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Rodentmodels of malignantmesothelioma help facilitate the understanding of the biology

of this highly lethal cancer and to develop and test new interventions. Introducing the

same genetic lesions as found in human mesothelioma in mice results in tumors that

show close resemblancewith the human disease counterpart. This includes the extensive

inflammatory responses that characterize human malignant mesothelioma. The relatively

fast development of mesothelioma in mice when the appropriate combination of lesions

is introduced, with or without exposure to asbestos, make the autochthonous models

particularly useful for testing new treatment strategies in an immunocompetent setting,

whereas Patient-Derived Xenograft models are particularly useful to assess effects of

inter- and intra-tumor heterogeneity and human-specific features of mesothelioma. It is

to be expected that new insights obtained by studying these experimental systems will

lead to new more effective treatments for this devastating disease.
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INTRODUCTION

Malignant mesothelioma (MM) is a treatment-resistant malignancy causally linked to asbestos
exposure. Despite recent advances in therapeutic modalities, MM patients usually die within 1 year
following diagnosis. MM is particularly lethal in patients with pleural disease, particularly those
whose tumors have sarcomatoid features (1). Consequently, in vivo models of MM are needed to
investigateMMdisease pathogenesis and to provide accurate preclinical models for identifying new
therapies that might move forward in clinical trials.

We here summarize where we stand with regard to existing models of MM and how they might
be further improved. All the desirable features will be unlikely found in a single model, but the
disease evolving in the model should mimic at least several of the salient features of human MM,
such as its pathology, its gene expression patterns, the genetic driver lesions, and the inflammatory
phenotype that is characteristic for MM. In view of the inflammatory phenotype of MM and the
prominent role the immune system fulfills in either promoting or impairing tumor development,
models exhibiting this specific feature should also be part of the armamentarium. Preferentially,
the model should also exhibit a reproducible and short latency period as to permit intervention
studies. The models—mostly encompassing small rodents—range from graft models in which
human MM cell lines or patient-derived tumor fragments are implanted to complex conditional
tumor suppressor gene knockout/oncogene mouse models.
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SOMATIC GENETIC AND SIGNALING

ALTERATIONS IN HUMAN

MESOTHELIOMA

There is abundant evidence that inactivating somatic mutations
and deletions of the tumor suppressor genes (TSGs) BAP1,
CDKN2A, and NF2 represent the most frequent genetic lesions
in human malignant pleural mesothelioma (MPM) (2–13).
Moreover, losses of these three TSGs are frequently seen in
various combinations in a given MPM (7, 14). The notion that
loss of these particular TSGs is so predominant implies thatMPM
development critically depends on the cellular signaling pathways
that are guarded by these genes.

CDKN2A encodes p16INK4A and p14ARF, two tumor
suppressors that, respectively, regulate the Rb and p53 cell
cycle pathways. p14ARF is a component of the p53 pathway,
and TP53 alterations have also been observed in some MPMs
(6, 15). In fact, a recent report that compared next-generation
sequencing of two series of MPMs—one from The Cancer
Genome Atlas (TCGA) (13) and the second from a Harvard
series (12)—revealed only four “significantly mutated genes at a
false discovery rate of <0.05” common to the two studies: BAP1,
NF2, TP53, and SETD2, each of which showed prominent levels
of inactivating nonsense, frameshift, and splice-site mutations,
consistent with their putative roles as driver loss-of-function
lesions in this malignancy (13). In the TCGA data set, focal
deletions were found to affect several TSGs, especially CDKN2A,
with deep, apparently homozygous deletions occurring in 36/73
(49%) tumors and single-copy losses in 5 others (7%) (13). In
the Harvard series, Bueno et al. found copy number losses of
CDKN2A in 48/95 (51%) MPMs (12). In a deletion mapping
analysis, homozygous CDKN2A deletions were identified in 36
of 40 (90%) human MPM cell lines tested, while homozygous
deletions of the adjacent locus CDKN2B occurred in most—
i.e., 32/36—of these same cell lines (6). Experiments in mice
have shown that the Cdkn2b also exhibits a tumor suppressor
role in MPM, as its deletion concomitant with Cdkn2a further
accelerates MPM development (our unpublished results) offering
a rationale for the predominant deletion of all three tumor
suppressors in this locus in MPM.

