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Purpose: To design and validate a preprocessing procedure dedicated to T2-weighted
MR images of lung cancers so as to improve the ability of radiomic features to distinguish
between adenocarcinoma and other histological types.

Materials and Methods: A discovery set of 52 patients with advanced lung cancer
who underwent T2-weighted MR imaging at 3 Tesla in a single center study from August
2017 to May 2019 was used. Findings were then validated using a validation set of
19 additional patients included from May to October 2019. Tumor type was obtained
from the pathology report after trans-thoracic needle biopsy, metastatic lymph node or
metastasis samples, or surgical excisions. MR images were preprocessed using N4ITK
bias field correction and by normalizing voxel intensities with fat as a reference region.
Segmentation and extraction of radiomic features were performed with LIFEx software on
the raw images, on the N4ITK-corrected images and on the fully preprocessed images.
Two analyses were conducted where radiomic features were extracted: (1) from the whole
tumor volume (3D analysis); (2) from all slices encompassing the tumor (2D analysis).
Receiver operating characteristic (ROC) analysis was used to identify features that could
distinguish between adenocarcinoma and other histological types. Sham experiments
were also designed to control the number of false positive findings.

Results: There were 31 (12) adenocarcinomas and 21 (7) other histological
types in the discovery (validation) set. In 2D, preprocessing increased the number
of discriminant radiomic features from 8 without preprocessing to 22 with
preprocessing. 2D analysis yielded more features able to identify adenocarcinoma
than 3D analysis (12 discriminant radiomic features after preprocessing in 3D).
Preprocessing did not increase false positive findings as no discriminant features
were identified in any of the sham experiments. The greatest sensitivity of the
2D analysis applied to preprocessed data was confirmed in the validation set.
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Conclusion: Correction for magnetic field inhomogeneities and normalization of voxel
values are essential to reveal the full potential of radiomic features to identify the tumor
histological type from MR T2-weighted images, with classification performance similar to
those reported in PET/CT and in multiphase CT in lung cancers.

Keywords: lung cancer, radiomics, histological types of lung cancer, T2-weighted MR images, bias field correction,

MRI normalization

INTRODUCTION

Radiomics consists in the extraction of a large number of
quantitative features from radiology images to describe the
shape, intensity distribution, and texture characteristics of a
region of interest (1-3). The assumption is that such image-
derived features can outperform visual analysis to characterize
abnormalities. In particular, in oncology, radiomic features might
reflect tumor heterogeneity observed at the histological and
genetic levels (4). Macroscopic structural heterogeneity can
unveil differences in tumor biology, which cannot be identified
by clinical data alone (5, 6). In medical images, the macroscopic
heterogeneity corresponds to variations of image intensities
between neighboring voxels, which are described by radiomic
features. Radiomic features are thus expected to be related to
the phenotype, genotype and microenvironment of the tumor,
and thus be of interest to support therapeutic decisions (7).
Radiomics is therefore largely investigated to assist cancer
diagnosis, prognosis, and prediction of response to therapy (8, 9).

Many radiomic studies have been devoted to lung cancer,
which is a major public health problem (10-16). These studies
mostly focus on nodules detected on CT and/or PET scans
and that can be removed surgically (8, 17, 18). CT and PET
are indeed used in daily practice for managing lung cancer
patients. MR images are also of interest to characterize tumors
because of their excellent contrast (19-21). Yet, to the best of our
knowledge, very few studies have investigated the usefulness of
MR radiomic features in lung cancer patients. A study defined
the optimal timing to extract radiomic features on T1-weighted
images after contrast medium injection in order to predict 2-
years progression-free survival (15). Another preliminary study
suggested that MR-derived radiomic features (based on True
Fast MR images with a Steady State Precession sequence) may
improve the accuracy of models that predict the response to
therapy and survivals at different time points compared to
that of models based on CT features only (22). No radiomic
study involving anatomical MR sequences has been reported.
Predicting histology from functional MR data was reported
in a meta-analysis (23) showing that diffusion MR sequences
could distinguish between malignant and benign lung lesions.
It was also suggested that small cell cancers had significantly
lower Apparent Diffusion Coeflicients than other subtypes (23).
However, these functional MR sequences could not differentiate
adenocarcinomas from squamous cell carcinomas.

