and
they were predominantly located in tumor stroma (158). Our
previous studies and others using K-ras mutant LUAD models
have found that neutrophils make up a significant portion of
immune cells in the TME, and lung epithelial K-ras activation
significantly increases neutrophil infiltration through CXCR2
ligands CXCL1/2 (11, 35, 87, 88), with neutrophil infiltration
increasing with time (10).

TANs are involved in tumor initiation and progression
through promoting angiogenesis, remodeling the ECM,
producing ROS, and modulating immunity (149). Neutrophils
can promote lung carcinogenesis through secreting MMP-9 to
prevent apoptosis (159). They also secrete neutrophil elastase
(NE) that activates Akt signaling to potentiate lung cancer
growth (160). Neutrophils likewise promote angiogenesis
through secretion of chemokines and MMPs, which can
switch on angiogenesis through counteracting anti-angiogenic
molecules and promoting the release of VEGF (161). NE,
collagenase IV, and heparanase produced by neutrophils
degrade the ECM and assist tumor cell extravasation during
the metastatic process (162, 163). Neutrophils also play a major
role in reshaping the leukocyte component in the TME. Using
NSCLC specimens, Kargl and colleagues (158) found a strong
negative correlation between neutrophils and CD8+/CD4+

lymphocytes, suggesting lymphocytes are able to suppress
neutrophils. Since neutrophil-derived NE promotes cancer
development, a genetic knockout of NE resulted in reduced
tumor burden, delayed cancer progression, lower proliferation
rate, lower angiogenesis, and decreased levels of IL-6 and TGF-β
(88). On the other hand, NE is also reported to accelerate
tumor growth through skewing the PI3K axis toward tumor cell
proliferation (160).

IL-17 in the K-ras mutant LUAD microenvironment induces
epithelial secretion of CXCL2 and G-CSF to recruit neutrophils
to the TME and exert their tumor-promoting functions
(98). Neutrophils also reduce T cell homing, impair anti-
PD-1 efficacy, and alter angiogenesis, leading to hypoxia,
and sustained Snail expression in lung cancer cells (164).
Besides the intrinsic inflammation caused by K-ras mutation,
extrinsic inflammation, like airway inflammation in chronic
obstructive pulmonary disease (COPD), can shift inflammation
from macrophage-predominant to neutrophil-predominant and
significantly promote lung tumor growth, which further
emphasizes the cancer-promoting role of neutrophils (35).

Myeloid-Derived Suppressor Cells
MDCSs represent a diverse collection of immature myeloid
lineage cells that together contribute to negative regulation of
the immune response during cancer and chronic inflammation
(165). In mice, MDSCs are recognized as CD11b+GR1+,
whereas the human phenotype is CD11b+CD14−CD33+ (165).
MDSCs can be further classified as polymorphonuclear (PMN-
MDSCs) and mononuclear (M-MDSCs) (166). The expansion
and activation of MDSCs are influenced by tumor cells, activated
T cells, stromal cells, and active molecules released by these cell
populations (165). Tumor-secreted factors such as GM-CSF, IL-
1β, IL-6, TGF-β, and TNF mediate expansion of MDSCs (167–
171). T cells and tumor stromal cells activate MDSCs through
TLRs, IFNγ, IL-4, IL-13, and TGF-β (165).

MDSCs are present in activated states and are potent
suppressors of T cell functions (165). The main mediators of
MDSC immunosuppressive functions are Arg1, iNOS, TGF-β,
IL-10, COX2, and IDO (166). MDSCs express high levels of
Arg1 and iNOS, both of which directly inhibit T cell function
(172, 173). MDSCs generate oxidative stress by producing ROS,
and inhibition of ROS in MDCSs completely abrogated the
inhibition on T cells (174). Peroxynitrite is a potent oxidant
produced by the body, and peroxynitrite levels are elevated
at sites where MDSCs and inflammatory cell correspondingly
amass. Direct contact of peroxynitrite with T cells results in T cell
receptor and CD8 nitration, which renders T cells unresponsive
(175). MDSCs release IDO, which polarizes APCs toward a
tolerant phenotype. MDSCs also express the immune checkpoint
molecule PD-L1, which binds to PD-1 on T cells resulting in T
cell exhaustion (176). MDSCs also promote tumor progression
through interaction with other immune cells. They produce IL-
10 to inhibit DC function (177), polarize macrophages toward
M2 (178), and recruit Tregs via IL-10 and TGF-β (179).

