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A heterozygous point mutation of p53 gene at codon 280 from AGA to ACA (R280T)

frequently occurs in nasopharyngeal carcinoma (NPC) cell lines, and about 10% NPC

tissues. However, the role of this mutation in the pathogenesis of NPC remains unclear.

In this study, we generated p53 knockout (KO) NPC cell lines from CNE2 cells carrying

heterozygous p53 R280T (p53-R280T) mutation and C666-1 cells carrying wild-type p53

by CRISPR-Cas9 gene editing system, and found that KO of heterozygous p53-R280T

significantly decreased NPC cell proliferation and increased NPC cell apoptosis, whereas

KO of wild-type p53 had opposite effects on NPC cell proliferation and apoptosis.

Moreover, KO of heterozygous p53-R280T inhibited the anchorage-independent growth

and in vivo tumorigenicity of NPC cells. mRNA sequencing of heterozygous p53-R280T

KO and control CNE2 cells revealed that heterozygous p53-R280T mutation activated

PI3K-Akt signaling pathway. Moreover, blocking of PI3K-Akt signaling pathway abolished

heterozygous p53-R280T mutation-promoting NPC cell proliferation and survival. Our

data indicate that p53 with heterozygous R280T mutation functions as an oncogene,

and promotes the oncogenicity of NPC cells by activating PI3K-Akt signaling pathway.
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INTRODUCTION

Nasopharyngeal carcinoma (NPC) arises from the epithelial lining of the nasopharynx (1). It has a
high prevalence in southern China, Southeast Asia, northern Africa and Alaska, with remarkable
ethnic and geographic distribution (2). The annual incidence rate reaches 25 cases per 100,000
people in the endemic regions, which is about 25-fold higher than that in the rest of the world,
posing one of the most serious public health problems in these areas (2). NPC is closely associated
with the Epstein-Barr virus (EBV) infection and genetic susceptibility (3). Familial clustering
of NPC has been observed not only in the southern Chinese population but also in the non-
chinese, low-risk populations (4). It suggests that genetic alterations of tumor suppressor genes
and proto-oncogenes may be important in NPC carcinogenesis.
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P53 is a sequence-specific DNA binding protein, which
consists of two N-terminal transactivation domains, a central
DNA binding domain (DBD), a C-terminus including nuclear
localization signals and an oligomerization domain needed for
transcriptional activity (5). As the “guardian of the genome,” p53
is important to suppress cancer development and progression.
P53 mutations are observed in approximately half of the human
cancers, most of which occur in the region encoding p53’s
DBD and lead to disordered p53 signaling pathway (6–8).
P53 mutations often result in accumulation of the mutant p53
protein, which either loses tumor suppressor function or gains
oncogenic activity. R280 residue located in the DBD of p53
gene plays an important role in DNA recognition and p53-DNA
complex stability (9). In the p53mutation database established by
IARC, p53 mutation at codon 280 (R280T) was found in tumors
originating from 30 types of human tissues such as bladder,
breast, nasopharynx, accessory sinus and mouth larynx, and in
a few tumor cell lines such as NPC, bladder carcinoma, breast
carcinoma, gastric, and esophageal cancer cell lines (10). For
NPC, the prevalence of p53 mutations is about 30% (11–16).
Among them, a heterozygous point mutation of p53 gene at
codon 280 from AGA to ACA (Arg changed to Thr) (R280T)
was identified in the five NPC cell lines (CNE1, CNE2, TW06,
TW01, and HONE1), with a mutation rate of about 10% in NPC
tissues (15, 17–19). However, the functions of this heterozygous
p53-R280T mutation in NPC remain unclear.

In this study, we generated p53 knockout NPC cell lines
from CNE2 carrying heterozygous p53-R280T mutation (17)
and C666-1 carrying wild-type (wt) p53 (15) using the
CRISPR-Cas9 gene editing system. We found that knockout
of heterozygous p53-R280T inhibited while knockout of wt
p53 increased the oncogenicity of NPC cells. To explore the
mechanism of heterozygous p53-R280T-promoting NPC cell
oncogenicity, we compared the mRNA expression profiles in
the heterozygous p53-R280T knockout and control CNE2 cells
by mRNA sequencing, and found PI3K-Akt signaling pathway
involved in the tumor-promotion effect of heterozygous p53-
R280T mutation.

