l" frontiers
in Oncology

ORIGINAL RESEARCH
published: 11 February 2020
doi: 10.3389/fonc.2020.00097

OPEN ACCESS

Edited by:

Nadia Judith Jacobo-Herrera,
Instituto Nacional de Ciencias
Meédicas y Nutricion Salvador Zubiran
(INCMNSZ), Mexico

Reviewed by:

Cinzia Antognelli,

University of Perugia, Italy

Lajos Pusztai,

School of Medicine, Yale University,
United States

*Correspondence:

Jesus Espinal-Enriquez
Jjespinal@inmegen.gob.mx
Enrique Hernandez-Lemus
ehernandez@inmegen.gob.mx

Specialty section:

This article was submitted to
Cancer Metabolism,

a section of the journal
Frontiers in Oncology

Received: 17 August 2019
Accepted: 20 January 2020
Published: 11 February 2020

Citation:

Serrano-Carbajal EA,
Espinal-Enriquez J and
Hernandez-Lemus E (2020) Targeting
Metabolic Deregulation Landscapes in
Breast Cancer Subtypes.

Front. Oncol. 10:97.

doi: 10.3389/fonc.2020.00097

Check for
updates

Targeting Metabolic Deregulation
Landscapes in Breast Cancer
Subtypes

Erandi A. Serrano-Carbajal’, Jesus Espinal-Enriquez'?* and Enrique Hernandez-Lemus "#*

" Computational Genomics Division, National Institute of Genomic Medicine, Mexico City, Mexico, ? Centro de Ciencias de la
Complejidad, Universidad Nacional Auténoma de Mexico, Mexico City, Mexico

Metabolic deregulation is an emergent hallmark of cancer. Altered patterns of metabolic
pathways result in exacerbated synthesis of macromolecules, increased proliferation,
and resistance to treatment via alteration of drug processing. In addition, molecular
heterogeneity creates a barrier to therapeutic options. In breast cancer, this broad
variation in molecular metabolism constitutes, simultaneously, a source of prognostic and
therapeutic challenges and a doorway to novel interventions. In this work, we investigated
the metabolic deregulation landscapes in breast cancer molecular subtypes. Such
landscapes are the regulatory signatures behind subtype-specific metabolic features.
n = 735 breast cancer samples of the Luminal A, Luminal B, Her2+, and Basal
subtypes, as well as n 113 healthy breast tissue samples were analyzed. By
means of a single-sample-based algorithm, deregulation for all metabolic pathways
in every sample was determined. Deregulation levels match almost perfectly with the
molecular classification, indicating that metabolic anomalies are closely associated with
gene-expression signatures. Luminal B tumors are the most deregulated but are also the
ones with higher within-subtype variance. We argued that this variation may underlie
the fact that Luminal B tumors usually present the worst prognosis, a high rate of
recurrence, and the lowest response to treatment in the long term. Finally, we designed
a therapeutic scheme to regulate purine metabolism in breast cancer, independently of
the molecular subtype. This scheme is founded on a computational tool that provides
a set of FDA-approved drugs to target pathway-specific differentially expressed genes.
By providing metabolic deregulation patterns at the single-sample level in breast cancer
subtypes, we have been able to further characterize tumor behavior. This approach,
together with targeted therapy, may open novel avenues for the design of personalized
diagnostic, prognostic, and therapeutic strategies.

Keywords: cancer metabolism, pathway deregulation, breast cancer subtypes, therapeutic targets, steroid and
fatty acid metabolism, purine metabolism

1. INTRODUCTION

Breast cancer is a complex, heterogeneous disease. Manifestations of this heterogeneity can
be observed at the transcriptomic, molecular, or histological level (1). The origins of such
manifestations can be traced back by looking at different levels of molecular control within the cells
and tissues. The mechanisms behind gene expression, cell signaling, and metabolism are highly
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intertwined, and cross-regulation patterns appear (2, 3), which
strongly determine the phenotypic variance observed in clinical
practice (4-6). In fact, this broad variance in molecular
metabolism in breast cancer constitutes, simultaneously, a source
of prognostic and therapeutic challenges and a doorway to novel
interventions (7-9).

