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Purpose: To develop and validate a radiomic signature to identify EGFR mutations in

patients with advanced lung adenocarcinoma.

Methods: This study involved 201 patients with advanced lung adenocarcinoma (140

in the training cohort and 61 in the validation cohort). A total of 396 features were

extracted from manual segmentation based on enhanced and non-enhance CT imaging

after image preprocessing. The Lasso algorithm was used for feature selection, 6

machine learning methods were used to construct radiomics models. Receiver operating

characteristic (ROC) curve analysis was applied to evaluate the performance of the

radiomic signature between different data and methods. A nomogram was developed

using clinical factors and the radiomics signature, then it was analyzed based on its

discriminatory ability and calibration. Decision curve analysis (DCA) was implemented to

evaluate the clinical utility.

Results: Ten features for contrast data and eleven features for non-contrast data were

selected through LASSO algorithm. The performance of the radiomics signature for

contrast images was better than that for non-contrast images in all of the 6 different

machine learning methods. Finally, the best radiomics signature was built with logistic

regression method based on enhanced CT imaging with an area under the curve (AUC)

of 0.851 (95% CI, 0.750 to 0.951) in the validation cohort. A nomogram was developed

using the radiomics signature and sex with a C-index of 0.908 (95%CI, 0.862 to 0.954) in

the training cohort and 0.835 (95% CI, 0.825 to 0.845) in the validation cohort. It showed

good discrimination and calibration (Hosmer-Lemeshow test, P = 0.621 for the training

cohort and P = 0.605 for the validation cohort).

Conclusion: Radiomics signature can help to distinguish between EGFR positive and

wild type advanced lung adenocarcinomas.
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INTRODUCTION

Lung cancer is one of the most common malignant tumors in the world and the leading cause of
cancer-related death worldwide (1). The World Health Organization (WHO) divides lung cancer
into two major categories: non-small cell lung cancer (NSCLC), representing more than 85% of
all cases, and small cell lung cancer (SCLC). Adenocarcinoma in NSCLC is the major histological
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subtype, accounting for almost half of all lung cancer cases
(2). The 5-year survival rate is >50% when the disease is still
localized; however, 75% of cases are diagnosed at an advanced
stage with unresectable lesions (3).

Over the last decade, advances in molecularly targeted
drugs for thoracic oncology have led to a new emphasis
on accurate analyses of biomolecular markers in a subset
of lung adenocarcinoma (4). Patients with advanced lung
adenocarcinoma harboring epidermal growth factor receptor
(EGFR)-activating mutations showed a significant progression-
free survival (PFS) benefit with reduced side effects by
treatment with tyrosine kinase inhibitor (TKIs) (5). TKI
therapy had already been used as first-line systemic therapy
before chemotherapy (6, 7). Biopsy is the only widely used
means to identify mutations of EGFR in unresectable lesions,
but some patients refuse the procedure due to the risk of
hemorrhage and pneumothorax. Furthermore, it is difficult
to obtain tissue samples from inaccessible locations in some
cases. Therefore, automatic, non-invasive, and cost-effective
alternatives are desired (8). Radiomics refers to the systematic
extraction and analysis of features from digital medical images
with the intent of creating mineable databases to aid in
diagnosis and treatment. Radiogenomics even involves specific
features connecting genomic phenotypes and radiological

FIGURE 1 | Workflow of the radiomic analysis.

images. The aim of this study was to develop a radiogenomic
approach to identify EGFR mutations in advanced lung
adenocarcinoma non-invasively.

MATERIALS AND METHODS

Patients
Institutional review board approval was obtained for this

retrospective study, and with a waiver for the informed consent
requirement. Consecutive patients (n = 449) with advanced
lung adenocarcinoma who were admitted to the hospital from

January 2014 to January 2016 were enrolled in this retrospective
study. All cases were histologically confirmed by transthoracic
biopsy and classified as stage IIIB-IV according to the Eighth
Edition of the Lung Cancer Stage Classification (9). EGFR
mutations in exons 18, 19, 20, and 21 were detected using
human EGFR gene mutations detection kit (AmoyDx, China)
via Amplification Refractory Mutation System (ARMS) real-
time Polymerase Chain Reaction (PCR) technology. A total of
248 patients were excluded based on the following exclusion
criteria: [1] examined by an unassigned CT scanner (n = 105);
[2] received previous anticancer therapy or with other types of
cancer (n = 19); [3] no EGFR mutation analysis available (n =

81); [4] difficulty in drawing regions of interest (ROIs) (n = 43).
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Finally, 201 patients were included in the study. The clinical data
collected for analysis included sex, age, smoking status, and stage.
The patients were randomly divided into two individual cohorts
for training and validation at a ratio of 7:3. The workflow of the
radiomic analysis is illustrated in Figure 1.