MATERIALS AND METHODS

Knockout of p53 in NPC Cell Lines Using
the CRISPR-Cas9 Gene Editing System
Human NPC cell lines (CNE2, C666-1) were cultured
and maintained in RPMI-1640 medium containing 10%
(v/v) fetal bovine serum (FBS) (Thermo, USA) at 37◦C.
For p53 knockout, the guide RNA (gRNA) sequence was
GCAGTCACAGCACATGACGG, which was designed
using the website software from Massachusetts Institute of
Technology (USA) (https://zlab.bio/guide-design-resources/).
CNE2 and C666-1 cells were transfected with the plasmid
pGK1.1 containing p53 gRNA and control vector pGK1.1,
respectively. Forty eight hours after transfection, cells were
treated with puromycin at a concentration of 3µg/ml for
2 days. Then, a single cell was seeded into 96-well plates
and cultured for 1 month, and knockout of p53 protein was

evaluated by western blot, and DNA sequencing was used
for confirmation. For DNA sequencing, genomic DNA was
extracted from cells, and a 383-bp polymerase chain reaction
(PCR) amplicon flanking the CRSPR-Cas9-targeted sites
(GCAGTCACAGCACATGACGG) was generated using the
primers 5′-TCACTTACCTCTCAGAGAC-3′ (forward) and
5′-ACAGGGCAGGTCTTGGCCGTT-3′ (reverse). The PCR
product was purified and ligated into the pMD18-T vector. The
recombinant plasmids were introduced into competent DH5α
cells. Plasmid DNA was extracted and sequenced across the
insert using one of the PCR primers in the Life Technologies
Corporation (Shanghai, China). The sequence of p53 KO CNE2
(KO-41) cells after knockout by CRISPR-Cas9 gene editing
system was 5′-GGAGGCTACACGACACTGACGAACATC-3′.
The sequence of p53 KO CNE2 (KO-49) cells after
knockout by CRISPR-Cas9 gene editing system was 5′-
GGAGGCAGGGGTCCGGAGACTAAGTACA-3′ and 5′-
GGAGGCACTGACGAAC-3′. The sequence of p53 KO C666-1
(KO-9) cells after knockout by CRISPR-Cas9 gene editing system
was 5′-GGAGTACACGACACTGACGAACATCTACCG-3′. The
sequence of p53 KO C666-1 (KO-29) cells after
knockout by CRISPR-Cas9 gene editing system was
5′-GGAGTACACGACACTGACGAACATCTACCG-3′.

Western Blot
Proteins were exacted from cells using RIPA buffer, and
subjected to SDS-PAGE separation, followed by blotting onto a
PVDF membrane (Millipore, USA). Blots were incubated with
antibodies against p53 (DO-1) (#sc-126, Santa Cruz, USA),
phospho-AKT (Thr308; #4056, CST, USA), or AKT (#4691,
CST, USA) overnight at 4◦C, followed by incubation with HRP-
conjugated secondary antibody for 1 h at room temperature.
The signal was visualized with an enhanced chemiluminescence
detection reagent (Millipore, USA).

Detection of Heterozygous p53-R280T
Mutation in NPC Cell Lines
Sanger sequencing was performed to detect the heterozygous
R280T mutation of p53 gene using genomic DNA extracted from
NPC CNE2, 5-8F, 6-10B, and C666-1 cell lines. Mutation was
confirmed by at least two independent PCR amplifications and
a DNA sequencing reaction on both strands. Oligonucleotide
primers were designed to amplify exon 8 of p53 gene.
The primers used were: 5′-GCTGGGGAGAGGAGCTGGTG-3′

(forward) and 5′-GGTTCATGCCGCCCATGCAG-3′ (reverse).
The products were examined by sequencing in the Sangon
Biotech, Shanghai, China.

5-Ethynyl-2′-Deoxyuridine (EdU) Incorporation Assay
EdU incorporation assay was performed to detect cell
proliferation as described previously by us (20). The assay
was performed three times in triplicate.