In order to face the challenges posed by tumor heterogeneity,
it is customary to classify or subtype tumors according
to their feature similarity. One currently used classification
method in breast cancer, which has been particularly useful
for capturing biological functional features, is the so-called
molecular subtyping (10). The default classification scheme
in this regard is given by the PAM50 (10, 11) algorithm,
which groups breast tumors into molecular classes or subtypes
according to a gene-expression signature of 50 genes relevant to
the patho-physiology of the tumor. These subtypes are Luminal
A, Luminal B, Her2+, and Basal. Some authors include a fifth
subtype, the so-called Normal-like, but its use is controversial,
and its use has been in decline lately (12).

These subtypes have been able to capture relevant differences
in the origin, prognosis, response to treatment, and relapse
probability of breast tumors. In general, it is considered that
luminal subtypes are less aggressive and have better prognosis
and better response to treatment than non-luminal ones (11).
However, under certain circumstances, Luminal B tumors may
have a higher recurrence, less response to treatment, and worse
long-term prognosis (13). This variation in response is not clear
and is of the utmost importance for the understanding of the
disease at the personalized level.

Genomic alterations (mutations, copy number variations,
chromosomal aberrations) often derive into anomalous
cell functioning, including deregulation of metabolism—an
important emergent hallmark of cancer (14) via abnormal gene
regulatory programs. Aberrant gene-expression patterns are
currently studied using next-generation sequencing (NGS)
techniques such as RNA-Seq.

The analysis of these gene deregulation signatures provides
a comprehensive (genome-wide) approach to dig into the
molecular basis of disease. In the case of tumor metabolism, one
may argue that metabolomics and phospho-proteomics would be
closer proxies to the actual underlying molecular mechanisms.
However, despite important advances in experimental-omic
techniques, comprehensive metabolomic mapping and fluxomics
are still under-developed for the task of describing cellular
metabolic processes comprehensively, although this should
change in the upcoming years. Approaches to analyzing
metabolic deregulation in cancer based on gene expression
have been developed (15, 16). Those extensive studies used
differentially expressed genes for more than 20 types of cancer
to distinguish deregulated metabolic pathways. In both cases,
specific pathways were identified as deregulated in particular
types of cancer. However, those studies performed phenotype-
specific analyses and did not focus on single-sample deregulation.

To overcome this issue, an appealing way to study
deregulation of metabolism is by analyzing metabolism-related
gene-expression signatures at a single-sample level. In this work,
we used TCGA gene-expression data from 735 tumor samples

(17, 18), classified according to their molecular signature, to
investigate the pathway deregulation patterns for the four PAM50
molecular subtypes, to determine subtype-specific metabolic
landscapes. We used a single-sample-based algorithm (19) to
quantify metabolic anomalies. This algorithm provides a pathway
deregulation score for each pathway at a sample level. For
validation purposes, we used a 2,000-sample cohort (20) with
the same pipeline. Analyzing metabolic deregulation patterns
at the subtype and individual sample levels provides a means
of characterizing tumor behavior with a view to designing
personalized diagnostic, prognostic, and therapeutic strategies.

2. MATERIALS AND METHODS

2.1. RNASeq Data Acquisition and

Processing
Data were acquired from the Genome Data Commons Data
Portal (https://bit.ly/2l]]rgi).

Briefly, 1,102 primary breast tumors and 113 normal solid
tissues (normal solid tissue refers to healthy tumor-adjacent
tissue taken from some of the tumors) samples were acquired and
pre-processed to obtain log, normalized gene-expression values
(21). Data were pre-processed to eliminate intrinsic experimental
biases (22).

2.1.1. Integration

The following pipeline was already used and reported in Espinal-
Enriquez et al. (21). Basically, an integrity check had to be carried
out on raw expression files to ensure that all of them both
had the same dimensions and provided TCGA identifiers before
complementary annotation could be incorporated.