MDSCs play an important part in the TME of K-ras
mutant LUAD. Oncogenic K-ras induced GM-CSF is capable
of activating MDSCs, and MDSCs can directly promote
angiogenesis or accumulate Tregs to enhance K-ras mutant
tumor growth (82, 88). COPD-like airway inflammation in K-ras
mutant LUAD can increase TNF levels, which induces a robust
accumulation of MDSCs. Recruitment of MDSCs results in
increased angiogenic markers CD31 and MMP-9 and increased
TGF-β and IL-6 levels that induce an immune-suppressive Treg
response (129). It has also been shown that IL-6 inhibition in K-
ras mutant LUAD significantly reduced the MDSC population, as
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well as levels of Arg1, IDO, CXCL1, and IL-17 in these cells, and
at the same time switched the T cell phenotype from a protumor
Treg/Th17 to an antitumor Th1/CD8T cell response (62).

T Helper 17 Cells
Th17 cells, a T helper cell subgroup that functionally differs
from conventional Th1 and Th2 cells (180), have been associated
with a wide range of inflammatory diseases including COPD.
The role of Th17 cells varies in different cancer types and is
currently uncertain due to evidences on both anti- and protumor
functions. Th17 cells have been reported to play antitumor roles
as their existence in patients correlates with lower clinical stages
in prostate cancer (181) and longer survival in SCLC (182). In
hepatocarcinoma (183) and pancreatic carcinoma (184), Th17
cells from patients could produce IFNγ and have cytotoxic
activities, which also suggests an antitumor role of Th17 cells. The
effects of Th17s might vary temporally, as Th17 cells have been
found to increase in early stage NSCLC tumors compared with
tumor-free parenchyma. However, in advanced stage NSCLC,
Th17 infiltration in positive lymph nodes is inversely related
to PD-1+CD4+ T cells (185). In NSCLC, Th17 cells have been
widely reported to promote tumor progression: levels of IL-17,
a major cytokine from Th17 cells, are significantly higher in
NSCLC patients than non-cancer patients (186), and high levels
of IL-17 are positively related to lymph node metastasis and
advanced staging (106). On the other hand, Th17 cells might
paradoxically have antitumor functions inNSCLC: high Th17 cell
counts in pleural effusion are related to better survival of NSCLC
patients (187), and IL-21 secreted by Th17 cells could induce the
expansion of cytotoxic CD8+ T cells (188).

As we have previously discussed in the cytokine section,
Th17 cells produce IL-17 to promote tissue inflammation and
modulate the lung TME through secreting pro-inflammatory
cytokines and chemokines (98). Th17 differentiation is usually
triggered by IL-23 (189), and after activation, Th17 cells produce
IL-17 and IL-22 to induce the production of pro-inflammatory
factors including IL-1β, IL-6, and TNF (190). K-ras mutations
lead to elevated IL-17-producing T cells (10). In our previous
study of K-ras mutant LUAD concurrent with COPD-related
airway inflammation (98), IL-17 deficient (il17a−/−) mice
have lower tumor proliferation and vascular density. Reduced
tumorigenesis was associated with lower infiltration of Gr-
1+CD11b+ myeloid cells (MDSCs) in il17a−/− mice suggesting
Th17 cells are involved in recruiting immunosuppressive cells.
Different lung cancer subtypes and oncogenic mutations might
generate distinct inflammatory responses. Currently, evidence on
antitumor roles of Th17 cells in K-ras mutant lung cancer still
remains scarce, and more studies are needed.

Regulatory T Cells
As the name suggests, regulatory T cells (Tregs) are T cells that
play a role in regulating or suppressing the immune system and
preventing autoimmune disease. Tregs are typically characterized
as CD4+CD25+ and express the nuclear transcription factor
FoxP3. Treg infiltration is related to the progression of lung
cancers. NSCLC specimens have been found to have a significant
increase in Tregs compared with non-tumor lung tissue (158).

A clinical study revealed that circulating Treg numbers rose
alongside disease stage and metastasis (191). Treg levels in
NSCLC tumors and peripheral blood are linked to increased risk
of recurrence and poor survival (192, 193).