CT intensities are expressed in Hounsfield Units (HUs)
linearly related to the tissue attenuation coefficients at the energy
of the CT scanner. PET images are expressed in Standardized
Uptake Values (SUV) that are directly related to the tracer
concentration. As a result, CT or PET image values have the

same meaning, from a physics point of view, in all patient
scans acquired with the same scanner and using the same
protocol for the image acquisition and reconstruction. Still, the
use of different scanners and/or different image acquisition and
reconstruction protocols introduces some variability in voxel
values hence in radiomic features (24) and some harmonization
techniques have been proposed to realign radiomic features
measured in different conditions (25). In anatomical MR
sequences, images are initially expressed in arbitrary units,
meaning that a given tissue type (for instance fat) will not
always yield a similar voxel value, even when the images are
acquired in the same patient and same conditions using the
same scanner (26). Therefore, a measured voxel value cannot be
readily interpreted in terms of well-understood physics quantity
unlike in CT (a HU does correspond to a unique attenuation
coeflicient) and in PET (an SUV corresponds to a unique tracer
concentration in a given patient). This makes radiomic studies
more challenging in MR compared to PET and CT.

In that context, the present study had three objectives: (1) to
design and validate a new normalization procedure dedicated
to T2-weighted MR images of lung cancer patients, using
subcutaneous fat as a reference tissue; (2) to perform a systematic
comparison of a 3D analysis of radiomic features with a 2D
analysis taking into account all slices; (3) to demonstrate the
usefulness of the normalization procedure and the 2D analysis
to identify relevant T2-weighted MR radiomic features for
differentiating adenocarcinoma from other types of lung cancer.

MRI preprocessing, posterior to acquisitions, including
magnetic bias field correction and normalization has been
successfully applied to brain studies using white matter as
the reference tissue (26, 27). This approach has been rarely
applied to other organs. For prostate T2w images, a recent study
considered muscle as the reference tissue, reporting mitigated
results in terms of feature reproducibility (28). To the best of
our knowledge, this normalization based on a reference tissue
has never been used for lung MR images. Unlike many studies
comparing 3D and 2D radiomic features where the 2D approach
only exploits the slice presenting the largest tumor area or
diameter, our 2D analysis calculates radiomic features in all
slices and selects the median value of each feature as being
representative of the tumor.

MATERIALS AND METHODS

Population

Patient imaging, pathology, and clinical data were selected
from the single-center MRI-omics database built as part of a
retrospective study approved by the Institutional Review Board
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(protocol 32-2016, study number: 2016-A00813-48). All patients
gave their written informed consents. From August 2017 to May
2019, patients with advanced lung cancer referred for brain MR
imaging to detect cerebral metastases were proposed to undergo
additional lung MRI sequences. Among 83 eligible patients, 8
were not included because the pathology of the tumor was not
available, and 23 were excluded because of motion artifacts or
incomplete MR protocol (Figure 1). The final population thus
included 52 patients (34 men and 18 women) from 44 to 89
years old (mean age 66 years; SD 11.3 years). Among these
patients, 42 subjects (80%) were active smokers and 2 (4%) were
exposed to asbestos. These 52 patients defined the discovery
set of the current study. In addition, the following 21 patients
enrolled between May and October 2019 were used to create a
validation set. Two were excluded because of inconsistent slice
thickness. This additional population included 17 men and 2
women from 41 to 85 years old (mean age 71 years; SD 12.1
years). Among them, 13 (68%) were active smokers and 1 (5%)
exposed to asbestos.

MRI Acquisition

All acquisitions were performed with a 3T MRI unit (Discovery
MR750, GE Healthcare, Waukesha—WI, USA), using an 18-
channel phased-array body coil on the thorax. All study
participants were scanned in the supine position with the arms
along the body. All patients had a T2-weighted (T2w) sequence
with a vendor-specific implementation of the periodically
rotated overlapping parallel lines with enhanced reconstruction
technique (PROPELLER) acquired in free breathing. The T2w

PROPELLER sequence was selected since it provided few motion
artifacts (29) and a good image quality (30, 31). The main
parameters of the sequence are given in Table 1.

Pathological Assessments of Tumor

Samples
A dedicated pathologist (JB, with more than 30 years of
experience in lung cancer pathology), blinded to the MR findings,

TABLE 1 | Parameters of MR images acquisition protocols.

Parameter T2w PROPELLER
Plane Axial

TR (ms) 9,677

TE (ms) 96

FA (degree) 160

FOV (mm) 500 x 500
Matrix 240 x 240
Slice thickness (mm) 4

Inter slice spacing (mm) 0
Frequence 384

NEx 1.5

Gating Respiratory
Breath hold No
Acquisition time (s) 65

TR, repetition time; TE, echo time; FA, flip angle; FOV, field of view; NEx, number
of excitations.

