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Alternative splicing (AS) is an important mechanism that is responsible for the production

of protein diversity. An increasing body of evidence has suggested that out-of-control

AS is closely related to the genesis and development of cancer. Systematic analysis

of genome-wide AS in head and neck squamous cell carcinoma (HNSCC) has not yet

been carried out, and consideration of this topic remains at the preliminary stage and

requires further investigation. In this study, systemic bioinformatic analysis was carried

out on the genome-wide AS events of 555 clinical HNSCC samples from the TCGA

database. Firstly, we statistically analyzed the distributions of seven AS event types in

HNSCC samples. Then, through univariate survival analysis, we observed the relationship

between AS and the prognosis of the disease and found that 437 intersections of

AS events were significantly related to overall survival. Among them, 335 cross-genes

showed a high degree of consistency in the genes associated with overall survival and

recurrence. The overall survival was significantly related to AS events. Besides, the

frequency of overall survival-related ES events was evidently reduced, while the AP

and the AT events were increased. In addition, AT events accounted for the largest

proportion. Further, multiple regression model analysis proved that AS could become

a new classification method for HNSCC, and KEGG enrichment analysis proved that

most genes and proteins interacting with AS events had different biological functions and

were associated with a variety of diseases. Finally, through the selection of characteristic

HNSCC genes and the construction of a prognostic model, seven cross-genes related to

survival and recurrence were screened out, and these characteristic genes were verified
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by multivariate survival model analysis so as to classify the prognosis at different splicing

times and gene expression levels. These results have laid a solid foundation for our further

research and play a decisive role in showing the correlation of AS with the prognosis

of HNSCC.

Keywords: head and neck squamous cell carcinoma (HNSCC), TCGA database, prognosis, Alternative Splicing

(AS), oncology

INTRODUCTION

HNSCC is a kind of head and neck malignant tumor that
is commonly seen in the clinic, accounting for about 5–10%
of systemic malignant tumors, with an average morbidity of
about 10-5/100,000 (1). In recent years, the morbidity of such
tumors with high malignant grade shows an increasing trend.
Clinically advanced cases make up about 50%, despite the rapid
development of medical technology, as well as the increasingly
improved early diagnosis technique of HNSCC (2–4). Over the
past 20 years, great achievements have been made in the surgical
method (5), radiotherapy (6), and chemotherapy (7); however,
the 5-years survival rate for HNSCC, especially for the advanced
patients, has not yet been remarkably improved (8). This
ineffectiveness of current therapies underscores the urgent need
for new discoveries leading to more effective treatment pathways.

The cancer genome atlas (TCGA) is a collection of genomic
information about a variety of tumor types, including GBM,
designed to classify and identify genomic changes that cause
cancer in order to create a comprehensive cancer genome atlas
(9). In the past 10 years, the TCGA project has generated
a lot of genomics and proteomics data; these data represent
the 33 types of cancer in more than 11,000 tumor molecular
structures, mainly concentrated on the assessment of somatic
non-synonymous protein change mutation and the mutation
of gene expression (10, 11). In this paper, access to and
download from the TCGA database and global gene expression
profile analysis and database mining were conducted to find the
potential association between genes and the overall survival rate
of multiple malignancies.

Protein diversity is crucial for the obvious regulatory and
functional complexities of eukaryocytes. Pre-mRNA AS is a
general mechanism that uses a limited set of genes to produce
mRNA isomers (12). AS is a process in which the introns of
most human multi-exon genes are deleted and specific exons are
alternatively included or excluded (13, 14). Apart from protein
diversity, the mRNA isomer translation level can also be down-
regulated by introducing AS, leading to degradation of the early
termination codon (15). Therefore, AS is an important process;
changes in the splicing pattern are closely correlated with protein
functions, and it is involved in multiple human physiological
functions, such as hematopoiesis (16), brain development (17),
and muscular activity (18). Differences in the gene expression

Abbreviations: AS, Alternative splicing; OS, Overall survival; HNSCC, head and

neck squamous cell carcinoma; ES, Exon Skip; ME, Mutually Exclusive Exons; RI,

Retained Intron; AP, Alternate Promoter; AT, Alternate Terminator; AD, Alternate

Donor site; AA, Alternate Acceptor site; AUC, areas under the curve; HR, hazard

ratio; TPR, Ture Positive Rate; FPR, False Positive Rate.

levels of splicing regulators have been observed in many cancers,
and these proteins generally influence the splicing patterns of
many genes that play a role in certain cancer-specific biological
pathways, including cell cycle progression, cell proliferation
and migration, and RNA processing. The prevalence of AS
is currently estimated at the genome-wide level using high-
throughput methods, including microarrays, expressed sequence
tag analysis, and sequencing (13). The AS process can explain
the difference between estimates of the number of genes and the
number of proteins.