2.1.2. Quality Control

The NO Seq R library was used for global quality control
(23, 24). All samples reached saturation for the number
of detected features at the corresponding sequencing depth.
Global expression quantification for each experimental condition
yielded a feature sensitivity >60% for 10 counts per million
(CPM). Bias detection assessment showed the presence of gene
length, %GC, and RNA patterns.

The EDASeq R library was used for batch-effect removal
(25). Before normalization, genes with mean counts <10 were
filtered, resulting in 17,215 genes, as suggested in Risso et al. (25).
Different within/between normalization strategies were tested to
remove bias.

Exploration of sample log,(normalized count) expression
densities showed a consistent bi-modal pattern, corresponding
to noisy lower-expressed genes and global sample behavior.
Filtering out features with low counts (CPM < 10 cut-off)
retained 15,281 genes, removing the undesired lower density
peak. Finally, ARSyN R library was used for multidimensional
noise reduction using default parameters (22).

2.1.3. Subtyping

We classified the 1,112 breast cancer samples into the four
molecular subtypes using the pbcmc R package (26), a variation
of the PAMS50 algorithm, which characterizes the assessment
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of the uncertainty in gene-expression-based classifiers (e.g.,
PAMS50) based on permutation tests (12). Tumor samples with
a non-reliable breast cancer subtype call were removed from the
analysis. The number of removed samples was 377, giving a final
number of 735 reliable samples.

2.2, Differential Expression Analysis and

Pathway Discrimination

To determine overexpressed or underexpressed genes, we used
the limma” R package (27), considering an absolute difference of
Log,FoldChange > 1 and a B-statistic > 5. The False Discovery
Rate-adjusted p-value threshold was 107>, Since the main goal
of this work is to establish the extent of deregulation in the
metabolism for each breast cancer sample/subtype, we kept 80
metabolic pathways present in the KEGG database (28) (the
Pathifier algorithm needs a minimum number of molecules to
be performed).

2.3. Pathway Deregulation Analysis

Metabolic pathway deregulation in each sample was quantified
by using the Pathifier algorithm (19). This algorithm integrates
the expression data of genes involved in a given metabolic
pathway into a single deregulation value at the individual-
sample level. the algorithm assigns a score between 0 and 1,
called the Pathway Deregulation Score (PDS).” Values close to
0 correspond to samples whose expression levels are similar
to controls (29). Samples with higher values present higher
differences in expression levels compared to the control group.
Pathifier quantifies the level of deregulation of a metabolic
pathway in a single tumor sample by measuring the deviation of
said sample from control behavior.

In some cases, a single sample with extreme gene-expression
changes (majorly different from those of other samples) for genes
in a given pathway may give rise to a really high (assigning PDS
=1 to that sample) score, making all other deregulated samples
(with large but comparatively low gene-expression changes) close
to zero, thus appearing to be minorly deregulated. In other words,
several deregulated pathways/samples would be missing. In such
cases, the outlier sample was removed from the analysis. Finally,
an unsupervised clustering method was used to group samples
with similar PDS. A graphical representation of the pipeline is
presented here in Figure 1.

2.4. Identification of Potential

Pharmacological Targets

Genes being commonly over/underexpressed in all breast
cancer subtypes would suggest that there should be subtype-
independent drugs. In order to assess this idea, we performed
data mining on transcriptomic/drug data by using a previously
developed (by our group) computational pipeline to find
differentially expressed pharmacological targets of FDA-
approved drugs (31) for those shared DEGs. This tool performs
all possible combinations of differentially expressed targets
and FDA-approved drugs in public pharmacological databases,
as well as their two-drug interactions. So, for the more than
2611 drugs annotated in the DrugBank database and the 660

drugs annotated in PharmGKB, all subtype-specific differentially
expressed genes were interrogated.

2.5. Validation

For validation purposes, we used 2,000 microarray samples from
the METABRIC cohort (20), performed the same analysis with
the already classified samples, obtained the single-sample PDS,
and compared them with the TCGA cohort.