Tregs induce immunosuppression through contact-
dependent mechanisms such as expressing co-inhibitory
molecules like cytotoxic T-lymphocyte-associated protein 4
(CTLA-4), PD-1, PD-L1, lymphocyte-activation protein 3 (LAG-
3), CD39/73, or through contact-independent mechanisms by
producing immunosuppressive molecules like IL-10, TGF-β,
adenosine, prostaglandin E2 (PGE2), and IL-35 (194, 195). In
mouse LUADs, Treg depletion resulted in tumor cell death
and increased levels of granzyme A, granzyme B, perforin, and
IFNγ in infiltrating CD8+ T cells, suggesting Tregs inhibit the
antitumor function of CD8+ T cells (196). In lung tumors,
Tregs are also associated with the expression of angiogenic and
metastatic potentiator cyclooxygenase-2 (COX-2), suggesting
Tregs are involved in tumor cell dissemination (192). It has
been shown that Tregs inhibit NK cell-mediated cytotoxicity in
a TGF-β dependent manner in a mouse Lewis lung carcinoma
model, and depletion of Tregs restored NK cell anti-metastatic
activities (197).

Tregs play an important immunosuppressive role in the K-ras
mutant LUAD microenvironment. In a study of immune cells
in different subtypes of lung cancer, researchers found that K-
ras mutations give rise to elevated Treg populations, and they
are the only non-myeloid lineage population to expand over
the course of tumor development (10). In contrast to their
wild-type K-ras cousins, tumor cells bearing K-ras mutations
induce suppressive Tregs by enhancing the secretion of IL-10
and TGF-β. Conversely, inhibition of K-ras reduces the Treg
population in K-ras driven lung tumorigenesis even before
tumor formation (198). Using antibodies against CD25 and FR4
depletes Tregs and reduces K-ras induced oncogenesis (199). In
a mouse model with K-ras and p53 co-mutations, an epigenetic
modifier (BET bromodomain inhibitor) significantly reduced the
Treg population while increasing Th1 infiltration and antitumor
effect (200). Another group using a K-ras-driven LUAD model
found that a DNA damage signaling kinase inhibitor, AZD6738,
successfully reduced radiation-induced Treg proliferation and
infiltration while enhancing CD8+ T cell activity (201).

CD8+ T Cells and T Helper 1 Cells
CD8+ T cells are the most prominent antitumor cells. Activated
CD8+ T cells, referred to as CTLs, exert antitumor effects by
producing perforin and granzyme containing granules (202, 203).
CD4+ Th1 cells mediate antitumor function through secretion
of pro-inflammatory cytokines such as IL-2 and IFNγ, which
promote T cell priming, activation, and CTL cytotoxicity (204).
Optimal T cell-based antitumor immunity necessitates both
cytotoxic CD8+ T cells and Th1 cells to improve the efficacy of
the antitumor response (205). CD8+ T and Th1 cell infiltrations
in tumors are positively correlated with better prognosis (206).

Despite being monitored by these antitumor T cells,
cancer cells still manage to prosper through exploiting an
immunosuppressive TME. CD8+ T cells have been found to
have an exhausted phenotype in the TME. Exhausted CD8+
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T cells are characterized by high levels of inhibitory receptors
(PD-1/CTLA-4/TIM-3/LAG-3//BTLA/TIGIT) and production
of fewer effector cytokines (IL-2/IFNγ/TNF/GzmB) that lead
a diminished ability to eliminate cancer cells and their final
deletion in the TME (207, 208). In the TME, immune cells such
as MDSCs and tumor-associated DCs express high levels of co-
inhibitory molecules that directly suppress T cell function. Tregs
and M2 macrophages produce adenosine, IL-10, and TGF-β to
induce T cell exhaustion (208). Th1 cell maturation involves
the consecutive activation of the transcription factors STAT1, T-
bet, and STAT4. Compared with peripheral blood lymphocytes,
tumor-infiltrating lymphocytes (TILs) in human head and
neck squamous cell carcinoma had lower Th1 differentiation
and activation, which was mechanistically regulated through
suppressed activation of STAT1, T-bet, and Th1 cytokine
secretion by PD-1 signaling (205).

In lung cancer patients, TILs were found to have reduced
levels of perforin and granzyme, suggesting the TILs were
dysfunctional (209). Fewer exhausted T cells as indicated
by a low PD-1 to CD8 ratio provides a favorable immune
microenvironment that aids patient survival post-resection and
response to immunotherapy in advanced NSCLC (210). K-ras
mutant LUAD displays greater CD8+ T cell content than EGFR
mutant LUAD; however, CD8+ T cell proliferation in K-ras-
driven LUAD is lower, suggesting an exhausted phenotype of
T cells in this context (10). K-ras activated lung cancer cells
orchestrate the TME through secreting cytokines IL-6, IL-10, IL-
17, TGF-β, and TNF, which can either suppress antitumor T cells
directly or stimulate immune cells such as MDSCs, Th17s, M2
macrophages, and Tregs to inhibit Th1/CD8+ T cell function
(62, 88, 98, 129), as we have described above.