The protein diversity of cancer genome analysis is the key
to the regulation and functional complexity of eukaryotic cells.
Individual changes in regulatory binding sites or changes in
protein-coding sequences may have strong functional effects
(10). However, an increasing number of recent studies have
demonstrated that AS is also markedly correlated with cancer
genesis and development (19, 20). Out-of-control AS participates
in multiple carcinogenic processes, including proliferation (21),
apoptosis suppression (22), angiogenesis (23), immune escape
(21), and metastasis (24). For example, exon-skipping events
in MST1R are controlled by SF2/ASF through AS of the RON
proto-oncogene (25). Convergence of Acquired Mutations and
Alternative Splicing of CD19 lead to the activity of splicing
factor SRSF3 was destroyed, AS also affects the immunotherapy
of leukemia (26). Met exon 14 was observed in some lung
cancer patients, resulting in a deletion of the protein region that
inhibits its kinase catalytic activity (27). More recently, analyses
of AS have also shown prognostic value for a variety of cancer
types, including non-small cell lung cancer (15), ovarian cancer
(28), breast cancer (29), uveal melanoma (30), and glioblastoma
(31). However, the alternative splice associated with survival in
head and neck squamous cell carcinoma (HNSCC) has not been
extensively studied. Nonetheless, few studies on head and neck
squamous cell carcinoma (HNSCC) have been reported, and
research on the subject remains at the preliminary stage (19).
This paper aimed to carry out systemic bioinformatic analysis
of the HNSCC clinical samples from the TCGA database and
open up a novel path for exploring the pathogenesis, prognosis
biomarkers, and therapeutic targets of HNSCC from the point of
view of AS, thus more accurately guiding clinical treatment and
judging prognosis.

MATERIALS AND METHODS

Data Downloading, Preprocessing and
Overall Analysis Process
RNA-seq AS event data for HNSCC were obtained from the
TCGASpliceSeq database (32), which covered a total of 555
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samples, including 43 normal samples. Additionally, the RNA-
seq expression profile data of HNSCC and para-carcinoma were
obtained from the TCGA database (33), which involved 546
samples, including 44 normal samples. Moreover, all clinical
follow-up data (including 527 samples) were downloaded from
the TCGA database. The data processing and statistical modeling
are crucial and vital, as the information extracted from the
raw data will depend on these steps. A better understanding
of data processing and statistical algorithms and methods are
important to achieve statistically relevant and optimal biological
information. In order to obtain data with high accuracy, integrity,
and consistency, we pre-processed TCGA data (34). The data
were pre-processed as follows: the RNA-Seq expression profile
FPKM dataset was downloaded and further converted into TPM
data; at the same time, the ID was transformed using the
genome file of GENCODE (GRCh38.p2) (35), and the protein-
encoding genes were obtained. A total of 498 common samples
in TCGASpliceSeq and RNA-Seq were then enrolled in this study,
and a total of 19,754 genes with expression values were obtained
as the total gene set for this study. The overall analysis process is
presented in Figure 1A.

Analysis of mRNA AS Events in HNSCC
Patients
The TCGASpliceSeq database had analyzed the mRNA splicing
pattern using SpliceSeq tool (36) based on TCGA RNA-
Seq data. There were seven types of AS events, including
Exon Skip (ES), Mutually Exclusive Exons (ME), Retained
Intron (RI), Alternate Promoter (AP), Alternate Terminator
(AT), Alternate Donor site (AD), and Alternate Acceptor
site (AA). In addition, the distribution of all coding genes
among these seven different types of data was analyzed in the
HNSCC samples.

Screening of Survival-Related AS Events
Differences in the AS of genes may result in gene diversity,
while changes in the gene expression level would affect
patient survival. Survival analysis is a method for analyzing
and deducing the survival time of an organism or a
person based on the data obtained from experiment or
investigation so as to examine the relationships of survival
time and outcome with numerous influence factors as
well as their degrees. It is also referred to as survival
rate analysis.

