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Background: Artificial Intelligence (AI) frameworks have emerged as a novel approach

in medicine. However, information regarding its applicability and effectiveness in a clinical

prognostic factor setting remains unclear.

Methods: The AI framework was derived from a pooled dataset of intrahepatic

cholangiocarcinoma (ICC) patients from three clinical centers (n = 1,421) by applying the

TensorFlow deep learning algorithm to Cox-indicated pathologic (four), serologic (six),

and etiologic (two) factors; this algorithm was validated using a dataset of ICC patients

from an independent clinical center (n= 234). Themodel was compared to the commonly

used staging system (American Joint Committee on Cancer; AJCC) and methodology

(Cox regression) by evaluating the brier score (BS), integrated discrimination improvement

(IDI), net reclassification improvement (NRI), and area under curve (AUC) values.

Results: The framework (BS, 0.17; AUC, 0.78) was found to be more accurate than the

AJCC stage (BS, 0.48; AUC, 0.60; IDI, 0.29; NRI, 11.85; P < 0.001) and the Cox model

(BS, 0.49; AUC, 0.70; IDI, 0.46; NRI, 46.11; P < 0.001). Furthermore, hazard ratios

greater than three were identified in both overall survival (HR; 3.190; 95% confidence

interval [CI], 2.150–4.733; P < 0.001) and disease-free survival (HR, 3.559; 95% CI,

2.500–5.067; P < 0.001) between latent risk and stable groups in validation. In addition,

the latent risk subgroup was found to be significantly benefited from adjuvant treatment

(HR, 0.459; 95% CI, 0.360–0.586; P < 0.001).
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Conclusions: The AI framework seems promising in the prognostic estimation and

stratification of susceptible individuals for adjuvant treatment in patients with ICC after

resection. Future prospective validations are needed for the framework to be applied in

clinical practice.

Keywords: biliary malignancy, artificial intelligence, prognostic factor, prediction model, primary liver cancer

INTRODUCTION

Artificial Intelligence (AI) is a field of computer science in which
machines mimic, recognize, and learn cognitive functions of the
human mind and make empirical predictions using task-specific
algorithms (1, 2). It is natural for the humanmind to get confused
when trying to process a lot of information simultaneously,
and this necessitates an auxiliary process. This need has led
to the application of AI in clinical medicine (3). AI has been
applied to develop a diagnostic tool using image-based deep
learning (DL), and the resulting performance was close to that of
humans (4). However, no study has applied an AI framework to
identify patients prone to the latent risk of recurrence even after
curative treatment.

Intrahepatic cholangiocarcinoma (ICC) is a highly aggressive
primary epithelial malignancy arising from the liver, and it has
witnessed rising interests over the years due to rapid increase
in its incidence and the resulting mortality rate (5, 6). Usually,
ICC is diagnosed at an advanced stage, sporadically and without
an explicit etiologic factor, thereby limiting curative approaches
(7). Surgery with curative intent is the current standard of care,
providing the opportunity for long-term survival (8). However,
due to frequent recurrence of ICC, less than half of the post-
surgery patients have been reported to survive for more than 5
years (9).

Despite clinical challenges, the growing understanding of
ICC, led by increased investigations, is providing new insight
into heterogeneity, pathogenesis, and therapeutic strategies with
regard to the disease (10–12). Locally advanced ICC is no longer
a contraindication for transplantation, and adjuvant treatments
are now implemented more frequently worldwide, suggesting
that it is important to identify the prognostic subtype for all
treatments (13, 14). However, prognostic subtypes that support
the selection of therapeutic modality remain limited, especially
for recurrent ICC.

Owing to the exponential increase in the number
of ICC studies, prognosis of the disease is witnessing
development (15). Various prognosis-predictive systems
with biological, pathological, demographic, clinical, and
imaging characteristics have been developed (16, 17).
However, such systems could not be implemented widely
due to their inaccuracy and discriminations against them. To
address this issue, we have developed a DL computational
framework for ICC. The framework was tested in subgroups
of patients who received prophylactic adjuvant transarterial
chemoembolization (PAT), post-recurrent chemotherapy (PRC),
post-recurrent radiotherapy (PRR), post-recurrent transarterial
chemoembolization (PRT), and post-recurrent percutaneous

microwave coagulation (PRP). The tests were carried out in
accordance with prognostic subtypes identified by machine
learning algorithms.

METHODS

Patients
The framework was retrospectively derived using a pooled
dataset from patients with ICC who received surgical resection
at the Eastern Hepatobiliary Surgery Hospital, Second Military
Medical University (n = 1,477), Renji Hospital, School of
Medicine, Shanghai Jiao Tong University (n = 106), and
Mengchao Hepatobiliary Hospital, Fujian Medical University
(n = 14) between 2008 and 2015, which was independently
validated by the patients from Zhongshan Hospital, Fudan
University (n = 246). All four databases satisfied the following
inclusion criteria: Eastern Cooperative Oncology Group
(ECOG) performance status of 0–1, no neoadjuvant treatment,
no mixed hepatocellular-cholangiocarcinoma and hilar/distal
cholangiocarcinoma, no perioperative death (within 30 days after
surgery), and no distant metastasis. In the quality assessment,
188 patients were excluded due to incomplete data, and thus a
total of 1,421 and 234 patients were finally enrolled for the model
training and validation, respectively. This study was carried out
in accordance with the TRIPOD statement. The protocol was
approved by the Ethics Committee of Renji Hospital, School
of Medicine, Shanghai Jiao Tong University. All subjects gave
written informed consent in accordance with the Declaration
of Helsinki.