Natural Killer Cells
NK cells are the innate relatives of CTLs that likewise eliminate
infected or transformed cells through cytolytic mechanisms.
These cells were first noticed for their ability to kill tumor
cells without any priming or prior activation, in contrast to
CTLs, which need priming by APCs (211). NK cells are required
for effective tumor surveillance. NK cell infiltration in tumor
biopsies is a favorable prognostic marker in cancer patients
(212, 213). Upon activation, NK cells attack tumor cells through
releasing cytotoxic perforin and granzyme (214) and activating
apoptosis in tumor cells through the production of IFNγ and
TNF or via direct cell contact through death receptor-mediated
pathways such as the TRAIL and FASL pathways (136, 215). NK
cells also modulate the activity of other leukocytes. They produce
IFNγ for Th1 priming (216) and polarize macrophages toward an
M1 phenotype (217).

In normal lung tissue, NK cell counts are comparable to
those of macrophages and granulocytes. However, as myeloid
cells expand with LUAD development, NK cell populations
remain unaltered, and in K-ras mutant LUAD, NK cell counts
even decrease with time (10). NKG2D is a stimulatory receptor
expressed on NK cells, which upon activation can stimulate
NK cells; however, surface expression of NKG2D on NK cells
decreases significantly in K-ras and p53 tumor-bearing mice
but remains unchanged in EGFR mutant LUAD (164). Soluble

factors that are abundant in K-ras mutant LUAD, such as
MDSC-, macrophage- and tumor cell-derived TGF-β, PGE2,
IDO, and IL-10, also inhibit NK cell function (218). Cong and
colleagues found that NK cells inhibited K-ras LUAD initiation
but gradually lost their antitumor effect, that this was associated
with impaired metabolism caused by aberrant fructose-1,6-
bisphosphatase (FBP1) expression in NK cells, and that FBP1
inhibition could partially restore NK cell function (219).

Innate Lymphoid Cells
Innate lymphoid cells (ILCs) are newly defined members of
the lymphocyte population that derive from common lymphoid
progenitors but lack specific antigen receptors (220). They play
important roles in tissue homeostasis and regulate the host
immune response under infection and inflammation (221). ILCs
can be defined into four subgroups: NK cells, which we have
already reviewed, and ILC1, ILC2, and ILC3 which function
like T helper cells (Th1, Th2, and Th17, respectively) (220).
NK cells have been extensively studied in various cancers.
Due to their relatively recent discovery, roles of others ILCs
in cancer cell biology is still an emerging research field, and
there has been several reviews about ILC functions in human
cancers (220, 222, 223).

Reports on ILCs in lung cancer are still limited. Researchers
have found that ILC1 cells remained largely unchanged in
patients’ NSCLC tissues compared with patients’ own normal
lung tissues; however, ILC2 cells decreased in NSCLC samples
while ILC3 cells increased dramatically (224), suggesting that
ILC2 and ILC3 cells might affect lung cancer growth. Further
analysis showed that the amount of infiltrated ILC3 cells
correlated with the density of intratumoral tertiary lymphoid
structures, and these ILC3 cells can be directly activated by cancer
cells via the NKp44 receptor. Once activated, the ILC3s secret
IL-2, which stimulates expansion of tumor-specific lymphocytes;
however, since ILC3s also provide an innate source of IL-22
which might favor tumor growth, their role in NSCLC still
remains to be identified (224). On the other hand, ILC3s have
also been found to promote tumor growth: in squamous cell
lung cancer, IL-23 can convert ILC1s to ILC3s and promote IL-
17-mediated tumor growth. Clinically, numbers of ILC3s and
levels of IL-17 are correlated with poor prognosis. Notably, these
effects did not occur in adenocarcinoma, suggesting that the
roles of these cells are quite heterogeneous among cancer types
(225). ILC2s have been recently reported to secret amphiregulin,
an EGFR ligand, which can promote lung tumor cell growth,
facilitate resistance to apoptosis (226), and even interfere with
antitumor immunity through stimulating Tregs and establishing
an immunosuppressive TME (227). However, a study on ILC2s
found that these cells reside in the lung and produce IL-5 to
recruit eosinophils that could prevent tumor metastasis to the
lung (228). In all, study on ILC functions in lung cancer and K-
ras mutant LUAD is still limited, and more evidence is needed to
illustrate their roles in lung cancer.