In this study, the different gene-splicing events obtained from
disease samples were subjected to univariate survival analysis
using the “survival” package in R (37). Genes satisfying the
significant level of p < 0.05 were selected as the prognosis
differential AS events.

Analysis of AS Event Types of
Prognosis-Related Genes
AS can affect the protein diversity translated by
genes. In this study, the prognosis-related AS events
were selected, and the gene distribution among these
genes was determined so as to analyze the gene

distribution among the various types of prognosis-related
AS events.

Analysis of the Prognosis Factors of
HNSCC AS Events
To observe whether AS events could serve as prognosis factors,
the 20 most significant genes among the AS types were selected
for multivariate regression model analysis so as to observe their
classification of prognosis.

Construction of a Gene Interaction
Network for various Types of AS Events
That Were Markedly Correlated With
Prognosis
To observe the gene associations among the various types of AS
events that were markedly correlated with prognosis, these genes
were mapped to the String database (38), respectively. Then, the
interactions of these genes were obtained using score >0.4, and
Cytoscope was used for visualization.

Analysis of Gene Functions in Various
Types of AS Events That Were Markedly
Correlated With Prognosis
To observe the gene functions in various types of AS events
that were markedly correlated with prognosis, KEGG enrichment
analysis was carried out on the AS genes evidently correlated with
prognosis in each type using the “clusterprofile” package in R, so
as to observe the enrichment pathways of these genes.

Correlation Analysis Between Gene
Expression Profile and Prognosis in AS
Events That Were Markedly Correlated
With Prognosis
TCGA RNA-Seq expression profile data were used for
univariate survival analysis of each gene to observe the
relationships between gene expression and prognosis in
AS events that were markedly correlated with prognosis;
in addition, the influence of the expression profiles
of genes involved in AS events on prognosis was
also examined.

Selection of HNSCC Feature Genes
Genes with a Pearson correlation coefficient between gene
expression and AS events of >0.2 or <-0.2 were selected as the
prognosis feature genes.

Construction of the HNSCC Prognosis
Model
To construct the prognosis-predicting indexes that were
suitable for HNSCC patients and to facilitate clinical practice,
the prognosis feature genes were selected to construct the
multivariate survival model, so as to observe the classification
of prognosis by these prognosis feature genes at AS event and
expression profile levels.
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FIGURE 1 | (A) Schematic diagram of the research methodology. (B) Overview of seven types of alternative splicing (AS) events in this study. Illustrations for seven

types of AS events: ES, Exon Skip; ME, Mutually Exclusive Exons; RI, Retained Intron; AP, Alternate Promoter; AT, Alternate Terminator; AD, Alternate Donor site; AA,

Alternate Acceptor site.
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RESULTS

Analysis of mRNA AS Events in HNSCC
Patients
All the AS events in 498 cancer samples were calculated, as
shown in Table S1, and the seven AS patterns are presented
in Figure 1B, which cover 42849 AS events, including 10,123
genes. The distribution of the seven types of AS events is
shown in Figure 2C; as can be seen, one gene might be
associated with several types of mRNA AS events. Typically,
ES was the main type, accounting for almost 1/3 of all
AS events.

Screening of Prognosis-Related AS Events
To observe the relationships between AS and disease prognosis,
all clinical follow-up data for the diseases were integrated to
form Table S2, and univariate survival analysis was performed
on 42849 AS events to examine the relationships between
these AS events and the prognosis for HNSCC patients.
When selecting p < 0.05, a total of 3697 AS events that
were remarkably correlated with survival, involving 2,410
genes, were obtained; in addition, 2115 AS events that
were markedly correlated with disease recurrence, covering
1,457 genes, were acquired, as displayed in Table S3. Besides,
there were 335 intersections between AS events that were
significantly correlated with overall survival and those that
were markedly related to recurrence, as presented in Figure 2A.
Among them, there were 473 intersected genes among all
the involved genes, as shown in Figure 2B, suggesting great
consistency between genes involved in overall survival and
recurrence-related genes. The numbers of AS events that
were markedly correlated with overall survival are plotted in
Figure 2D, from which it could be seen that the frequency
of overall survival-related ES events was evidently reduced,
while the AP and AT events were increased. Besides, among
the recurrence related AS events, AT events took up the
greatest proportion (Figure 2E), suggesting that most ES events
were not correlated with prognosis, while about 10% of AT
events were markedly correlated with survival. Furthermore,
type analysis was performed on the prognosis-related-gene-
selective AS events. Typically, the prognosis-related AS events
were selected, and the gene distribution among those genes
was calculated (Figures 2F,G). It can be seen from the figure
that one gene might be associated with multiple AS events of
various types, and these different AS events might be associated
with prognosis.