Cell Counting Kit-8 (CCK-8) Assay
Cell proliferation was measured using a CCK-8 kit as described
previously by us (20). The assay was performed three times
in triplicate.
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Flow Cytometry Analysis of Cell Cycle and
Apoptosis
Flow cytometry analysis of cell cycle and apoptosis was
performed as described previously by us (21). All assays were
performed three times in triplicate.

Anchorage Dependent and Independent
Colony Formation Assay
Plate colony formation assay and soft agar colony formation
assay were performed to detect the anchorage dependent or
independent growth of cells as described previously by us (22).
All assays were performed three times in triplicate.

Tumor Formation Assay in Nude Mice
Nude male mice that were 4 weeks old were obtained from
the Laboratory Animal Center of Central South University
(Changsha, China) and were maintained under specific
pathogen-free conditions. 5 × 106 cells resuspended in 200 µl
of serum-free medium were subcutaneously injected into the

flanks of mice (n = 3 mice each). The mice were monitored
daily for palpable tumor formation, and tumor volume (in mm3)
was measured by a vernier caliper every 3 days and calculated
by using the modified ellipse formula (volume = length ×

width2/2). At the end of the experiments, the mice were killed by
cervical dislocation, and tumors were excised, and weighted.

mRNA Sequencing
Total RNA was extracted from NPC cells with Trizol reagent
(Invitrogen, USA). Two microgram RNA per sample was used
as input material for the RNA sample preparations. Sequencing
libraries were generated using NEBNext R© UltraTM RNA Library
Prep Kit for Illumina R© (#E7530L, NEB, USA), and index codes
were added to attribute sequences to each sample. Briefly,
mRNA was purified from total RNA using poly-T oligo-attached
magnetic beads. First strand cDNA was synthesized using
random hexamer primer and RNase H. Second strand cDNA
synthesis was subsequently performed using buffer, dNTPs, DNA
polymerase I and RNase H. The library fragments were purified

FIGURE 1 | Detection of heterozygous p53-R280T mutation and generation of p53 knockout NPC cell lines using CRISPR/Cas9 gene editing system. (A) DNA

sequencing showing heterozygous R280T mutation in CNE2, 5–8F, 6–10B but not C666-1 cells. (B) The gene structure of p53 in human genome (top) and single

guide RNA (sgRNA) target sequence in p53 loci (bottom) are shown. PAM: protospacer adjacent motif (black bar). (C) Alignment analysis of the nucleic acid sequences

of p53 gene in the knockout (KO) CNE2 cells. The black characters “-” indicate the deleted bases of p53 gene. The inserted bases are highlighted in red. (D) Alignment

analysis of the nucleic acid sequences of p53 gene in the KO C666-1 cells. The black characters “-” indicate the deleted bases of p53 gene. (E) Western blot analysis

showing p53 expression levels in the p53 KO CNE2 (KO-41, KO49) and p53 KO C666-1 cells (KO-9 and KO-29) and their control cells. KO, p53 knockout.
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FIGURE 2 | The effect of heterozygous p53-R280T and wt p53 knockout on NPC cell proliferation. (A,B) Representative results (left) and statistical analyses (right) of

cell proliferation detected by plate clone formation assay and EdU incorporation assay in the p53 KO CNE2 and C666-1 cells and their control cells. (C) CCK-8 assay

showing cell proliferation in the p53 KO CNE2 and C666-1 cells and their control cells. *P < 0.05; **P < 0.01; ***P < 0.001; ns, no significance. KO, p53 knockout.
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with QiaQuick PCR kits and elution with EB buffer, then terminal
repair, A-tailing and adapter added were implemented. The
aimed products were retrieved and PCR was performed, then
the library was completed. The libraries were sequenced on an
Illumina platform and 150 bp paired-end reads were generated.