Unlike these specific TSGs, mutations of protooncogenes
are seldom identified in MPM. Moreover, in the TCGA
cohort, no activating mutations were observed in genes
encoding components of the MAPK or PI3K/AKT pathways
(13). However, both PI3K/AKT/mTOR and RAS/MAPK
pathways were upregulated in this series, and they were each
associated with a poor-prognosis. Moreover, despite a rarity
of mutations of PTEN in MPM, earlier immunohistochemical
(IHC) studies revealed diminished PTEN protein expression
in 16 to 62% of MMs in several studies (16–18). Additionally,
various receptor tyrosine kinases (RTKs) were shown to be
frequently overexpressed and/or activated in MPM, resulting in
activation of proliferation and pro-survival signals through the
PI3K/AKT/mTOR signaling pathway (7, 19–21). Thus, it is not
surprising that phospho-AKT immunostaining is observed in a
high percentage (65–84%) of human MPMs (6, 16, 22, 23).

In view of the prominence of TSG inactivation and the
relatively rare oncogenic gain-of-function mutations in MM,
high-throughput chemical inhibitor screens and gene expression
analyses have been performed in MM cell lines to identify
unique vulnerabilities. Chemical screens pointed to increased
sensitivity to FGFR inhibitors in a subset of the MPM cell lines.
This corresponded with higher FGFR3 expression specifically
in cell lines not expressing BAP1 (24). BAP1-deficient MM
also showed augmented sensitivity to TRAIL (25). Furthermore,
loss of BAP1 function was found associated with increased
expression of EZH2, with concomitant widespread epigenetic
gene silencing sensitizing the cells to EZH2 inhibitors (26),
whereas the impaired argininosuccinate synthase 1 (ASS1)
expression likely as a result of enhanced EZH2 levels sensitized
cells to arginine deprivation (27, 28). In addition, BAP1-depleted
cells showed increased sensitivity to PARP inhibition (29).
Another vulnerability relates to the co-deletion of CDKN2A
and the nearby methylthioadenosine phosphorylase (MTAP)
gene (30), the latter rendering cells dependent on protein
arginine methyltransferase (PRMT5) (31, 32). NF2 depletion
leads to dysregulation of the Hippo pathway by activating the
transcriptional co-activator YAP1 and its association with the
TEAD family of transcription factors, resulting in up-regulation
of genes that promote cell proliferation and inhibit cell death.
Inhibitors that disrupt the YAP/TAZ-TEAD complex are not
yet available but could serve as promising drugs in view of the
strong dependence of MM on activation of the Hippo pathway
(33). MM also shows overexpression of RTKs such as MET and
downstream PI3K, making inhibitors targeting components of
this pathway other promising therapies for this disease (21).
Therefore, there are a number of potential vulnerabilities that are
worth exploring both as single agents and as combinations in the
various preclinical models of MM.

RODENTS AS MODELS OF ASBESTOS

CARCINOGENICITY AND MESOTHELIOMA

PATHOGENESIS

Numerous investigators have induced MM in rats and mice via
injection or inhalation of asbestos fibers (34) or in hamsters
through exposure to SV40 (35). Notably, several studies have
shown that the MMs induced in rats via asbestos inhalation
do not exhibit cytogenetic or gene expression patterns similar
to those seen in their human tumor counterparts nor do they
show inactivation of genes implicated as drivers in human MM
(36–39). Studies in the laboratory rat, beginning in the 1960’s,
documented that various forms of asbestos and other mineral
fibers inoculated intrapleurally/intrathoracically (IT) developed
MPM (40). Erionite, the zeolite mineral fiber that is linked to the
MM epidemic in near Cappadocia, Turkey (41, 42) was shown to
be more carcinogenic than asbestos in IT injection or inhalation
studies (43).

While the rat was favored over the mouse as a model
for mineral fiber studies due to its larger pleural space for
inoculation and “. . . its more suitable nasal passage architecture
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for inhalation studies, some of the early investigations did
use mice for IT inoculation of amphiboles and serpentine
mineral fibers,” however, fibrosis and granulomas were mainly
observed (44), with occasional papillary carcinomas seen in
inhalation experiments (45). Subsequent carcinogenicity studies
using intraperitoneally (i.p.)-inoculated asbestos or zeolite fibers
resulted in MMs in more than 20% of wild type mice (46). Over
the last two decades, various laboratories have reported variable
MM incidences and survival rates in wild type mice that have
been injected i.p. with asbestos fibers (6, 38, 47–56), due at least
in part to the use of differing types, dimensions and amounts of
fibers used, whether the injections were given chronically or as a
bolus injection, the length of time the animals were followed, and
variations in the genetic background of the mice.