3. RESULTS AND DISCUSSION

3.1. Subtype-Specific Deregulated Genes
Are Associated With Characteristic
Metabolic Pathways

As has been observed previously (1, 6), gene-expression
signatures differ between all subtypes (Figure 2). The signatures
presented here include only genes associated with metabolic
pathways. Figure 2 shows the overexpressed and underexpressed
metabolism-associated genes for each subtype in the form of a
Venn diagram. It can be observed that all subtypes have a non-
shared set of differentially expressed genes (DEGs) but also a
small subset of shared deregulated genes.

By using |log, FoldChange|] > 1 and B — statistic >
5 as significance thresholds, the number of DEGs in all
the tumors is 204 overexpressed and 287 underexpressed.
The numbers of overexpressed and underexpressed genes for
each subtype are very similar. Interestingly, the subset of
shared overexpressed genes (n = 10) is substantially smaller
than that of the underexpressed genes (n = 79). This
difference between the number of shared underexpressed and
overexpressed genes may be associated with the fact that some
metabolic pathways are silenced or decreased in all subtypes; on
the other hand, metabolic pathways with incremental activity are
subtype-specific.

To evaluate whether shared overexpressed genes influence
the regulation of metabolism, we associated them with the
metabolic processes in which they participate. Figure 3
shows the relationships between the overexpressed genes
(in red), and their associated metabolic processes (in pink)
in the form of a bipartite network-a network composed by
nodes of different nature, in this case, genes and pathways.
Analogously, we constructed a network composed of
the common underexpressed genes and their associated
metabolic pathways.

As can be seen from the structure of the bipartite network,
there are central molecules involved in several interrelated
metabolic processes, giving rise to the so-called pathway-
crosstalk events. This is a result of the utmost importance,
since crosstalk phenomena have been associated with anomalous
therapeutic responses and pharmacological resistance in breast
cancer subtypes (32).

We can see, for instance, how the Interleukin 4-induced 1 gene
(IL4I1) is the one with the most associated metabolic processes
(n = 7), all related to amino acid biosynthesis (Figure 3A). This
gene is often overexpressed in B-cell lymphomas (33) and has
also been associated with cancer by promoting tumor growth
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FIGURE 1 | Pipeline of the work presented here. The workflow starts with data acquisition from the TCGA Genome Data Commons Data Portal. Pre-processing of
gene-expression files was performed as in Espinal-Enriquez et al. (21). Breast cancer molecular classification was made by using the pcbcmc R package (12).
Molecular subtype classification of normalized samples provides us with a gene-expression matrix, which is used to run the Pathifier algorithm (19). This algorithm
assigns a Pathway Deregulation Score (PDS) to every metabolic pathway in each sample. The PDS is a score between 0 and 1. Here, 0 corresponds to the centroid of
the control samples of a given pathway. The score increases according to the distance of the sample from this centroid along a principal curve, spanning the cloud of
data points. The pathways used to perform Pathifier were obtained by filtering the metabolism-associated KEGG pathways. Finally, PDSs were grouped by using
unsupervised hierarchical clustering. Hierarchical clustering modified from Garcia-Campos et al. (30).

A Luminal B Luminal B

Luminal A

Luminal A

FIGURE 2 | Differentially expressed genes associated with metabolism in breast cancer molecular subtypes. In these Venn diagrams, each ellipse corresponds to the
DEGs appearing in each subtype. The left set (A) corresponds to overexpressed genes and the right set (B) to underexpressed genes. The number inside each
subset represents the number of genes appearing in each subset. Notice that the center of both figures corresponds to the common DEGs for all subtypes. There are
only 10 overexpressed shared genes, while, for the underexpressed subset, 79 genes appear.

and shaping the immune microenvironment in melanoma (34).
Autoimmune suppression and the inhibition of CD8+ cells
are also pro-tumor-associated mechanisms regulated by IL4I1
(35, 36). Such processes are ultimately linked to the metabolic
activity of IL4I1 as a phenylalanine oxidase. Crosstalk events
involving cross-regulation via IL4I1 and non-coding RNAs have
also been reported to play a role in triple-negative breast
cancer (37).

As can be observed from Figure 3B, common underexpressed
genes participate collectively in specific metabolic processes, such
as purine metabolism. This pathway provides the metabolites
needed for survival and cell proliferation and DNA and RNA
production (38). ATP and GTP are also products of this
metabolic pathway.