Reads count for each gene in each sample was counted by HTSeq
v0.6.0, and FPKM (Fragments Per Kilobase Millon Mapped
Reads) was then calculated to estimate the expression level of
genes in each sample. DESeq (v1.16) was used for differential
gene expression analysis between two samples with biological

FIGURE 3 | The effect of heterozygous p53-R280T and wt p53 knockout on cell cycle and apoptosis of NPC cells. (A) Representative results (left) and statistical

analyses (right) of cell cycle distribution analyzed by flow cytometry in the p53 KO CNE2 and C666-1 cells and their control cells. (B) Representative results (left) and

statistical analyses (right) of cell apoptosis analyzed by flow cytometry in the p53 KO CNE2 and C666-1 cells and their control cells. *P < 0.05; **P < 0.01;

***P < 0.001; ns, no significance. KO, p53 knockout.
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replicates using a model based on the negative binomial
distribution. The DEGs standard is (|log2 Fold change|≥2, and
q < 0.05). The GO enrichment of differentially expressed genes
(DEGs) was implemented by the hypergeometric test, in which p-
value is calculated and adjusted as q-value, and data background
is genes in the whole genome. GO terms with q < 0.05 were
considered to be significantly enriched. The KEGG enrichment of
DEGs was implemented by the hypergeometric test. KEGG terms
with p < 0.05 were considered to be significantly enriched.

qRT-PCR
Total RNA was extracted from NPC cells with Trizol reagent
(Invitrogen, USA). One microgram of total RNA was reversely
transcribed for cDNA using a RT kit according to the

manufacturer’s protocol and Oligo dT primer (Vazyme Biotech,
China) according to the manufacturer’s instruction. The RT
products were amplified by real-time PCR using SYBR qPCR
Master Mix kit (Vazyme Biotech, China) according to the
manufacturer’s instruction. The products were quantitated using
2−DDCt method against GAPDH for normalization. The primer
sequences were synthesized by the Sangon Biotech (Shanghai,
China) and listed in Supplementary Table S1.

Statistical Analysis
All the quantified data represented an average of three times.
Data are represented asmean± SD. One-way analysis of variance
or two-tailed Student’s t-test was used for comparisons between

FIGURE 4 | The effects of heterozygous p53-R280T and wt-p53 knockout on anchorage-independent and xenograft growth of NPC cells. (A) Representative results

(left) and statistical analyses (right) of soft agar colony formation ability in p53 KO CNE2 and C666-1 cells and their control cells. (B) The photography of xenograft

tumors 18 days after subcutaneous implantation of p53 KO CNE2 cells and control cells (left), and growth curve and weight of xenograft tumors generated by p53 KO

CNE2 cells and control cells (middle and right). n = 3 mice per group. ***P < 0.001. KO, p53 knockout.
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FIGURE 5 | Differentially expressed genes in the heterozygous p53-R280T KO CNE2 and control CNE2 cells. (A) mRNA-sequencing showing differentially expressed

genes that change more than 2-fold in the p53 KO CNE2 and control CNE2 cells. Blue dots represent down-regulated genes and yellow dots represent up-regulated

(Continued)
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FIGURE 5 | genes. (B) Hierarchical clustering of differentially expressed genes in the p53 KO CNE2 and control CNE2 cells. (C) qRT-PCR detection of the five

differentially expressed genes identified by mRNA sequencing in the p53 KO CNE2 and control CNE2 cells. (D) Correlation of Log2 fold change derived from mRNA

sequencing with the Log2 fold change obtained from qRT-PCR. (E) Integrated analysis of differentially expressed genes in p53 KO CNE2 vs. control CNE2 cells and

primary NPCs vs. normal nasopharyngeal mucosal tissues. (F) GO enrichment analysis of differentially expressed genes in the p53 KO CNE2 and control CNE2 cells

according to biological process, cellular component and molecular function. (G) KEGG enrichment analysis of the differential expression genes in p53 KO CNE2 and

control CNE2 cells. (H) Top 5 KEGG pathways of enriched differentially expressed genes in the p53 KO CNE2 and control CNE2 cells. (I) qRT-PCR detection of 6

differentially expressed genes mRNA levels (EPHA2, IRS1, CCNE1, PDPK1, TLR4, and FN1) that enriched in PI3K-Akt signaling pathway and downregulated in the

p53 KO CNE2 cells. ***P < 0.001. KO, p53 knockout; Normal, normal nasopharyngeal mucosal tissue.

groups. Differences were considered statistically significant when
P < 0.05.