Analysis of the Prognosis Factors of
HNSCC AS Events
To observe whether the selective AS events could be used as
prognosis factors, the 20 most significant genes of each AS
type were selected from all prognosis-related AS events for
multivariate regression model analysis. Similarly, the significant
correlation between AS and genes was observed and the
20 most significant genes were also selected for multivariate
regression model analysis so as to observe their classification
of prognosis. As could be seen from Figure 3, the seven

types of AS events had large areas under the curve (AUC)
for prognosis classification, among which, the AA type AS
displayed the best overall survival, while the AA and ES types
had the best performance among AS significantly correlated
with recurrence. Moreover, the top 20 most significant genes
were selected from each type of AS event, and the forest
maps of these genes are presented in Figures S1, S2. It can
be seen that there were 16 genes in the AA splicing type
with a hazard ratio (HR) of <1, and four with HR of >1;
consistently, there were 16 genes in recurrence-related splicing
with a HR of <1 and four with HR of >1. These findings
revealed that AS might serve as a new classification method
for HNSCC.

Analysis of Gene Functions in Various
Types of AS Events That Were Markedly
Correlated With Prognosis
To observe the gene associations among different types of AS
events that were apparently correlated with prognosis, these
genes were mapped to the String database using a score
of >0.4. The gene interactions were obtained to construct
the gene interaction network among the various types of
AS events that were markedly correlated with prognosis, and
Cytoscope was used for visualization. As can be observed
from Figures 4A,B, AP and AT displayed most interactions,
and most genes in the prognosis-related AS events were
associated with protein interactions, revealing that most of
these genes were involved in different biological functions.
Furthermore, to observe gene function in various types of
AS events that were significantly correlated with prognosis,
KEGG enrichment analysis was performed on the AS genes
in each type that were significantly correlated with prognosis.
The results are shown in Figures 4C,D, from which it can be
seen that these genes were enriched in multiple disease-related
pathways, suggesting that these genes were involved in numerous
biological functions.

Relationships Between Gene Expression
Profile and Prognosis in AS Events That
Were Markedly Correlated With Prognosis
To observe the relationships between gene expression and
prognosis in AS events that were notably correlated with
prognosis, TCGA RNA-Seq expression profile data were
employed for univariate survival analysis on each gene. Finally,
it was discovered that among the 2,410 overall survival-
related AS genes, the expression of 399 genes was related
to overall survival; whereas, among the 1,457 recurrence-
related AS genes, the expression of 194 genes was significantly
correlated with recurrence. Furthermore, correlation analysis
was performed between these 399 overall-survival genes and
the corresponding AS events using the Pearson correlation
coefficient. A total of 221 genes (55.39%) were found to
be significantly correlated with AS (P < 0.05), indicating
that the AS events of most genes were associated with their
expression. Besides, of the 194 recurrence-related genes, 89
were markedly correlated with AS (45.88%), demonstrating that
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FIGURE 2 | Venn diagram of AS events (A) and involved genes (B) that were significantly correlated with OS and recurrence. (C) Distribution of AS events of seven

types. (D) Distribution of OS-associated AS events of seven types. (E) Distribution of recurrence-associated AS events of seven types. The UpSet intersection

diagram shows seven types of OS (F)—and recurrence (G)—associated AS events in HNSCC. One gene may have up to four types of alternative splicing associated

with patient survival or recurrence.

the AS events of most genes were markedly associated with
their expression.