Among the underexpressed genes, we may find ADCY genes
(ADCY4 and ADCYS5), which regulate the nucleotide proportion
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(39), AK5, which catalyzes degradation reactions of ATP (40), 3.2. Metabolic Deregulation Patterns Are

or PDE and NPR, which control the proportion of second Characteristic of Each Breast Cancer
messengers, strongly implicated in signal transduction (41). Subtype

The majority of these genes are involved in the ;0 it has been shown that common deregulated genes
formation/degradation of ATP. Since cell proliferation is a  j;duce regulation patterns in some metabolic processes,
hallmark of cancer, we argue that underexpression of these genes  (he remaining question is whether variations in the whole
may enable the tumors to avoid ATP/GTP degradation, thus  gene-expression signature correspond to changes in specific
providing energetic fuel to cell proliferation. metabolic deregulation.
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FIGURE 4 | Metabolic deregulation in breast cancer subtypes. This heatmap shows the PDS for each sample (columns) in every metabolism-related pathway (rows).
Blue color corresponds to lower PDS (close to 0), yellow color represents intermediate values, and red squares represent the samples with the highest scores.
Dendrograms correspond to unsupervised hierarchical clustering for samples and pathways. The colored bar at the top of the heatmap represents the molecular
subtype to which each sample belongs. Color code for molecular subtype is at the top right of the figure. Notice that the hierarchical clustering matches almost
perfectly with the molecular subtypes (the color bars are practically separate from each other).

OOSSDWmsInu metabolisim

Figure 4 shows a heatmap of the PDS values (see methods)
grouped by PDS similarity. Rows correspond to all pathways
associated with metabolism, while columns correspond to
samples. There are subsets of samples that present a similar
metabolic deregulation among subgroups and differ from the
other samples.

Interestingly, unsupervised hierarchical clustering of PDS
coincides almost absolutely with the PAMS50 classification. The
colored bars in the upper part of the figure correspond to each
subtype, and, as can be appreciated, each color of the bar is
grouped together. This phenomenon reflects the high specificity
of metabolic deregulation for each molecular subtype.

Figure 5 shows that only one KEGG pathway: 01100
Metabolic Pathways” contains the full set of 1,142 genes present
in every metabolism-associated KEGG pathway. Hence, the PDS
in this particular process summarizes (to a certain degree)
information about the rest of the metabolic-related pathways.
The PDS for each subtype again presents a subtype-specific
behavior, but more widespread than in Figure 4.

The PDS values are different between all subtypes, but more
importantly, it is clear to observe that Luminal B is the subtype
with the highest PDS. This result was unexpected, since it is
usually considered that the most aggressive and with worst
prognosis is the Basal subtype (42). In this case, the order of
deregulation is as follows: Luminal A, Basal, HER2+, and, finally,
Luminal B (Figure 5). From the PDS distributions, it can be
noticed that the Luminal B subtype has the highest values but also
the largest variance between samples. The rest of the subtypes are
highly concentrated in a narrow range of PDS.

Previous reports have also analyzed the relationship between
transcriptional deregulation and metabolic changes in cancer
(15, 16). From these studies, some commonalities and differences
arise. The work of Rosario uses differentially expressed genes
for several phenotypes, breast cancer subtypes included. There,
a score is based on LogFoldChange and adjusted p-values,
measures that have not been derived with pathway-level
assessment in mind, in contrast with the PDS, which is a specific
pathway-level measure.
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Regarding commonalities, metabolic pathways are found to
be differentially regulated in all subtypes in both manuscripts,
in spite of the different approaches to pathway scoring. Purine
and retinol metabolism are also found to be highly deregulated in
both studies, particularly in the Luminal B and Basal subtypes.
Interestingly enough, the Luminal B and Basal subtypes are
the most deregulated phenotypes in both studies. This is
reflected in Figure 6d from Rosario’s paper and in Figure 4 in
our manuscript.