RESULTS

Heterozygous p53-R280T Mutation Occurs
in NPC Cell Lines
Genomic DNA obtained from CNE2, 5-8F, 6-10B, and C666-
1 cells was amplified and detected for mutations at codon
280 of p53 gene by Sanger sequencing. Alignment analysis of
DNA sequences was performed using the NCBI BLAST. A
heterozygous G changed to C point mutation at codon 280,
position 2 (AGA coding for arginine changed to ACA coding
for threonine) was detected in the CNE2, 5-8F, 6–10B cell lines
(Figure 1A), which indicated that one allele was mutated, the
other allele was retained as normal at codon 280. However, the
amplified DNA sequences of p53 at codon 280 from C666-1 cells
were exactly the same as the humanwild-type (wt) p53 sequences,
compared with the database (Figure 1A). The results confirmed
that heterozygous p53-R280T mutation is present in CNE2, 5-8F
and 6-10B cells, but not in C666-1 cells.

Generation of p53 Knockout NPC Cell
Lines by CRISPR/Cas9 Gene Editing
System
To study the roles of heterozygous p53-R280T mutation in NPC
cells, we established p53 knockout (KO) CNE2 and C666-1
cell lines, in which p53 was knocked out at the chromosomal
level by using CRISPR/Cas9 gene editing system. Single-guide
RNA (sgRNA) was designed to delete exon 5 of the p53 gene
(Figure 1B). Guide RNA (gRNA) vector and control vector were
transfected into CNE2 and C666-1 cells, respectively. Sanger
sequencing was used to identify the cell lines in which both alleles
of p53 were deleted. The results showed that p53 was knocked out
in the CNE2 cells (KO-41 and KO-49) (Figure 1C), and C666-
1 cells (KO-9 and KO-29) (Figure 1D). Western blot analysis
showed that there was no detectable p53 protein in the p53 KO
CNE2 and C666-1 cells (Figure 1E). The results demonstrated
that CNE2 and C666-1 cell lines with p53 KO are established.

Heterozygous p53-R280T Mutation
Promotes NPC Cell Proliferation and
Survival
We evaluated the effect of p53 KO on NPC cell proliferation by
plate colony formation assay, EdU incorporation assay and CCK-
8 assay. The results showed that p53 KO significantly suppressed

cell proliferation in the CNE2 cells with heterozygous p53-R280T
mutation, whereas significantly promoted cell proliferation in
C666-1 cells with wt p53 (Figures 2A–C). Flow cytometric
analysis of cell cycle distribution showed that p53 KO blocked
G1/S phase progression in the CNE2 cells, whereas accelerated
G1/S phase progression in the C666-1 cells (Figure 3A). Next,
we analyzed the effect of p53 KO on the apoptosis of CNE2
and C666-1 cells by using flow cytometry. The results showed
that p53 KO significantly increased cell apoptosis in the CNE2
cells, whereas significantly decreased cell apoptosis in the
C666-1 cells (Figure 3B). Together, the results demonstrated
that heterozygous p53-R280T mutation promotes NPC cell
proliferation and survival.

Heterozygous p53-R280T Mutation
Promotes Anchorage-Independent Growth
and in vivo Tumorigenicity of NPC Cells
Soft agar colony formation assay and subcutaneous tumor
formation experiment in nude mice were performed to
determine the effects of heterozygous p53-R280T mutation on
the anchorage-independent growth and in vivo tumorigenicity
of NPC cells respectively. The results showed that p53 KO
significantly decreased the formation ability of soft agar colony
in the CNE2 cells, whereas significantly increased the formation
ability of soft agar colony in the C666-1 cells (Figure 4A).
Subcutaneous tumor formation experiment showed that p53
KO significantly decreased the in vivo growth of CNE2 cells
in nude mice (Figure 4B). The results demonstrated that
heterozygous p53-R280T mutation promotes the anchorage-
independent growth and in vivo tumorigenicity of NPC cells.