Genetically engineered mouse (GEM) models, typically
harboring heterozygous whole-body germline mutations, have
been used to assess whether loss of TSGs implicated in
human MPM accelerate tumor formation. Different groups
have performed such experiments with GEM models carrying
mutations of MM-related genes. An early investigation used
Tp53- deficient mice (38, 47), with mice injected i.p. with
crocidolite weekly for 22 weeks. Tp53+/− mice developed a high
incidence (76%) of MMs (median latency, 44 weeks) vs. a32%
of wild type mice (median latency, 67 weeks). Only 1/8 (12.5%)
Tp53−/− mice had aMM, with others succumbing quickly due to
thymic lymphomas or hemangiosarcomas, previously reported to
arise spontaneously in Tp53−/− mice (57).

Two research groups tested whether heterozygous Nf2 mice
have increased susceptibility to the carcinogenic effects of
asbestos (6, 48). Both groups independently demonstrated that
Nf2+/− mice injected i.p. with asbestos develop a high incidence
and rapid onset of MMs compared wild type littermates. Notably,
the normal Nf2 allele was deleted in most MMs from the Nf2+/−

mice, consistent with biallelic inactivation, which similarly occurs
in many human MPMs (6). Moreover, most MM cell lines
from the Nf2-deficient mice showed homologous deletions of
Cdkn2a/Cdkn2b and activation of Akt, recapitulating events that
often occur in human MPM. Collectively, these findings are
consistent with Nf2 being a TSG that, when inactivated, acts as
a primary driver in the formation of MM.

As noted previously, CDKN2A encodes p16INK4A and
p14ARF (19Arf in the mouse). To test the relative contributions
of these genes to MM formation, one study used mice with
heterozygous deletions of Cdkn2a exon 1α (resulting in loss of
p16Ink4a) or exon 1β (p19Arf), or with a deletion of exon 2
(deleting both p16Ink4a and p19Arf) (51). Both p16Ink4a+/−

mice and p19Arf+/− mice injected i.p. with asbestos exhibited
higher incidence and more rapid onset of MM than wild type
control mice. Mice heterozygous for Cdkn2a exon 2 showed a
more accelerated rate of asbestos-inducedMMs vs. mice deficient
for either p16Ink4a or p19Arf separately. Together, these data
indicate that each of the Cdkn2a gene products suppresses
asbestos-induced MM, and that the combined inactivation of
both gene products results in further cooperation to accelerate
asbestos-induced MM development and progression.

Early Sanger sequencing studies had revealed point
mutations in BAP1 in 20–25% of sporadic human MMs

(7, 8), but subsequent studies of sporadic MMs using various
combinations of assays, such as quantitative real-time PCR,
targeted comparative genomic hybridization, next generation
sequencing, and/or multiplex ligation-dependent probe
amplification platforms demonstrated BAP1 alterations in up to
60–65% of MMs (9–11). Most of the alterations not detected by
Sanger sequencing were large deletions.

In addition to somatic changes, it is now well-established that
BAP1 mutation carriers are predisposed to MM and a variety
of other tumors (8, 58). The use of Bap1 knockout models
has shown that heterozygosity in the germline predisposes
to asbestos-induced MM (53, 59), and similar results were
obtained with two knock-in models (54) that harbored different
germline mutations that were identical to the ones found in two
BAP1 tumor predisposition syndrome (BAP1-TPDS) families
that exhibited a very high incidence of MM (8). MM cells
from Bap1+/− mice showed biallelic inactivation of Bap1 (53).
Collectively, these data indicate that human BAP1 mutation
carriers have are more prone to the carcinogenic effects of
asbestos, even when exposed to small amounts of these fibers
(59), when compared to the general population.

Other work has recently demonstrated cooperation between
Nf2 and Cdkn2a in MM development in asbestos-exposed
Nf2+/−;Cdkn2a+/− mice, which exhibited significantly hastened
tumor onset and disease progression vs. similarly exposed
Nf2+/− and wild-type cohorts (56). These studies also showed
that tumors from Nf2+/−;Cdkn2a+/− mice had enhanced
metastatic potential and an increased cancer stem cell population,
in connection with p53/miR-34a-dependent activation of c-Met.