Another point in common between both studies is the
coincidence of the Citric acid cycle as a unique pathway observed
in the Basal subtype, with the TCA cycle found in our Basal
samples (Figure 4). Interestingly, the categories reported in
Figures 6d-f of Rosario’s paper correspond to those of the
Reactome database and not the ones described in the KEGG
database. This is relevant since the categories are similar but not
identical. This may be an additional source of some apparent
discrepancies between Rosario’s results and ours.

Regarding differences, Rosario et al. found different pathway
scores for the Basal and Luminal A subtypes. However, as can

be seen from Figure 6C of Rosario’s paper, the low specificity of
the average gene-expression Z-scores results in a non-conclusive
depiction, as it is hard to distinguish signal from background
noise. This is also reflected in the density plot of the Figure 6C
heatmap. Additionally, the hierarchical clustering on top of
the heatmap reflects a large degree of heterogeneity, resulting
from the broad variance of the average gene-expression profiles.
However, a clear phenotypic fingerprint of basal tumors is
actually captured in terms of average gene-expression profiles,
likely due to a reduced heterogeneity in these tumors.

3.3. Luminal B Tumors Present Higher

Pathway Deregulation Scores
Figure 6 represents the PDSs for the Luminal B subtype only.
It can be observed that several metabolic processes are highly
deregulated (reddish rows), such as is the case of pyruvate
metabolism, tyrosine metabolism, fatty acid degradation, and the
pentose phosphate pathway.

In some cases, only a small subgroup of samples presents high
PDSs (scattered red pixels), which in turn reflects the intrinsic
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heterogeneity of samples, even if they belong to the same subtype.
In the following, we will make some remarks regarding the most
deregulated metabolic pathways observed in Luminal B tumors.
Pyruvate-related metabolic reprogramming has been
associated with metastatic potential and treatment resistance in
cancer (43). Pyruvate is a central metabolite for glucose, lactate,
lipids, and amino acids. In breast cancer, liver-metastatic breast
cancer cells exhibit a unique metabolic program compared
to bone- or lung-metastatic cells, converting glucose-derived
pyruvate into lactate, with a concomitant reduction in glutamine.
This metabolic reprogramming results in a higher metastatic
potential (44). Deregulation of fatty acid metabolism is crucial
for malignant transformation in breast cancer. Proteins involved
in the synthesis and oxidation of fatty acids play a pivotal role
in the proliferation, migration, and invasion of breast cancer
cells. Additionally, it has been shown that molecular subtypes
display specific fatty acid metabolism (45). Deregulation of
fatty acid metabolism has been associated with non-luminal
tumors. Luminal subtypes rely on a balance between de novo
fatty acid synthesis and oxidation as sources for biomass
and energy. On the other hand, triple-negative basal breast
cancer often uses exogenous fatty acids. In terms of targeted,

personalized therapy, it is desirable to take such differences
into account. In the case of the pentose phosphate pathway
(PPP), it has been shown that PPP-associated proteins, such as
6PGL, 6PGDH, or NRF2, are not differentially expressed among
breast cancer subtypes but are overexpressed relative to control
samples (46). Glucose 6-phosphate dehydrogenase G6PD has
been closely associated with prognosis in Basal tumors (47).
It has been demonstrated that G6PD silencing increases the
glycolytic flux, reduces lipid synthesis, and increases glutamine
uptake in breast cancer cells. This effect has also been strongly
related to poor prognosis (48). Her2-positive Luminal B tumors
present overexpression of G6PDH (49). However, even if the
presence of PPP-related proteins in Luminal B breast cancer
has been established, a global analysis of this pathway is
still lacking.

As we have said, the Luminal B subtype is the one with the
highest metabolic deregulation. It is known that, in the long-
term, the Luminal B subtype presents higher drug resistance,
metastasis, and relapses (50, 51). This could be, in part, due
to the individual heterogeneity at the gene-expression level.
The metabolic deregulation in this subtype could also underlie
drug resistance.
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TABLE 1 | Overexpressed genes with FDA-approved inhibitors to regulate purine
metabolism.