Selection of HNSCC Feature Genes and
Construction of a Prognosis Model
Genes with a Pearson correlation coefficient between gene
expression and AS events of >0.1 or <-0.1 were selected,
comprising 199 survival-related genes and 46 recurrence-related
ones. Of the 199 overall survival-related genes, 14 were related to

recurrence (CCDC23, TTC39A, CTBS, CD44, TAF1D, CCDC84,
DHRS12, IFT20, TRABD2A, SPATS2L, CPNE1, NPHP3, PLS3,
and LAMP2). Further multivariate Cox analysis was performed
on these 14 genes, and it was found that four genes were
related to overall survival (CDDC23, NPHP3, PLS3, and IFT20),
while six were related to recurrence (NPHP3, TRABD2A, IFT20,
TTC39A, CD44, and PLS3). Finally, seven intersecting genes
related to both survival and recurrence were selected; their
correlations with transcriptome level are shown in Figure 5. It
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can be observed from the figure that five genes were negatively
correlated. Of these, NPHP3 mutation would lead to puberty
nephropathy, retinal degeneration, and liver cirrhosis (39),
IFT20 has been reported to be related to lung cancer (40),
CD44 has been used as a cancer diagnostic marker (41), and
PLS3 has also been used as a biomarker to monitor disease
progression (42), indicating that most of these genes played
important roles in cancer. Besides, to construct prognosis-
predicting indexes that were suitable for HNSCC patients
and to facilitate clinical practice, these seven feature genes
were used to construct a multivariate survival model so as to
observe the classification of prognosis by these seven feature
genes at AS event and expression profile levels. As displayed
in Figure 6, these seven genes presented favorable prognosis
classification effects in both datasets, with a large AUC, indicating

that these seven genes might serve as prognosis markers
of HNSCC.

DISCUSSION

Cancer results from genetic and epigenetic changes that interfere
with basic mechanisms of the normal cell life cycle, such
as DNA repair, replication control, and Cell death (43, 44).
In the past decade, the relationship between AS and human
diseases has been gradually revealed. Changes in the proportions
of splicing isomers of certain key proteins are involved in
the occurrence and development of cellular case processes. In
the development of disease, although synonymous mutation
does not cause a change in the encoded protein sequence, it
may change the splicing enhancer or silencer of the exons

FIGURE 3 | ROC curves for OS (A) and recurrence (B)-associated AS events of each type for HNSCC patients.
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FIGURE 4 | Interaction network of genes with OS (A)- and recurrence (B)-associated AS events for HNSCC, created by Cytoscape. KEGG enrichment analysis of

genes with OS (C)- and recurrence (D)-associated AS events.

or introns, thereby affecting the splicing process. Similarly,
the RNA terminator appears early due to some mutations.
Not only does the protein encoded by this RNA have no
function, it may also directly affect the insight process of
other normal RNAs and cause diseases. Mutations in cis-acting
components cause splicing-related diseases such as Parkinson’s
frontotemporal dementia (FTDP), muscular dystrophy (MD),
and TAU disease represented by myoatrophy. Mutations that
occur in trans-acting elements can modulate proteins that
control the process of insight and cause disease. If DNA
cannot be repaired correctly and effectively after replication
or damage, it will lead to gene mutations. Gene mutations
occurring at regulatory points will affect the transcriptome
even further, resulting in differential proteins that activate or
inhibit key functions, leading to infinite proliferation. In all
steps of gene expression, AS may provide the greatest potential
for molecular diversity and controlled regulation in cells (45).
Various molecular complexes composed of RBP, structural RNA,
and other protein factors bind to pre-mRNA at various locations

(the RNA binding motif) and mediate (46). AS occurs through
the expression of complexes on the pre-mRNA regulatory
sequence or changes in the gene sequence. AS is not only an
important mechanism in the normal cell cycle but is also a key
mechanism for the occurrence of gene mutations leading to
various pathologies, including tumors. Therefore, identification
and analysis of AS are important to advance our understanding
of tumor biology.

Head and neck cancers include tumors in head and neck
tissues or organs except for the eye, brain, ear, thyroid, and
esophagus, and over 90% of head and neck cancers are squamous
cell carcinomas (47). The world has witnessed annual totals
of about 600,000 new head and neck tumor cases and over
300,000 deaths (48). Head and neck cancer ranks top among
systemic tumors in terms of the diversities of its primary
site and pathological type. Unfortunately, the survival rate
of head and neck cancer patients is low due to the lack of
effective risk assessment and means of early diagnosis (49). Head
and neck cancer is a highly complicated and heterogeneous
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FIGURE 5 | Seven intersected genes related to survival and recurrence were selected. It could be observed TTC39A (A) and CD44 (B) were positively correlated. But

IFT20 (C), TRABD2A (D), NPHP3 (E), PLS3 (F), and CCDC23 (G) were negatively correlated (P < 0.05).