DISCOVERY SET

‘ VALIDATION SET

Eligible patients with MR images of lung cancer
(n=83) from August 2017 to May 2019

Non included patients (n=8) :
Absent documented pathology of
the tumor

Included patients
(n=75)

Excluded patients (n=23) :
- Motion artifacts (n=6)
- Incomplete protocol (n=17)

Analysed patients (n=52)

N
3D analysis
(52 patients)

2D analysis
(770 slices)

Eligible patients with MR images of lung cancer
(n=21) from May 2019 to October 2019

Excluded patients (n=2) :
Slice thickness mismatch

Analysed patients (n=19)

Y

2D analysis
(285 slices)

3D analysis
(19 patients)

FIGURE 1 | Data selection pipelines.
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reviewed all pathology reports and filled a structured pathology
worksheet. The pathology information came from trans-thoracic
core needle biopsy (n = 31 in the discovery set, n = 11 in
the validation set), metastatic lymph node samples (n = 11 in
the discovery set, n = 3 in the validation set), other metastatic
location samples (n = 6 in the discovery set, n = 4 in the
validation set), and surgical excisions (n = 4 in the discovery set,
n =1 in the validation set). Detailed characteristics are reported
in Table 2.

Based on the pathology worksheet, two groups were defined:
the first group included all patients with adenocarcinoma and the
second group included all other patients.

MR Image Analysis

Lung MR images were retrieved from the Pictorial Archive and
Communication System (Carestream 3.2. Carestream Health,
Rochester, New York), anonymized and loaded in a workstation
for radiomic analysis. Preprocessing of images included two
steps: a correction for magnetic field (B1) inhomogeneity in
order to reduce the signal intensity variation across the field of
view, followed by a normalization of intensities based on the
delineation of a reference tissue. Tumors were then segmented
and 3D and 2D radiomic features were extracted for raw data,
N4ITK corrected data, and normalized N4ITK-corrected data.
Statistical analyses were performed to identify the features that

TABLE 2 | Tumor characteristics.

Population Discovery set Validation set

Number of cases 52 19
Type of tumor: n (%)

Adenocarcinoma 31 (60%) 12 (63%)

Other types 21 (40%) 7 (37%)
Squamous cell carcinoma 16 (76%) 4 (57%)
Small cell carcinoma 2 (9.5%) 1 (14%)
Sarcomatoid tumor 2 (9.5%) 2 (29%)
Large cell carcinoma 1(6%) 0

Mean size in long axis (mm) 63.4 £ 23.2 67.7 £21.1

(Range: 23-110) (Range: 27-109)

Location: n (%)

Right upper lobe 24 (46%) 10 (53%)
Middle lobe 3 (6%) 0
Right lower lobe 8 (15%) 4 (21%)
Left upper lobe 10 (19%) 3 (16%)
Left lower lobe 7 (14%) 2 (10%)
T status (Lung-cancer TNM 8th edition): n (%)
T 3 (6%) 1(5%)
T2 4 (8%) 2 (11%)
T3 10 (19%) 5 (26%)
T4 35 (67%) 11 (568%)
Invasion
No parietal or mediastinal invasion 17 (33%) 6 (32%)
Parietal invasion 18 (35%) 4 (21%)
Mediastinal invasion 13 (25%) 8 (42%)
Parietal and mediastinal invasion 4 (7%) 1 (5%)

could distinguish between the group of adenocarcinoma and the
group including other tumor types.

Correction of Magnetic Field Inhomogeneity

Magnetic field inhomogeneity artifacts were corrected based on
the estimation of a bias field constrained to be spatially smooth
(32). The bias field was estimated with the publicly available
N4ITK algorithm using ANTs software (http://stnava.github.io/
ANTs) with the standard setting of hyper-parameters. Each voxel
value in the raw image was then modified by dividing its value
by the corresponding voxel value in the bias field. This approach
is widely used for brain studies (26), but not for other organs. It
reduces variations of the mean intensity between similar tissues
located at different positions within the field of view.

Image Intensity Normalization

Significant variations in mean intensity values measured in
similar tissues (for instance subcutaneous fat for lung studies,
white matter for brain studies) can be observed between different
patients even when using a similar acquisition protocol on
the same scanner (26). These variations are a major pitfall
for radiomic studies (26). The intensity normalization aims at
reducing the intensity variations between different patients. The
proposed approach relies on the definition of a reference region
that is always in the field of view of thoracic acquisitions, namely
the fat. When compared to vertebra and muscle, fat was chosen
as the most appropriate reference region because it showed the
smallest intra-patient variability (see Results section). Three 2D
regions-of-interest (ROIs) were therefore drawn in the normal
subcutaneous fat while avoiding vessels, with each region drawn
in a different slice. A linear transform was then applied to every
image voxel v so that the mean value of the reference tissue was
equal to 0 and its standard deviation was equal to 1:

Is(v) = [I(v) — F]/o,

where I(v) is the original intensity of each voxel in the bias
field corrected image, F and o are the mean intensity and
associated standard deviation over all voxels belonging to the
three fat regions, and Is(v) is the intensity in voxel v of the
normalized image.