Since chronic inflammation may contribute to the formation
of many types of malignancy, including MM, some investigators
have employed mouse models for studies of asbestos-mediated
inflammation. In one such study, Nf2+/−;Cdkn2a+/− mice were
used to test if inflammation-related IL-1β release promotes MM
formation (55). Exposure ofNf2+/−;Cdkn2a+/− mice to asbestos
in the presence of an IL-1 receptor (IL-1R) antagonist known
as anakinra resulted in a significant delay MM development
compared to that of asbestos-exposed mice given a vehicle
control, i.e., 33 vs. ∼22.5 weeks, respectively (55). Overall, this
work suggested that inflammation-related IL-1β/IL-1R signaling
is linked to the formation of asbestos-induced MM. Moreover,
the data demonstrate the usefulness of this model for gene-
environment and/or “chemoprevention” studies.

Another mouse model, MexTAg, has been used to
demonstrate co-carcinogenicity between asbestos and SV40. The
investigators used the mesothelin gene promoter to express SV40
large T antigen specifically in the mesothelial lining (49, 60).
Several MexTAg mouse lines were created with varying copies
(1–100) of the oncogenic transgene. The animals generally do
not develop spontaneous MM. However, after i.p. injection
of asbestos, 100% of the MexTAg mice developed MM, with
disease onset occurring after 20–40 weeks vs. after 50–100
weeks in the ∼25% of wild type mice that developed MM. The
investigators concluded that MexTAg mice are well-suited not
only basic research, but also for testing the potential of dietary
or pharmacological chemoprevention studies of MM (49). To
illustrate the utility of MexTAg mice for preclinical studies,
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Robinson et al. tested the effects of gemcitabine, a cytotoxic
drug that has been shown to have some efficacy in the human
disease (60). MexTAg mice treated with vehicle had a median
survival of 33 vs. 48 weeks in the gemcitabine-treated cohort.
In another investigation with MexTAg mice, treatment with
celecoxib, a COX-2 inhibitor, did not diminish the rate of
asbestos-induced MM, despite the fact that COX-2 is frequently
overexpressed in human MM and correlates with poor prognosis
(60). While the MexTAg model has several advantages (100%
MM penetrance, short median survival), it does not have any
of the genetic hallmarks attributed to the human disease, and
a causative association between SV40 and human MM is now
disproven (61, 62). However, in one study, gene expression
profiling of MMs from MexTAg mice “. . . had a concordant set
of deregulated genes compared to normal mesothelial cells that
overlapped with the deregulated genes between human MMs
and mesothelial cells” (63).

CONDITIONAL MOUSE MODELS OF

MESOTHELIOMA AS PRECLINICAL TOOLS

Since specific genetic driver lesions had been repeatedly found
to be associated with human MM by the year 2008, particularly
alterations of the CDKN2A, NF2, and TP53, Jongsma et al.
decided to establish whether various genetic alterations affecting
the same signaling pathways that are dysregulated in the human
disease counterpart might similarly induce MM in rodents in
the absence of carcinogenic exposure to asbestos (64). Thus,
they generated a variety of mutant mice carrying deletions
in the Nf2/merlin, p53, and/or Ink4a pathways, hypothesizing
that mice with one or more of these combinations might
represent an appropriate model of humanMM. To avoid possible
issues such as embryonic lethality due to germline homozygous
deletion of one or more targeted genes, mice with conditional
knockout (CKO) of various TSGs were used in combination
with the Cre-LoxP system (65). Locotemporal inactivation of
the TSG(s) was carried out by injecting adenoviruses expressing
the Cre recombinase (65). Upon injecting adeno-Cre into the
pleural space of Rosa26 LacZ reporter mice, the investigators
demonstrated expression of β-galactosidase specifically in the
mesothelium (64). Moreover, MPMs arose in both Nf2;Tp53
and Nf2;p16Ink4a/p19Arf CKO mice at a high frequency and
short latency (20 and 30 weeks, respectively) following IT
inoculation of adeno-Cre, and the tumors closely mimicked the
phenotype of human MPM. Thus, these mice hold promise
as a rapid, non-carcinogenic model system for preclinical
selection of new combination therapies and for testing novel
targeted agents.