Image Acquisition
Contrast-enhanced computed tomography (CT) images were
acquired at our hospital using either a Toshiba Aquilion One
(Toshiba Medical Systems) or Phillips Brilliance iCT (Philips
Medical Systems) system. The scanning parameters were as
follows: 120 kVp; 100-200 mAs; detector collimation of 64× or
128× 0.625mm; field of view of 350 × 350mm; and matrix
of 512 × 512. After routine CT, a dose of 85mL non-ionic
iodinated contrast material (350mg iodine/mL, Omnipaque, GE
Healthcare) was injected into the antecubital vein at a rate of
3.0 mL/s using an automated injector (Ulrich CT Plus 150,
Ulrich Medical). CT scanning was performed again with a 25-
second delay after the injection. All images were reconstructed
at a slice thickness of 2mm. Contrast and non-contrast images
were retrieved separately from the Picture Archiving and
Communication System (PACS) workstation (IMPAX, AGFA).

Image Preprocessing
Due to the use of different CT scans, image preprocessing
(Figure 2) before segmentation and feature extraction was
performed to improve the robustness of the radiomic features.
The process included two steps: Step 1. To eliminate the
intrinsic dependency on voxel size for the radiomic features,
a resampling method with a linear interpolation algorithm
was used to normalize the voxel size. Meanwhile, higher-order
texture analysis features, such as GLCM and GLRLM features,
were derived from different directions (also called “angles”) and
different scales (denoted here as “offsets”); thus, the anisotropic
voxels scanned at 0.743 mm∗0.743 mm∗2.000mm or other size

were resampled to form isotropic voxels, i.e., 1.000 mm∗1.000
mm∗1.000mm. Step 2. A Gaussian filter was used to remove
“unwanted signals”, i.e., noise beyond the scope of the (µ ±

3σ) CT values. The gray level was consistent across the different
scanners, so gray level normalization was not used here.

Tumor Segmentation
ROIs were manually contoured along the boundaries of the
tumor layer by layer in reference to images in both the
mediastinum and lung windows. Segmentation was strictly
performed by a chest radiologist (W.XT.) with 7-year experience
in lung CT using ITK-Snap (version 3.4.0, www.itk-snap.org)
software and confirmed by another chest radiologist (H.D.)
with 13-year experience. Both radiologists were blinded to the
diagnosis and EGFR mutation status.

Feature Extraction
Four types of radiomic features were extracted from both contrast
and non-contrast CT images, and the details are shown in
Figure S1. Features based on the three-dimensional volume of
interest (3D VOI) were generated automatically using in-house
software (Artificial Intelligence Kit, A.K., GE Healthcare).

Feature Selection
Some features might contribute to the positive performance of
classification while others might add noise to it (10). The least
absolute shrinkage and selection operator (LASSO) algorithm,
which is suitable for high-dimensional low-sample size data with
the problem of collinearity (11, 12), was used to select effective
and predictable features in the training cohort after data split.
Features with nonzero coefficients were chosen based on 10-
fold cross-validation.

FIGURE 2 | Image preprocessing.
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Model Construction
After feature selection, 6 machine learning methods were used to
construct models which include NBC (Naive Bayesian Classifier),
KNN (K-Nearest Neighbor), RF (Radom Forest), SVM (Support
Vector Machine), DT (Decision Tree), LR (Logistic Regression).
Their predictive performance was measured by using area under
the curve (AUC) of receiver operating characteristic (ROC) curve
analysis in the validation cohort. First, AUC of each model in
contrast and non-contrast data were compared, and inferior data
was abandoned, then in superior data, the optimal model was
chosen for further analysis.

Nomogram Construction
The nomogram was constructed based on multivariable logistic
regression analysis. Clinical factors and radiomics signature were
included in a nomogram model for predicting EGFR mutations
in the training cohort. The discriminative power of the model
was evaluated byHarrell’s concordance index (C-index) with 95%
confidence intervals in both cohorts. The calibration curve was
plotted to explore the predictive accuracy of the model. Decision
curve analysis (DCA) was implemented to evaluate the clinical
usefulness by quantifying the net benefits of the nomogram
model in both the training and validation cohorts.

Statistical Analysis
All statistical tests were performed using R statistical software
version 3.5.2. The “glmnet” package was used for executing
the LASSO algorithm. For the baseline characteristic analyses,
quantitative data were compared using Student’s t-test, and
categorical data were compared using the χ2 test. All
statistical tests were two-tailed, and p < 0.05 indicated a
significant difference.