Segmentation

An expert radiologist with 4 years experience in thoracic imaging
segmented the tumors using the LIFEx software (www.lifexsoft.
org) (33). A coarse region surrounding the tumor was manually
defined and then refined using an intensity threshold manually
set for each patient to delineate the tumor from the lung tissue.
The borders between the tumor, the mediastinum and the chest
wall were manually delineated. The tumor volume was defined
as a single 3D connected component. To further investigate the
impact of the segmentation on the results, the original ROIs were
modified by automatically shrinking the contours by two pixels.

Radiomic Feature Extraction

Radiomic features were computed in the tumor region for both
the raw, the N4ITK-corrected and the normalized N4ITK-
corrected MR images using the LIFEx software compliant with
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the Image Biomarker Standardization Initiative guidelines
(https://arxiv.org/abs/1612.07003). Features included shape
features, first-order features that do not account for the spatial
arrangement of voxel values, and second-order (textural)
features that reflect how voxel values are spatially arranged.
The definition of the matrices needed for textural feature
calculations requires gray level quantization. For raw images,
N4ITK corrected images, and normalized N4ITK images, fixed
bin sizes were used for that gray level quantization step. The bin
size was chosen so that 256 bins always encompassed all voxel
values observed in the tumors, yielding a bin size of 15 units for
raw images, 10 units for N4ITK corrected images, and 0.2 for
normalized N4ITK corrected images.

For each patient and each image (without and with
preprocessing), two sets of features were extracted. A first set
of 48 3D radiomic features was obtained from the 3D tumor
volume. All feature names are given in Supplemental Tables 2, 3
and precisely defined in the LIFEx online documentation (www.
lifexsoft.org). A second set of 46 2D radiomic features was
extracted for each slice of the tumor, by performing the
calculations in the largest 2D connected component present in
the slice (the two 3D shape features were not calculated in
2D analysis). Slices with too small regions (<64 pixels) were
removed from the analysis, as calculating second-order features
in regions with <64 pixels could be meaningless (34). Using
the 2D approach, the median value of each feature among the
whole set of slices encompassing the patient tumor was defined
as the representative value of the corresponding feature for that
tumor. Therefore, for each approach, called 2D and 3D in the
following, each patient was associated with one 2D value and one
3D value for each feature. Our 2D approach was compared to the
conventional 2D approach that consists in selecting the feature
value measured from the slice including the largest tumor area.

Classification Tasks

To test the predictive power of each radiomic feature, we
determined the ability of each feature to distinguish between
adenocarcinoma (ADK) and other tumors (OTH). This task is
further referred to as the ADK task. To check the relevance of
our findings, a “sham” task was also used by randomly defining a
sham ADK group and a sham OTH group. To do so, each patient
was randomly assigned to the sham ADK or sham OTH group,
whatever the actual tumor type of the patient, but still using the
same prevalence of ADK as in the real data (31 patients in the
sham ADK group and 21 patients in the sham OTH group). This
task is further referred as the RAND task.

Statistical Analysis

To assess the impact of the correction for magnetic field
inhomogeneity (N4ITK correction) on voxel values throughout
the image volume, three ROIs were manually drawn in the
vertebra body of Th3, Th4, and Th5, three ROIs were drawn
in the pectoral muscles, in addition to the three ROIs defined
in the fat (Figure 2). For each type of tissue, the coefficient of
variation defined as the standard deviation divided by the mean
over all the voxels belonging to the different ROIs of the same
tissue was calculated in the original images and in the images after

FIGURE 2 | Example of ROI positioning for three candidate reference tissues:
subcutaneous fat in red color, vertebral body in green color, pectoral muscle in
blue color.

the N4ITK correction. Paired Wilcoxon signed-rank tests were
used to determine whether the N4ITK correction significantly
impacted the coefficients of variation.

To investigate the ability of radiomic feature to predict
whether the tumor was an ADK or an OTH tumor, ROC analysis
was performed for each feature, and resulting areas under the
curve (AUC) were computed. 2D and 3D feature values were
used, as calculated from the raw images, from the images after
N4ITK correction and from the fully preprocessed images, i.e.,
normalized N4ITK corrected images. Following (35), the p-value
of the Wilcoxon sum rank test was used to test whether the
AUC differed significantly from 0.5. Features for which p-value
was <0.05 were thus selected as candidate discriminant features.
The same ROC analyses were performed for the RAND task. To
reduce the possible false discovery rate, features that remained
significant after Benjamini-Hochberg correction for multiple
tests were also identified. All these analyses were performed
separately using the discovery set and the validation set.