Differentially Expressed Genes in the
Heterozygous p53-R280T KO and Control
CNE2 Cells
To explore the mechanism by which heterozygous p53-R280T
mutation promotes the oncogenicity of NPC cells, we carried
out mRNA sequencing in the p53 KO CNE2 (KO-41) and
control CNE2 cells. As a result, a total of 2,612 differentially
expressed genes (DEGs) (fold change≥2) were identified in the
KO-41 and control CNE2 cells (Figures 5A,B). Of them, 1401
DEGs were upregulated and 1211 DEGs were downregulated
in the KO-41 cells (Supplementary Table S2). To verify the
mRNA sequencing results, qRT-PCR was conducted to detect
the mRNA levels of 5 genes (CYR61, TP53, THBS1, CDKN1A,
and ECM2) in the KO-41 and control CNE2 cells. The results
showed that the relative expression patterns of the five genes
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FIGURE 6 | PI3K-Akt signaling pathway mediates heterozygous p53-R280T mutation-promoting NPC cell proliferation. (A) Western blot analysis showing the levels of

p-AKT(S308) in the p53 KO CNE2 and control CNE2 cells. (B) Western blot analysis showing the levels of p-AKT(S308) in the p53 KO CNE2 and C666-1 cells

(Continued)
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FIGURE 6 | transiently transfected with p53-R280T mutation and wt p53 plasmid at a 1:1 ratio, followed by treatment with 50µM LY294002 for 12 h. (C,D)

Representative results (left) and statistical analyses (right) of cell proliferation detected by EdU incorporation assay and soft agar colony formation assay in the p53 KO

CNE2 and C666-1 cells transiently transfected with p53-R280T mutation and wt p53 plasmid at a 1:1 ratio, followed by treatment with 50µM LY294002 for 12 h. (E)

CCK-8 assay showing cell proliferation in the p53 KO CNE2 and C666-1 cells transiently transfected with p53-R280T mutation and wt p53 plasmid, followed by

treatment with 50µM LY294002 for 12 h. **P < 0.01, ***P < 0.001. Vector, transfected with an empty vector; KO, p53 knockout; LY, LY294002.

were consistent with mRNA sequencing data, with a correlation
coefficient of 0.98 between qRT-PCR and mRNA sequencing
results (Figures 5C,D). The results demonstrated that the mRNA
sequencing results are reliable.

To investigate whether the DEGs in the p53 KO and control
CNE2 cells are abnormally expressed in NPC biopsies, we
downloaded the gene expression profile of NPC tissues from
the GEO database (GSE12452) (23), and compared the DEGs
with the differential gene expression profile of NPC tissues. The
result showed that sixty-one mRNAs, such as PCNA, TIGAR,
MMP1, FN1, SPARC and POSTN, upregulated in the CNE2
cells were also upregulated in NPC tissues; seventy-six mRNAs,
such as CDKN2B, BCL6, KLF4 and TP53INP2, downregulated
in the CNE2 cells were also downregulated in NPC tissues
(Figure 5E, Supplementary Table S3), which suggests that these
DEGs regulated by heterozygous p53-R280T mutation maybe
participate in the carcinogenesis of NPC.

Gene Ontology and KEGG Pathways
Enrichment Analysis of Differentially
Expressed Genes
The 2612 DEGs identified in the present study were formulated
into an XML-based input data set to query the GO database.
The results showed that all DEGs were divided into three
major groups: cellular component, molecular function
and biological process, as well as 55 functional groups
(Supplementary Table S4). In the cellular component, molecular
function and biological process, 17, 14, and 24 functional groups
were annotated respectively, many of which are involved
in tumorigenesis, such as the regulation of cell growth, cell
adhesion, antioxidant, and metabolic process (Figure 5F).

The 2612 DEGs were uploaded into the KEGG database
for pathway enrichment analysis. The results showed
that 37 pathways were found to be statistically enriched
(Supplementary Table S5), including many pathways involved
in tumor development and progression, such as cytokine-
cytokine receptor interaction, PI3K-Akt signaling pathway,
Jak-STAT signaling pathway and cytosolic DNA-sensing pathway
(Figures 5G,H). Moreover, the expression of 66 genes in the
PI3K signaling pathway was downregulated in the p53 KO
CNE2 cells (Supplementary Table S6). qRT-PCR was performed
to detect the mRNA levels of 6 differentially expressed genes
(EPHA2, IRS1, CCNE1, PDPK1, TLR4, and FN1) that enriched
in PI3K-Akt signaling pathway and downregulated in the p53
KO CNE2 cells. The results showed that the expression levels of
these genes were reduced in the p53 KO CNE2 cells (Figure 5I).
These results suggest that PI3K-Akt pathway signaling may
be involved in heterozygous p53-R280T mutation-mediated
NPC promotion.