BAP1-TPDS patients with MM have a significantly better
long-term survival compared to sporadic MM patients, i.e.,
those without a heritable variant (11, 66). However, it remained
unclear whether somatic mutations/deletions of BAP1 have a
similarly favorable prognosis in sporadic MM, or if somatic
BAP1 alterations are a poor prognostic marker, as is the case
for uveal melanoma and clear cell renal cell carcinoma (67,
68). Furthermore, although most human MMs exhibit somatic

alterations of BAP1, NF2, and/or CDKN2A—with 25/74 cases
of MPM in the TCGA series having alterations of all three
TSGs in combination (13)—it was not known if loss of BAP1
could cooperate with the inactivation of NF2 and/or CDKN2A to
initiate a more aggressive form ofMM. To address this possibility
experimentally, Kukuyan et al. used CKO models, including a
Bap1f /f mouse they generated (69). Various combinations of
deletions ofBap1,Cdkn2a, andNf2were introduced in the pleural
cavity of the mice, focusing on the contribution of Bap1 loss.
While homozygous CKO of any one of these TSGs alone gave
rise to few or no MMs—similar to the results of Jongsma et al.
(64)—deletion of Bap1 cooperated with deletion of either Nf2
or Cdkn2a to promote MM formation in about 20% of double-
CKO mice. In contrast, a much higher incidence (22/26, 85%)
of MMs was observed in Bap1f /f ;Nf2f /f ;Cdkn2af /f mice injected
IT with adeno-Cre (triple-CKO mice). Onset of MM was rapid
in the triple-CKO mice (median survival, 12 weeks), and tumors
from these mice were consistently high-grade and invasive.
With regard to histological subtype, notably no epithelioid MMs
were observed with any of the mouse genotypes. Sarcomatoid
MMs predominated, with the only exception being the Bap1;Nf2
double-CKO cohort, in which 6 of 7 MMs showed mixed
(biphasic) histology. The MMs observed in triple-CKO mice
showed enrichment for genes that are transcriptionally controlled
by the polycomb repressive complex 2 (PRC2) (69). The findings
suggested that loss of Bap1 contributes to MM progression, at
least partially, via loss of PRC2-mediated repression of oncogenic
target genes that were identified, suggesting a novel avenue for
therapeutic intervention (69).

To explore the role of individual components of the Cdkn2a
locus by comparing models in which Cdkn2a (including p19Arf )
were disrupted with or without concomitant loss of Cdkn2b
Badhai et al. showed that the additional disruption of Cdkn2b
further added to the aggressiveness of the resulting MMs,
providing also an explanation for the predominance of deletion
of the complete CDKN2A-CDKN2B locus in human MM over
point mutations in CDKN2A (Badhai et al., submitted).

Because CDKN2A deletions encompassing the sequence
encoding p14ARF, a component of the p53 pathway, have been
documented in 90% of human MM cell lines (6) and TP53
is altered in about 15% of primary MMs, and because the
PI3K/PTEN/AKT pathway is activated in most human MPMs,
Sementino et al. decided to determine if alterations affecting
the same pathways would also induce MM in mice (70). This
was thought worthwhile, given that p53 helps mediate the DNA
damage response and that AKT regulates neoplastic cell survival
and therapeutic resistance. The investigators demonstrated that
while neither adeno-Cre-mediated homozygous deletion of Tp53
or Pten alone in the mesothelium was sufficient to induce MM
formation, compound deletion of these two TSGs resulted in
rapid, aggressive peritoneal and pleural MMs (median latency: 9
and 19 weeks, respectively). A longer term follow-up study of the
Tp53f /f cohort revealed MMs in 0/12 mice injected with adeno-
Cre i.p. and 0/10 mice injected IT; among the Ptenf /f cohort,
MMs were observed in 0/12 mice injected i.p. and 1/10 injected
IT (Sementino et al., unpublished data). In the Ptenf /f ;Tp53f /f

cohort, 23/25 (92%) mice injected i.p. developed MM, whereas
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19/34 (56%) mice injected IT showed MM, with 14 histiocytic
sarcomas also seen in this group.