RESULTS
Pathological Data

The pathologic characteristics of tumors are listed in Table 2.
In the discovery set, there were 31 adenocarcinomas (ADK
group) and 21 other histological types (OTH group). The
OTH group contained a majority of squamous cell carcinoma
(76%). In the validation set, there were 12 adenocarcinomas
and 7 other histological types, with a majority of squamous cell
carcinoma (57%).

Impact of the Correction of Magnetic Field

Inhomogeneity on Voxel Values

Figure 3 shows an example of a bias field as estimated by
the N4ITK algorithm for one patient. As expected, the largest
variations are observed between the center of the field of
view and the periphery near the coil. For the three types
of tissue (fat, vertebra, and pectoral muscle), the coefficients
of variation demonstrated a statistically significant reduction
after bias field correction (see Supplemental Table 1). As fat
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FIGURE 3 | Bias field as estimated using the N4ITK algorithm. The bias field is
displayed in color and superimposed to the image in gray scale.

yielded the smallest coeflicient of variation, it was chosen as the
reference tissue.

Segmentation
Figure 4 shows two examples of tumor segmentation with LIFEx,
highlighting the signal heterogeneity within these tumors.

Impact of Pre-processing on the Predictive

Values of Radiomic Features

The discovery set was first analyzed. Table 3 summarizes the
significant features (AUC significantly greater that 0.5, p < 0.05)
when using the 2D and 3D approaches, without preprocessing,
with N4ITK correction only and with preprocessing involving
the two steps (N4ITK correction and normalization), for
both real data and sham data. Supplemental Tables2, 3
provide the AUC and associated 95% confidence intervals for
each feature. For the ADK classification task, 8 discriminant
features are extracted systematically whatever the configuration
tested (except GLRLM_GLNU for 3D N4ITK corrected data,
and HISTO_Skewness for 2D N4ITK corrected data, both
having a p-value of 0.054). These 8 features (HISTO_Skewness,
SHAPE_Volume, GLCM_Correlation, GLRLM_GLNU,
GLRLM_RLNU, NGLDM_Coarseness, GLZLM_GLNU,
GLZLM_ZLNU) are subsequently called common discriminant
features. For the RAND task, no feature yielded an AUC
significantly different from 0.5. Correcting for the magnetic
field inhomogeneity did not substantially change the number
of predictive features. However, when combining bias field
correction and normalization, some additional predictive
features were observed especially for the 2D configuration with
14 new discriminant features in addition to the 8 common
discriminant features. In the 3D analysis, the feature yielding
the largest AUC was the “GLCM_Correlation” textural feature

FIGURE 4 | Example of tumor segmentation for two patients. First row:
patient with a lung adenocarcinoma of the right lower lobe (long axis: 77 mm).
Raw image (A) and image after N4ITK correction with the segmented tumor
volume in pink (B). Second row: patient with a squamous cell carcinoma of the
left upper lobe (long axis: 93 mm). Raw image (C) and image after N4ITK
correction with the segmented tumor volume in pink (D).

with an AUC of 0.77. The same feature yielded the largest AUC
in the 2D analysis, with an AUC of 0.82. Figure 5 shows the
associated boxplot corresponding to the 2D analysis for the ADK
and OTH groups.

The validation set was analyzed with the same approach.
Table4 shows the significantly predictive features for all
configurations. Compared with the discovery set, less
significantly predictive features were identified, partly due
to the lower number of patients hence larger confidence intervals
(see examples in Supplemental Table 4). In all cases, the
significant features were part of the 8 common discriminant
features identified in the discovery set.

In the best configuration (2D analysis), a Wilcoxon signed-
rank test showed that there was no statistically significant
difference between the AUC of the eight common discriminant
features for the different tested configurations: raw data vs.
N4ITK corrected data, raw data vs. normalized N4ITK corrected
data, and N4ITK corrected data vs. normalized N4ITK corrected
data, and this was true for both the discovery and the validation
sets (Table 5). There were statistically significant differences
between the AUC of the 14 additional features (revealed on the
discovery set) for the normalized N4ITK corrected data when
compared to raw data or N4ITK corrected data (Table 5) and
again, this was observed both for the discovery set and for the
validation set.

Impact of Segmentation and of 2D Analysis
on the Predictive Values of Radiomic

Features
Supplemental Table 5 demonstrates the low impact of the tumor
border erosion on the 2D discriminant features. Indeed eight
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TABLE 3 | Number and list of features with an AUC significantly >0.5 for the different analyses (3D and 2D for raw data, N4ITK corrected data, and N4ITK corrected and
normalized data—ADK task based on real data and RAND task based on sham data).