Activation of PI3K-Akt Signaling Pathway
Is Involved in Heterozygous p53-R280T
Mutation-Mediated NPC Promotion
To investigate whether PI3K-Akt signaling pathway is involved
in heterozygous p53-R280Tmutation-mediatedNPC promotion,
we detected the levels of p-AKT in the KO-41, KO-49, and
control CNE2 cells by western blot, and observed that p-
AKT was significantly decreased in the KO-41 and KO-49
cells relative to control CNE2 cells (Figure 6A). Moreover,
we transiently transfected p53 KO CNE2 and p53 KO C666-
1 cells with wt p53 and p53-R280T mutation plasmid at
1:1 ratio (equal to transfection of heterozygous p53-R280T
mutation), and then treated the cells with PI3K inhibitor
LY294002. We observed that transfection of wt p53 and p53-
R280T mutation plasmid at 1:1 ratio dramatically increased
p-AKT levels in the p53 KO CNE2 and p53 KO C666-
1 cells, which was abolished by LY294002 (Figure 6B). The
results demonstrated that heterozygous p53-R280T mutation
activated PI3K-Akt signaling pathway in NPC cells. Functionally,
transfection of wt p53 and p53-R280T mutation plasmid at
1:1 ratio promoted in vitro cell proliferation of p53 KO CNE2
and p53 KO C666-1 cells, which was abolished by LY294002
(Figures 6C–E). Moreover, flow cytometric analysis showed that
transfection of wt p53 and p53-R280T mutation plasmid at 1:1
accelerated G1/S phase progression and inhibited cell apoptosis
in the p53 KO CNE2 and p53 KO C666-1 cells, which was
abolished by LY294002 (Figures 7A,B). These results indicate
that PI3K-Akt signaling pathway activation is involved in the
tumor-promoting effects of heterozygous p53-R280T mutation
in NPC cells.

DISCUSSION

In 1992, a heterozygous p53-R280T mutation was first detected
in the NPC CNE2 and CNE1 cell lines (17). Consistent with
this report, we also observed the same heterozygous mutation
of p53 gene in the NPC CNE2, 5-8F, and 6-10B cell lines
by Sanger sequencing. Previous study has shown that p53
gene is wild-type in the NPC C666-1 cell lines (15). We also
did not find p53-R280T mutation in the C666-1 cells. The
heterozygous p53-R280T mutation also exists in NPC tissues,
with a mutation rate of about 10% (17). It is suggested that
p53-R280T mutation may occur in primary tumors or may
be acquired during the establishment or culture of cancer cell
lines in vitro (17, 24). Nonetheless, the biological functions of
heterozygous p53-R280T mutation in cancers remain unclear.
To determine the roles of heterozygous p53-R280T mutation
in NPC, we chose CNE2 with heterozygous R280T mutation
and C666-1 with wt p53 gene to establish p53 knockout cell
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FIGURE 7 | PI3K-Akt signaling pathway mediates the effect of heterozygous p53-R280T on cell cycle and apoptosis of NPC cells. (A) Representative results (left) and

statistical analyses (right) of cell cycle distribution analyzed by flow cytometry in the p53 KO CNE2 and C666-1 cells transiently transfected with p53-R280T mutation

and wt p53 plasmid at a 1:1 ratio, followed by treatment with 50µM LY294002 for 12h. (B) Representative results (left) and statistical analyses (right) of cell apoptosis

analyzed by flow cytometry in the p53 KO CNE2 and C666-1 cells transiently transfected with p53-R280T mutation and wt p53 plasmid at a 1:1 ratio, followed by

treatment with 50µM LY294002 for 12h. *P < 0.05; **P < 0.01; ***P < 0.001; ns, no significance. Vector, transfected with an empty vector; KO, p53 knockout;

LY, LY294002.
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lines. We found that knockout of endogenous p53 gene with
heterozygous p53-R280Tmutation suppressedNPC proliferation
and increased NPC cell apoptosis, and inhibited the anchorage-
independent growth and in vivo tumorigenicity of NPC cells.
In contrast, knockout of wt p53 had the opposite effects on
NPC cells. Moreover, transfection of wt p53 and p53-R280T
mutation plasmid at 1:1 ratio, which is equal to heterozygous
p53-R280T mutation, promoted NPC cell proliferation and
survival in the NPC cells with endogenous p53 knockout.
Our results indicate that heterozygous p53-R280T mutation
gains oncogenic activities and functions as an oncogene in
NPC cells.