RESULTS

The baseline clinical characteristics of the training and validation
cohorts are listed in Table 1. There was no significant difference
between training and validation cohorts in overall distribution of
age, sex, smoking status or stage.

A total of 396 features were extracted. In the training cohort,
10 features for contrast images and 11 features for non-contrast
images were evaluated to construct models through LASSO
algorithm (Figure S2, Table S1).

The predictive performance of all six models based on
contrast and non-contrast data were described in Figure 3. The
predictive performance of all six models based on contrast

TABLE 1 | Demographic data of patients in the training and validation cohorts.

Variable Training cohort Validation cohort p

Mutant Wild type p Mutant Wild type p

Age (y, mean ± SD) 58.24 ± 11.05 57.93 ± 8.43 0.85 59.23 ± 7.62 57.07 ± 8.38 0.276 0.929

Sex, n (%) 0.007* 0.149 0.437

Male 28(40.0) 44(62.9) 15(46.6) 20(66.7)

Female 42(60.0) 26(37.1) 16(53.4) 10(33.3)

Smoking Status, n (%) 0.003* 0.09 0.396

Smoker 13(18.6) 29(41.4) 8(25.8) 14(46.7)

Never smoker 57(81.4) 41(58.6) 23(74.2) 16(53.3)

Stage, n (%) 0.002* 0.119 0.103

III 4 (5.7) 17 (24.3) 5 (16.1) 10 (33.3)

IV 66 (94.3) 53 (75.7) 26 (83.9) 20 (66.7)

Radiomic score, median (interquartile range) 1.42 (0.57 to 2.46) −1.63 (−2.88 to 0.42) <0.001* 1.01 (−0.53 to 2.21) −1.93 (−4.47 to −1.22) <0.001* 0.145

*P-value < 0.05.

FIGURE 3 | The predictive performance of all machine learning methods based on contrast (CE-CT) and non-contrast (nonCE-CT) data.
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and non-contrast data were described in Figure 3. Although
there was no significant difference by Delong test in all results,
the value of AUC in contrast images was better than non-
contrast images in all models, hence, the non-contrast data
was excluded from further analysis. The machine learning
method of LR which could assign each patient a radiomic
score (rad-score) obtained a better value than other models,
therefore, the nomogram was built based on the LR model in
contrast data.

Table 2 shows the results of multivariable logistic
regression analysis including sex, age, smoking status, and
rad-score. Sex and rad-score appeared to be independent
prognostic predictors of mutations in this model. The
model that incorporated the above independent predictors
is presented as the nomogram (Figure 4). The model showed
a favorable C-index of 0.908 (95% CI, 0.862 to 0.954) in the
training cohort and 0.835 (95% CI, 0.825 to 0.845) in the
validation cohort.

The calibration curve of the radiomic nomogram for the
probability of EGFR mutations demonstrated good agreement
between the predicted and observed results in both cohorts
(Figure 5). The Hosmer-Lemeshow test showed no significant
statistical difference between calibration curves and ideal curves

TABLE 2 | Multivariable logistic regression for nomogram construction.

Coefficient Odds ratio 95% CI p

Lower Upper

Intercept −0.734 0.049*

Radiomic score −1.023 0.359 0.256 0.504 < 0.001*

Sex# 1.139 3.124 1.116 9.742 0.030*

Smoking status† 0.450 1.569 0.521 4.726 0.424

#Male was denoted as 0, and Female as 1. The Odds Ratio was 3.124 means that female

showed higher likelihood of EGFR (+).
†
Smoker was denoted as 0, and Never smoker as 1. The Odds Ratio was 1.569 means

that Never smoker showed higher likelihood of EGFR (+).

* P-value < 0.05, which showed significance.

FIGURE 4 | Radiomic nomogram. In the training cohort, the nomogram

incorporated the radiomic signature and sex.

(P = 0.621 for the training cohort and P = 0.605 for the
validation cohort).

DCA was performed for the radiomic model (light blue line)
and nomogram model (dark blue line) as shown in Figure 6.
Using the radiomic model and the nomogram model to predict
the EGFR status added more benefit than using the treat-
all scheme or the treat-none scheme at any given threshold
probability in the training cohort. For threshold probabilities >

20%, using the radiomic model and the nomogram model to
predict the EGFR status added more benefit than using the treat-
all scheme or the treat-none scheme in the validation cohort.