Raw data

N4ITK corrected
data

N4ITK corrected and
normalized data

3D FEATURES (DISCOVERY SET)

ADK task
RAND task

Feature name

8(1)
0

HISTO_Skewness
SHAPE_Volume
GLCM_Correlation
GLRLM_GLNU
GLRLM_RLNU
NGLDM_Coarseness
GLZLM_GLNU
GLZLM_ZLNU

2D FEATURES (DISCOVERY SET)

ADK task
RAND task
Feature name

8 (5)
0

HISTO_Skewness
SHAPE_Volume
GLCM_Correlation

7(1)
0

HISTO_Skewness
SHAPE_Volume
GLCM_Correlation
GLRLM_RLNU
NGLDM_Coarseness
GLZLM_GLNU
GLZLM_ZLNU

94
0

SHAPE_Volume
GLCM_Correlation
GLCM_Entropy_log2

12 (1)
0

HISTO_Skewness
SHAPE_Volume
GLCM_Correlation
GLRLM_LRE
GLRLM_GLNU
GLRLM_RLNU
NGLDM_Coarseness
NGLDM_Busyness
GLZLM_SZE
GLZLM_LZE
GLZLM_GLNU
GLZLM_ZLNU

22 (20)
0

HISTO_Skewness
SHAPE_Volume
GLCM_Homogeneity

GLRLM_RLNU
GLRLM_RP
NGLDM_Coarseness

GLRLM_GLNU GLCM_Entropy_log10 GLCM_Contrast NGLDM_Contrast
GLRLM_RLNU GLRLM_GLNU GLCM_Correlation NGLDM_Busyness
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Bold numbers in brackets give the numbers of significant features after Benjamini-Hochberg correction for multiple comparisons, with corresponding feature names in bold.
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FIGURE 5 | Boxplot showing the values of the 2D “GLCM-correlation” feature
for the group of patients with adenocarcinomas (ADK) and the group of
patients having a different histological status (OTH).

features (the eight common discriminant features) were revealed
using both the initial tumor regions and the eroded regions in
the raw data, nine in the N4ITK corrected data (including seven
of the eight common discriminant features), and 22 in the N4ITK
corrected and normalized data (the eight common discriminant
features and the 14 additional features shown in Table 3).
Supplemental Table 6 shows the interest of using our 2D
approach, selecting the median value of the 2D features

computed for all slices encompassing the tumor as opposed to the
conventional 2D approach that calculates the feature value from
the slice including the largest tumor area. Indeed the number of
discriminant features was always superior with our 2D approach
except for one supplemental feature for the raw data. For instance
we found 6 additional discriminant features for N4ITK corrected
and normalized data using our 2D approach instead of the
conventional 2D approach.

DISCUSSION

In this study, we investigated the potential of MRI radiomics
for lung cancer assessment and demonstrated the need for
careful preprocessing of MR images to identify radiomic features
correlated with the tumor pathology. While CT and PET scans
are the standard imaging procedures to manage lung cancer
patients, the clinical workflow can easily include additional
lung acquisitions when MRI is prescribed for brain metastasis
screening. Here, we focused on an anatomical T2w PROPELLER
sequence that produced good quality images in the lung area as
assessed by the radiologists in our department. We determined
whether radiomic features calculated from these T2-weighted
images could predict whether the tumor was an ADK, a question
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TABLE 4 | Number and list of features with an AUC significantly >0.5 in the
validation set for the 3D and 2D analyses (raw data, N4ITK corrected data, and
N4ITK corrected and normalized data—ADK task based on real data).

N4ITK corrected
data

N4ITK corrected
and normalized data

Raw data

3D FEATURES (VALIDATION SET)
ADK task 0 1 1

Feature GLCM_Correlation ~ GLCM_Correlation
name

2D FEATURES (VALIDATION SET)

ADKtask 4 3 6

Feature SHAPE_Volume SHAPE_Volume SHAPE_Volume
name GLRLM_GLNU GLRLM_RLNU GLRLM_GLNU

NGLDM_Coarseness NGLDM_Coarseness GLRLM_RLNU

GLZLM_GLNU NGLDM_Coarseness
GLZLM_GLNU
GLZLM_ZLNU

that has already been addressed using CT or PET radiomics (10,
36-40). The best reported performance from non-injected CT
scans was an AUC of 0.72 (multivariate analysis) to differentiate
ADK and squamous cell carcinomas (36). Using enhanced CT,
an AUC of 0.86 was reported at the venous phase for the
same classification task (10). Radiomic features extracted from
PET/CT could also differentiate adenocarcinoma from other
histological types (37-40) with an AUC of 0.81 reported in
Kirienko et al. (38), and a radiomic signature to distinguish ADK
from squamous cell carcinoma with an AUC of 0.90 reported in
Zhu et al. (40).