FIGURE 6 | ROC curves and Kaplan-Meier plots of prognostic predictors for seven potential feature genes in HNSCC patients. (A) ROC curves with overall survival

AUCs of prognostic predictors plotted for transcriptional events in HNSCC. (B) Kaplan-Meier curves with overall survival of prognostic predictor plotted for

transcriptional events in HNSCC. (C) ROC curves with overall survival AUCs of prognostic predictors plotted for AS events in HNSCC. (D) Kaplan-Meier curves with

overall survival of prognostic predictor plotted for AS events in HNSCC. (E) ROC curves with recurrence AUCs of prognostic predictors plotted for AS events in

HNSCC. (F) Kaplan-Meier curves with recurrence of prognostic predictor plotted for AS events in HNSCC. (G) ROC curves with recurrence AUCs of prognostic

predictors plotted for AS events in HNSCC. (H) Kaplan-Meier curves with recurrence of prognostic predictor plotted for AS events in HNSCC.
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disease. Tumor heterogeneity has mediated multiple clinical
subtypes of head and neck cancer, which possesses different
sensitivity and prognosis to chemotherapeutics and targeted
preparations (50). The investigation and clinical application
of biomarkers is the key to prognosis assessment, molecular
classification, grade determination, recurrence assessment, and
early selection of appropriate therapeutics and means. According
to the literature, the abnormal splicing level of the GSN gene
is remarkably higher in tumor tissues than in para-carcinoma
tissues and regulates the proliferation process of the HNSCC
cell line (51). Meanwhile, the oncogene DOCK5 variant plays
a critical role in the human papilloma virus (HPV)-negative
HNSCC and is involved in tumor proliferation, migration, and
invasion (52). Moreover, it is also reported that the AS of the
CD44 (53), LAMA3, DST (54), and ESRP genes has similar
effects. Taken together, these results confirm that AS plays an
important part in HNSCC genesis and development, which
prompted us to systemically analyze the AS time in HNSCC
clinical samples and dig out the potential prognosis markers and
therapeutic targets.

At present, few complete gene studies on HNSCC AS
have been published. A study aimed at identifying AS
events (ASE) in human papillomavirus (HPV)-negative
HNSCC demonstrated that the analysis of ASE in HPV-
negative HNSCC identified multiple changes that may be
associated with carcinogenesis, including carcinogenic DOCK5
variants (52). A recent study conducting a genome-wide
analysis of AS events using RNA-seq data from the TCGA
program in a sample of 464 HNSC patients revealed new
AS events associated with carcinogenesis and the immune
microenvironment (55). Likewise, another study systematically
analyzed the RNA binding protein (RBP) gene mutations,
copy number, and gene expression pattern, and changes
of AS in these tumors, and AS sequence enrichment and
the motif of the change in cancer RBP expression (56).
However, screening studies related to survival and recurrence
have not been widely studied in HNSCC through the
selection of characteristic genes and the establishment of
prognostic models.

This paper systemically analyzed 555 HNSCC samples from
the TCGA database and mined the relationships between AS
events and prognosis. Meanwhile, the key genes affecting the
prognosis of HNSCC were also analyzed and mined based on
the genome-wide selective splicing events, and the HNSCC
samples were classified into high or low risk using the prognosis
model constructed based on the gene expression profiles and
AS events. Our results verified that AS events can serve as
prognosis-predicting factors and potential therapeutic targets
under a large sample size, a finding that contributes to the
more accurate guidance of clinical treatment and judgment
of prognosis. As a consequence, seven potential feature genes
were mined, namely NPHP3, TRABD2A, IFT20, TTC39A, CD44,
PLS3, and CDDC23. Additionally, multivariate survival model
analysis suggested that these seven feature genes could classify
the prognosis of HNSCC well at the AS time and gene
expression levels.

Finally, despite the limited ability to detect individual
events, we demonstrated that associated AS events can be
used to construct high-performance prognostic indicators
for HNSCC risk stratification, which is promising in
clinical practice. In addition, we found excellent splicing-
related networks. These results will be most valuable
for deciphering the functional contribution of RNA
splicing in HNSCC tumorigenesis. In-depth analysis of
RNA splicing patterns may indeed reveal new cancer
drivers and provide insights into the mechanisms of
these pathways.
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