DISCUSSION

The NCCN (2019, v3) recommended that testing for EGFR
mutations should be applied in patients with non-squamous
NSCLC or NSCLC NOS (not otherwise specified) so that
patients with this genetic abnormality can receive effective
treatment with targeted agents. Although patients with advanced
adenocarcinoma benefit most from TKIs, accessibility to obtain
transbronchial or transthoracic biopsy samples is not always
satisfactory or safe in these patients. The adverse event rate in
thoracic biopsy was reported to be 17.1% (13), and sufficient
tissue for molecular analysis can only be obtained in 20–50% of
NSCLC patients, even in large well-designed clinical trials (14). In
addition, the heterogeneity of the tumor may mislead the clinical
decision (15, 16).

We developed and validated a radiomics signature-based
nomogram for the non-invasive detection of EGFR mutations in
patients with advanced adenocarcinoma through preprocessing,
parameters screening and model building from CT images. In
the validation cohort, the AUC of radiomics signature was 0.851
(95% CI, 0.750 to 0.951). Previous studies have demonstrated
such correlations in all stages of peripheral lung adenocarcinoma
(17, 18), with AUC of 0.709 (95% CI, 0.645 to 0.766) and 0.751
(95% CI, 0.631 to 0.848), respectively. For early-stage resectable
adenocarcinoma, the detection is less important, whereas for
advanced-stage patients with EGFR mutations, TKIs are the
first-line standard modality for the treatment today (19), so the
detection is urgently needed. Thus, it is of greater significance to
establish relatively inexpensive and safe imaging biomarker for
the advanced-stage patients to help making treatment decision.
However, stage selection brought limitation at the same time. The
signature could not act as an alone biomarker in patients with
unknown pulmonary nodules and it is also a time-consuming
thing to stage before using the biomarker.

Previous articles on pulmonary tumor radiomics were
generally based on non-contrast CT images (20–22). Some
studies have used contrast images alone (23, 24), and some have
used both, but no comparisons or descriptions regarding which
type of image is better for further analysis have been reported
(25). In this study, we managed contrast and non-contrast
data separately and compared their diagnostic value using ROC
curve analysis; we finally chose the contrast data for subsequent
analysis. This result is consistent with clinical applications.
Contrast-enhanced CT can be used to better delineate and
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FIGURE 5 | Calibration curve. (A) Calibration curve of the nomogram in the training cohort. (B) Calibration curve of the nomogram in the validation cohort.

FIGURE 6 | Decision curve analysis (DCA). The y axis represents the net benefit, which was determined by calculating the difference between the expected benefit

and the expected harm associated with each proposed model [net benefit = true-positive rate (TPR) – (false-positive rate (FPR)× weighting factor), where the

weighting factor = threshold probability/ (1-threshold probability)]. The gray line represents the assumption that all tumors were EGFR (+) (the treat-all scheme). The

black line represents the assumption that all tumors were EGFR (-) (the treat-none scheme). (A) DCA in the training cohort. Using the radiomic model and the

nomogram model to predict the EGFR status added more benefit than using the treat-all scheme or the treat-none scheme at any given threshold probability. (B) DCA

in the validation cohort. For threshold probabilities >20%, using the radiomic model and the nomogram model to predict the EGFR status added more benefit than

using the treat-all scheme or the treat-none scheme.

define tumor regions in relationship to surrounding structures
than non-contrast CT, and also demonstrates the increased
vascularity that occurs within malignancies and provides
additional information on the tumor’s physiology and active
blood supply. All of this information is reflected by radiomic
features, leading to better models.

However, some limitations to this work still exist. First,
although image acquisition was confined to two CT systems and
all the images were preprocessed before segmentation, differences
between devices may influence the results. Second, in the baseline
clinical characteristics, there was no significant difference in the
overall distribution of age, sex, smoking status or stage between
the training and validation cohorts, thus we believed that there
was no bias for the training and validation cohorts. But when

taking into consideration the distribution in mutant and wild-
type EGFR patients, sex and smoking status showed significant
differences between the two groups in the training cohort but
no significance in the validation cohort, which we considered
may due to the small sample size in the validation cohort.
Third, less sample size and lack of external validation of the
model, more multicenter studies and prospective studies should
be carried out to increase the generalizability and robustness of
the radiomic findings. Fourth, all samples were obtained through
biopsy. They were smaller than those obtained by surgery, which
could better represent the tumor heterogeneity. Further studies
may also include testing for cell-free tumor DNA (ctDNA) and
circulating tumor cells (CTCs) to ensure the homogeneity of
mutations (14).
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CONCLUSION

In conclusion, radiomics signature can help to distinguish
between EGFR positive and wild type advanced
lung adenocarcinomas. Compared with non-contrast
CT, contrast-enhanced CT provided more value for
radiomic predication.
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