Given the high penetrance and rapid development of MMs
in Ptenf /f ;Tp53f /f mice inoculated i.p., and the frequent
involvement of p14ARF/p53 and PI3K/PTEN/AKT pathways
in human MM, this GEM model holds promise for preclinical
work. However, this model does have certain limitations, such
as for testing agents designed to reactivate the normal cellular
functions of Pten and Tp53. For instance, given that this model
has homozygous loss of Tp53, this precludes studies of a drug
such as RITA, which reactivates p53’s pro-apoptotic function
in tumor cells that preserve expression of mutant or wild-type
p53 (71). To elude this issue using an agent such as RITA, this
mouse model might be modified such that only a single Tp53
allele were deleted, i.e., by using Ptenf /f ;Tp53+/f mice. A second
shortcoming with regard to the translational relevance of the
Ptenf /f ;Tp53f /f model is that somatic mutations of other TSGs
considered to be hallmarks in human MM progression usually
do not occur in tumors from these animals. However, the fact that
the MMs in this model repeatedly show sarcomatoid or biphasic
histology with very short latency, especially in mice injected i.p.,
provides advantages for certain preclinical applications.

GRAFT MODELS OF MESOTHELIOMA

Many human MM cell lines have been established over the years
and used in numerous in vitro studies. They are also exploited
for in vivo experiments, usually for testing their tumorigenicity
and the efficacy of small molecule inhibitors as a prelude for
evaluating these compounds in clinical trials. Due to often long-
term in vitro propagation, these cell lines have invariably acquired
(epi)genetic alterations that facilitate their propagation in cell
culture, resulting in new vulnerabilities and resistance features.
This is one of the reasons why treatments that are effective
in these graft models often do not well-translate to human.
Furthermore, the requirement to use immunodeficient mice
as a host for these graft experiments complicates assessment
of immunomodulating effects. Patient-derived xenograft (PDX)
models, in which tumor fragments are grafted directly into
immunodeficient recipient hosts, more closely resemble the
human condition and usually retain their human stromal
components for a number of passages. The capacity to establish
PDX lines also correlates with the aggressiveness of the tumor
in man (72). Studies in PDX models permit addressing specific
questions that are difficult to assess in solely mouse based models
such as inter- and intra-tumor heterogeneity as well as features
imposed by the distinct genetic backgrounds (73). As potential
drawbacks, we note that propagation has to be performed in
immunodeficient backgrounds and retrofitting thesemodels with
a functional human immune system from the patient from which
the tumor was obtained (humanized models) is still in an early
stage of development (74) and also practically very demanding.

Experienced investigators seeking a mouse model that may
faithfully reflect human MPM pathobiology may also find an

orthotopic, intrapleural model such as the one described
by Servais et al. (75) useful for preclinical therapeutic
studies. This tumor model recapitulates human pleural
anatomy/microenvironment and can be used in combination
with quantitative, non-invasive imaging for bioluminescent
monitoring of tumor burden. The parietal pleural surface
contains lymphatics that offer escape of MM cells into the
systemic circulation, and this immunocompetent orthotopic
model of pleural cancer permit studies of inflammation on tumor
progression as well (75). However, as noted by the authors, for
studies of therapies targeting human antigens, immunodeficient
models are required in order to perform studies on xenografted
human cancer cell lines.

ARE WE MISSING ANYTHING?

First of all, it is worth emphasizing that the choice of the model
depends on the question asked. Furthermore, a mouse is not a
“small human” and we need to accept that we cannot simply
extrapolate findings from such a model to the human condition.
However, models can teach us important biological principles
and can provide us with therapeutic concepts worth testing
in clinical settings notwithstanding the evolutionary distance
between man and mouse. Where possible, we should try to align
themodel on the basis of molecular aberrations found in humans,
e.g., by introducing similar driver lesions in the right target cell
and using comparable external carcinogens if applicable, e.g.,
asbestos. Evidently, PDX models might be very valuable to assess
intrinsic tumor heterogeneity and to evaluate their response
to drug combinations. For immunotherapy studies, it will be
important to use a model with a functional immune system. To
permit effective immunotherapy studies in MM mouse models,
it will be important to establish these in a defined genetic
background (e.g., BL6, the “work horse” of immunologists)
in order to permit isogenic graft studies. Fortunately, current
Crispr/Cas9 engineering has made the generation of complex
conditional MMmodels relatively easy. This should facilitate the
testing of new promising intervention strategies for this highly
lethal cancer.
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