Search Drug Interaction
term type
RRM2 FLUDARABINE PHOSPHATE Inhibitor
RRM2 GALLIUM NITRATE Inhibitor
RRM2 CLADRIBINE Inhibitor
RRM2 CLOFARABINE Inhibitor
RRM2 FLUDARABINE Inhibitor
RRM2 GEMCITABINE Inhibitor
RRM2 HYDROXYUREA Inhibitor
RRM2 MOTEXAFIN GADOLINIUM Inhibitor
RRM2 TEZACITABINE Inhibitor
RRM2 GEMCITABINE HYDROCHLORIDE Inhibitor
EZH2 CHEMBL3287735 Inhibitor

TABLE 2 | Underexpressed genes with FDA-approved activators to regulate
purine metabolism.

Search Drug Interaction
term type
ACACB METFORMIN Activator
NPR1 ATACIGUAT Activator
PDE1C BEPRIDIL Activator
PDE2A CHEMBL395336 Activator

To our knowledge, a profound study regarding metabolism in
the Luminal B subtype is still necessary. However, we suggest that
the long-term malignancy and poor prognosis of the Luminal B
subtype are due, in part, to global metabolic deregulation more
than to any single-molecule alteration. Further analyses in this
regard are required to assess the metabolic deregulation patterns
observed here with higher accuracy.

3.4. Purine Metabolism as a Potential
Target in All Breast Cancer Subtypes

For the more than 2,611 drugs annotated in the DrugBank
database and the 660 drugs annotated in PharmGKB, all subtype-
specific differentially expressed genes were matched. The top
20 identified potential pharmacological targets obtained by the
pipeline performed in Mejia-Pedroza et al. (31) are reported in
Table 1. It contains those drugs that inhibit overexpressed genes.
Table 2 lists those drugs that activate underexpressed ones.

As can be observed in Table 1, RRM2, which participates
in purine, pyrimidine, and glutathione metabolism, is the most
targeted gene. EZH2, involved in lysine degradation, is another
target that may be inhibited.

It is worth noticing that this computational tool provides
all FDA-approved drugs that target a list of molecules,
together with the effect that is produced in the target.
Supplementary Tables 1,2 contain comprehensive lists of
drugs and their targets for commonly overexpressed and
underexpressed breast cancer genes.

In the case of underexpressed genes, three of the four
targets of activator drugs participate in purine metabolism:

NPR1, PDEIC, and PDE2A. This result appears to be relevant
in terms of the potential therapeutic options that breast
cancer patients may have. There is a common deregulated
metabolic pathway (purine metabolism) that can be targeted by
specific drugs that have activator and inhibitory actions over
underexpressed/overexpressed genes, respectively.

3.5. Deregulation of Metabolism Is

Consistent in a Different Cohort

We performed a comparison with data from METABRIC
(20), another large breast cancer cohort study. Our validation
analysis shows a separation between groups as in the discovery
group. A heatmap of the validation cohort is presented in
Supplementary Figure 1, and the distribution of PDS in the
METABRIC dataset is presented in Supplementary Figure 2.
Some of our findings replicate those of METABRIC,
although there were also differences, some of which may
be attributable to METABRIC being a microarray-based
experimental approach, whereas TCGA included data from
RNA-sequencing experiments.

4. CONCLUSIONS

Heterogeneity is a crucial factor that impedes the understanding,
diagnosis, and treatment of breast cancer tumors. Manifestations
of this heterogeneity can be observed at the genomic, histological,
or clinical level. In this work, we have provided another instance
of this heterogeneity: metabolic deregulation.

Each breast cancer subtype has its own pattern of deregulation
in metabolism, with Luminal B having the highest deregulation
scores. This subtype presents alterations to metabolic processes
such as pyruvate metabolism, tyrosine metabolism, fatty acid
degradation, and the pentose phosphate pathway.

To our knowledge, this is the first time that a single-
sample-based pathway analysis in breast cancer subtypes has
been performed to identify differences in metabolic regulation.
At the same time, this work has allowed us to design a
common therapeutic FDA-approved scheme to regulate purine
metabolism, independently of the subtype. With this kind of
approach, it is possible to determine global deregulation patterns
while, at the same time, finding individual signatures that may
represent a further step toward personalized medicine.
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