Interestingly, we found that several MR radiomic features
analyzed independently yielded an AUC >0.65 and up to 0.82.
Yet, identifying these features required thorough preprocessing,
without which up to 66% of the informative features (14 out of
the 22 in the 2D approach, see Supplemental Table 3) were not
identified as such.

The need for some preprocessing steps before extracting MRI
radiomic features has been very recently acknowledged for other
tumor types (41, 42). Although there is no consensus on the
preprocessing methods that should be used, two main pitfalls that
are specific to MRI have been identified. The first one results
from the B1 magnetic field inhomogeneities (43, 44) caused by
MR gradients that introduces variability in signal intensity of a
given tissue type as a function of its location within the field of
view. This bias is more severe in high field MR and was present
in our 3T data. The second challenge is the significant variation in
pixel values between different patients (42, 45, 46) in anatomical
MR images, even when using the same scanner and the same
acquisition sequences, due to the arbitrary units used to represent
the anatomical MR images.

In our work, we proposed two complementary approaches
to deal with these two issues. A bias field correction was
performed using the N4ITK method, which is the state-of-
art method for brain studies. N4ITK is a histogram based
technique that estimates a slowly varying bias field by maximizing
the high frequency histogram content in the image (32). Our
goal was to validate its use in thoracic imaging and assess
its impact on subsequent radiomic analysis. Using normal

TABLE 5 | Paired Wilcoxon signed rank tests to compare AUC between (1) raw
data and N4ITK corrected data, (2) raw data and N4ITK corrected and normalized
data, (3) N4ITK corrected data and N4ITK corrected and normalized data for the
discriminant features (common and additional) using the discovery and the
validation sets.

2D analysis

AUC comparison Common discriminant Additional discriminant

features features
(n=28) (n=14)
Discovery Validation Discovery Validation
set set set set
N4ITK corrected data ns ns ns ns
vs. raw data
N4ITK corrected and ns ns p =0.001" p=0.001**
normalized data
vs. raw data
N4ITK corrected and ns ns p =0.001"* p=0.003*"*

normalized data
vs. N4[TK corrected
data

ns, not significant.
" Stands for p-values smaller than 0.005.

tissues, such as the vertebral bodies, subcutaneous fat, and
pectoral muscle, we demonstrated that this correction was
successful at reducing the variations of voxel values in all
these tissues (Supplemental Table 1), the largest effect being
observed in the subcutaneous fat. This is very likely due to the
fat peripheral location. The identification of radiomic features
able to predict ADK tumors was only slightly impacted by
this correction (Table 3). Indeed this correction did not aim at
increasing the identification of informative radiomic features,
but at improving the subsequent normalization procedure, by
reducing the coefficients of variation in the reference tissue.
Other techniques of bias field correction, such as Bl mapping
could also be of interest. Yet, a definite advantage of N4ITK is
that it can be retrospectively used, which is especially useful as
many radiomic studies are still performed retrospectively.

The challenge of image intensity normalization was addressed
by defining a reference tissue. We chose the subcutaneous
fat as it was always present in the thoracic field of view
and showed the lowest coefficient of variation within patients
(Supplemental Table 1). The principle of the normalization
was to arbitrarily set the MR intensity to 0 in fat regions
and its associated standard deviation to 1, similar to setting
Hounsfield Units to 0 in water in CT imaging. Doing so, for
any patient, the value will be 0 in the fat for these anatomical
T2-weighted PROPELLER images, and all image values will
be scaled linearly. The linear transformation is a very simple
model with respect to the complexity of the MR signal intensity
and more sophisticated models could certainly be used, but
our aim was to determine whether this simple transformation
could already reduce the variability of MR signal intensity across
patients hence increase the statistical power of MR radiomic
analysis. Our results suggest that the number of informative
features for identifying ADK is substantially increased when
using the image intensity normalization combined with the
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bias field correction (Table3). In the 3D approach, four
additional features were identified while in the 2D analysis,
14 additional features were identified as discriminant. The
eight common discriminant features that were already identified
as informative before preprocessing remained informative
after preprocessing, demonstrating that these features were
robust with respect to the magnetic field heterogeneity and
intensity scaling. Indeed five (SHAPE_Volume, GLRLM_GLNU,
GLRLM_RLNU, GLZLM_GLNU, GLZLM_ZLNU) of these eight
features are highly correlated with the volume of the region
of interest (34), and that volume remains identical whatever
the preprocessing steps. The question of whether the 14 new
radiomic features identified as informative after preprocessing
were truly informative for the classification task or were
“false positive” features was answered by designing the sham
experiment and by analyzing the validation set. In the sham
experiment, we knew that we should not find any feature that
would be related to the “fake” ADK or OTH status of the
tumors, as each tumor was randomly assigned as ADK or
OTH, whatever its actual pathological report. Table 3 confirmed
that without preprocessing, with N4ITK correction, and with
full preprocessing, no feature was identified as informative of
the fake tumor type. Table 5 shows that the trends observed
on the discovery set for the 14 additional features identified
using the normalized N4ITK corrected data were confirmed
on the validation set. All additional features were textural
features, demonstrating the need for preprocessing to compute
robust discriminant textural features. Altogether, these results
demonstrate that the preprocessing does not produce an inflation
of false positive and suggests that the additional features
identified in the real classification task are truly informative.