To explore the mechanism by which heterozygous p53-
R280T mutation is involved in the tumor promotion of
NPC cells, we carried out mRNA sequencing in the p53
KO and control CNE2 cells, and observed that 1401 DEGs
were upregulated, and 1211 DEGs were downregulated in the
p53 KO CNE2 with heterozygous p53-R280T mutation. To
investigated whether these DEGs were abnormally expressed in
NPC biopsies, we compared these DEGs with the differential
gene expression profile from NPC biopsies (GSE12452) (23),
and observed that 61 mRNAs upregulated in the CNE2 cells
were also upregulated in the NPC biopsies, and 66 mRNAs
downregulated in the CNE2 cells were also downregulated in
the NPC biopsies, suggesting that these DEGs regulated by
heterozygous p53-R280T mutation maybe participate in the
carcinogenesis of NPC. Besides, KEGG pathway enrichment
analysis showed that the DEGs were statistically enriched
in pathways related to cancer such as PI3K-Akt signaling
pathway, Jak-STAT signaling pathway, MAPK signaling pathway,
TNF signaling pathway and Wnt signaling pathway, which
may be associated with the NPC promotion of heterozygous
p53-R280T mutation. We also observed that the mRNA
level of p53 target gene CDKN1A (p21) increased in the
p53 KO CNE2 cells with heterozygous p53-R280T mutation.
Previous report also shows that p53 silencing resulted in
upregulation of p21 in CNE2 cells (25), supporting that
heterozygous p53-R280T mutation gains oncogenic property in
NPC cells.

PI3K plays an important role in cancer development
and progression (26–32). Once activated, PI3K converts
membrane-bound phosphatidylinositol 4, 5-biphosphate
(PIP2) into phosphatidylinositol 3,4,5-triphosphate (PIP3)
(33). PIP3 then recruits phosphoinositide-dependent kinase 1
(PDK1) to phosphorylate Akt at threonine 308. Subsequently,
mTOR complex 2 (mTORC2) phosphorylates Akt at serine
473(Ser473) for AKT activation (34, 35). Thereafter, activated
Akt interacts with downstream target proteins to regulate
multiple biological processes. In the present study, mRNA
sequencing of heterozygous p53-R280T KO CNE2 and control
cells showed that heterozygous p53-R280T mutation activated
PI3K-Akt signaling pathway, and transfection of wt p53 and
p53-R280T mutation plasmid at 1:1 ratio dramatically increased
p-AKT levels in the NPC cells with endogenous p53 KO,
which was abolished by LY294002. The results demonstrated

that heterozygous p53-R280T mutation activates PI3K-Akt
signaling pathway in NPC cells. Importantly, blocking of
PI3K-Akt signaling pathway abolished heterozygous p53-R280T
mutation-promoting NPC cell proliferation and survival,
indicating that heterozygous p53-R280T mutation promotes
the oncogenicity of NPC cells by activating PI3K-Akt signaling
pathway. Moreover, the genes enriched in PI3K-Akt signaling
pathway, such as EPHA2, IRS1, FN1, PDGFRB, THBS1, CCND1,
CCNE1, TLR4, FGFR1 and FLT1, promote the development
and progression of NPC (36–46). Therefore, heterozygous
p53-R280T mutation-activated PI3K-Akt signaling pathway
may be involved in NPC carcinogenesis through theses
target genes.

In summary, our data suggest that heterozygous p53-
R280T mutation functions as an oncogene in NPC, and
promotes the oncogenicity of NPC cells by activating
PI3K-Akt signaling pathway. P53 knockout NPC cell
lines and heterozygous p53-R280T mutation-associated
DEGs provide a valuable tool to investigate the role and
molecular mechanism of heterozygous p53-R280T mutation
in NPC.
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