Clinical Insights
The TME is a complex system, with tumor cells and various
immune cells interacting with each other to orchestrate either an
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antitumor or protumor immune response. Understanding and
manipulating the crosstalk between different immune cells is
of great importance as the subsequent immune response could
strongly impact patient outcome. Clinical trials on improving
therapeutic efficacy have focused on enhancing antitumor
cytotoxic activity or dampening protumor immunosuppressive
responses. Since there has not been any study exclusively focused
on K-ras mutant LUAD, here we are reviewing studies containing
NSCLC cohorts.

In regards to enhancing antitumor immunity, the most
promising field of research is immune checkpoint blockade
(e.g., anti-PD1/PD-L1, anti-CTLA4), which blocks inhibitory
signaling and results in activation of T cell effector function; since
this topic has already been widely reviewed (229–232), we will
not discuss it extensively here. DCs are powerful APCs for the
induction of antigen-specific T cell responses, and DC vaccines
have been introduced as a new therapeutic strategy in NSCLC
as they prime and activate CD8+ T cells (233). Takahashi et al.
reported that DC vaccines pulsed with Wilms’ tumor protein-1
(WT1) peptide could improve survival in patients with advanced
NSCLCs (234). Ge et al. found that DC vaccines pulsed with
survivin andmucin1 (MUC1) inducedmodest antitumor activity
and improved quality of life for patients with stage I-III NSCLC
(235). Lymphocyte (particularly helper T cell) abundance and
activity depends on the availability of endogenous IL-2, which is
severely impaired in lung cancer (236). In a Phase II randomized
study, Masotti et al. found that preoperative administration of
recombinant human IL-2 (rhIL-2) increased CD8+ T cell, T
helper cell, and NK cell numbers in NSCLC patients (237).

On the other hand, researchers have been working on
mitigating protumor immunity in the TME. Albeituni et al. found
that yeast-derived whole β-glucan particles (WGP) could reduce
PMN-MDSCs in NSCLC patient blood, which may be a potent
immune modulator of MDSC suppressive function (238). In
a Phase Ia study including lung cancer patients, Kurose et al.
found Treg depletion by KW-0761 (a humanized anti-human
CCR4 monoclonal antibody) showed possible occurrence of an
immune response and suggested that KW-0761 in conjunction
with cancer vaccines or checkpoint inhibitors represents an
enticing effort to augment the antitumor immune response (239).
IDO inhibits T cell-mediated antitumor immunity in patients,
and blocking this regulatory pathway might disinhibit T cells and
improve tumor clearance. In a phase I clinical study with 15 stage
III-IV NSCLC patients, Iversen et al. found IDO is frequently

expressed in LUAD, and targeting IDO by a peptide vaccine
reduced Tregs, enhanced CD8+ T cell function, and prolonged
overall survival by 18.2 months (240).

To date, clinical trials besides checkpoint inhibitors (CPIs)
are still limited. The interaction of immune cells in the TME is
a multifaceted network, and more and more studies have been
focused on combination strategies such as combining different
CPIs, CPI with targeted therapy, or CPI with chemotherapy.
Since each tumor is highly heterogeneous in each patient,
individualized genomic and immune phenotypes are crucial
to customize an optimum treatment strategy and evaluate
therapeutic efficacy.

CONCLUSION

We wish to emphasize the intricate interplay within the K-ras
mutant lung cancer TME between tumor cells and immune
cells through numerous cytokines and inflammatory signaling
cascades. Figure 1 provides a visual summary: in the center of
this diverse network sit the tumor cells, secreting the soluble
factors needed to recruit and reprogram immune cells by
activation of target pathways. In this way, the tumor cells can
inhibit antitumor responses and even persuade some immune
cells to promote tumorigenesis. To forge future therapeutic
strategies, we foresee the need for combinatorial treatments
directed toward not only preventing tumor cell-intrinsic tumor
initiating factors and immune suppression but protumor
inflammation as well. Since the problem is multifaceted, it
is only logical that the solution should be equally complex,
and as personalized medicine evolves, the ability to design
combined treatments tailored to the individual should become
more readily attainable.
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