In our cohort, all images had the same voxel size. It was thus
not necessary to resample the images as previously proposed
(47, 48) to reduce the variability induced by different voxel
size. To characterize the tumor type based on the MR radiomic
features, we compared two approaches: a 2D approach where
radiomic features were computed in each slice and the median
value over all slices was chosen as the representative value for the
tumor, and a 3D approach in which the features directly pertain
to the whole tumor volume. The 2D approach identified more
informative radiomic features than then 3D approach (Table 3).
Several hypotheses might explain this result. First, voxels are
not isotropic, because the slice thickness (4 mm) is greater than
the intra-plane voxel size (0.8 mm). As a result, 3D calculation
of second-order feature is biased. Another reason might be the
large size of most tumors in our study. All patients had advanced
tumors with a mean diameter of 63 &= 23 mm, so each slice already
contained a representative view of the tumor that might be
sufficient to estimate the tumor type (see Figure 4). Two previous
studies compared 2D and 3D radiomic feature performance for
lung cancer in CT (49, 50). The first one did not find any
significant difference between 2D and 3D results (49), while the
second study reported better performance using the 3D analysis
(50). Yet, for these two studies, the 2D analysis was limited to the
slice that included the largest cross-section of the lesion, while
in our so-called 2D approach, we still accounted for all slices
encompassing the tumor. The selection of one single slice might
lead to information loss while our 2D approach used all 2D slices

to end up with a single feature value per tumor volume. Our
2D approach identified more discriminant features than the one-
slice based 2D approach (Supplemental Table 6), especially for
N4ITK corrected and normalized data.

The feature that yielded the largest AUC was
GLCM_Correlation. This feature has actually already been
reported as predictive in other MRI radiomic study: lower values
of GLCM_Correlation on Diffusion Weighted Images and higher
values of GLCM_Contrast on T2w sequences were shown to be
correlated to an early disease progression in rectal cancers (51).

There are several limitations in our study. First, our results
related to the prediction of ADK should be confirmed on a
larger cohort. As all data were acquired in the same institution
and using the same scanner, our findings would also need a
multi-center validation. Another limitation is due to the fact
that only one operator segmented the tumors and the robustness
of the findings with respect to the tumor delineation should
be further investigated (52). To investigate the impact of the
tumor delineation on our results, all the segmented tumors were
automatically eroded by an element of size 1.5mm and results
were similar, confirming the greater sensitivity of 2D analysis
on normalized N4ITK corrected data to identify discriminant
features (see Supplemental Table 5). This suggests that for
tumors with large volumes as in our study, significant variations
in results due to small changes in tumor contour delineation
are unlikely. Histology was mostly determined by trans-thoracic
core needle biopsy, which might not be representative of the
whole tumor volume. This is a definite limitation as lung tumors
may have heterogeneous histological types depending on the
location in the lesion (53). Our task was to distinguish between
ADK and all other tumor types, so this second tumor group
was quite heterogeneous in itself. The reason why we did not
separate the OTH group into different tumor types was to keep
enough tumors in each group for the classification task. Last,
the best prediction accuracy we obtained (AUC of 0.82) is not
sufficient for clinical applicability (36). This accuracy might be
limited by the fact that we used univariate models only, because
of the relatively small size of our cohort. Our results warrant
multivariate analyses based on larger patient cohorts. Also, we
focused on one MR sequence only, while combining radiomic
features from different MR sequences might be useful to enhance
the accuracy of the classification.

CONCLUSION

We demonstrated that MRI T2-weighted sequences of lung
cancer patients yielded radiomic features related to the
pathological tumor type and that the number of informative
radiomic features was significantly increased by appropriate
processing of the MR images. Key preprocessing steps
are correction for the magnetic field inhomogeneity and
normalization of the voxel values to set a intensity scale
common to all patient images. In addition, in our cohort, the
2D analysis selecting the median value of each feature among
the different slices encompassing the tumor volume revealed
more discriminant radiomic features than the 3D analysis. Based
on these results, further exploration of the potential of MR
radiomics in lung cancer patients is warranted.
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