Diagnosis
Diagnosis of ICC was performed based on results of clinical,
serological, and imaging studies (contrast-enhanced computed
tomography [CT] and/or magnetic resonance imaging [MRI]).
Positron emission tomography (PET) was performed in patients
suspicious of metastases according to clinical and radiological
characteristics. After surgery, CK7, CK19, and MUC1 positivity
along with CK20, HepPar1, and glypican-3 negativity was
considered pathological confirmation of ICC (18).

Clinical Interventions
Resection was carried out according to the size and location of
tumor, estimated post-operative liver volume, and the Couinaud
segmentation as described before (16). Hepatoduodenal
ligament, retropancreatic, and paraaortic lymph nodes were
routinely dissected. Perihepatic lymph node metastasis identified
by preoperative CT/PET was considered for surgery if considered
completely removable.
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PAT was considered after discussion of the pros and cons of
PAT by the operating surgeons and patients. The performance
of PAT mostly depended on their socioeconomic status and
intention. Among the patients who actively agreed to receive
PAT, those with Child-Pugh class of A to B, ECOG score of 0–1,
normal kidney function, no evidence of extrahepatic metastasis,
platelet count above 50 × 109/L, and white blood cell count
above 3 × 109/L were enrolled. PAT was performed within
2 months after resection by injecting 3–5ml of iodized oil
emulsion (Lipiodol, Guerbet Laboratories) with 500mg of 5-
fluorouracil (FU), 10mg of hydroxycamptothecin, and 20mg of
epirubicin (19).

For recurrent ICC, gemcitabine and/or 5-FU-based PRC was
prior for metastatic diseases, whereas a dose volume histogram-
based PRR (90% of dose curve covered by the plan target volume)
was preferentially performed in patients with large tumors and/or
vascular invasion; there was no priority between PRT and PRR, in
line with the National Comprehensive Cancer Network (NCCN)
guidelines. PRT was carried out using the same methodology as
PAT. PRP was proceeded using an MTC-3 microwave generator
(2,450 MHz, 1–100W) at 80–100W for 3–5min automatically
with a safety margin of 1 cm (20). Supportive information related
to inclusion of patients for standardized performance of the
procedures is described in the Supplementary Material.

Follow-up
Active follow-up of serum carbohydrate antigen (CA) 19-9,
carcinoembryonic antigen (CEA), alpha fetoprotein (AFP), liver
function tests, and the abdominal ultrasound was made by
patients once per 2 months within 2 years after surgery and
once per 3–6 months thereafter. Patients without active visits
were contacted by telephone inquiries. CT/MRI was performed
once per 6 months or less when recurrence was suspicious.
Development of new lesions with radiological characteristics of
ICC was considered as a recurrence. Follow-up was discontinued
at the time of death. The terms “disease-free survival (DFS)” and
“overall survival (OS)” were defined as time from surgery to the
detection of recurrence/metastasis and death, respectively.

Network Architecture and Derivation
Procedures
The authors who derived the framework were blinded to the
validation dataset, whereas those who validated the framework
were blinded to the derivation dataset. To infer an estimated
probability for latent risk and latent stable as output, we
conducted a 12× 1 vectors, including 12 clinical indicators, in the
input layer via full-connected hidden layers (12× 28, 28× 28, 28
× 14, and 14× 28 nodes). For the given hidden layer i, we applied
tanh for activation function between input x and output y:

y = fi (x) = tanh
(

Wix + bi
)

tanh x =
sinhx

coshx
=

ex − e−x

ex + e−x

x and y are two arrays of the sized p and q, whereasWi and bi are
the weight matrix and the intercept array, respectively. For the

output layer, we used the softmax as an activation function:

y = fo (x) = softmax
(

Wix + bi
)

softmax fi
(−→x

)

=
exi

∑J
j= 1 e

xj
for i = 1, . . . , J

For the neural network with k layers, y is driven from:

y = F1→k (x) = fk
◦fk−1 . . . ◦f1 (x)

where fk
◦fk−1 (x) = fk

(

fk−1 (x)
)

is the composed function of
fk with fk−1. To train this AI framework to find the different
weight vectors Wi and bias bi by minimizing the error between
predicted output and actual class, we chose cross entropy as the
loss function, which indicates the error between predicted ypred
and actual ending yactual.

Cross entropy H
(

yactual, ypred
)

= −
∑

yactual(x)
∗log ypred(x)

Wi and bi were initialized with truncated normal distribution
(standard deviation= 0.1; https://www.tensorflow.org/api_docs/
python/tf/truncated_normal). The Adam Optimizer algorithm
(initial learning rate=0.001) was used to minimize the loss
function via backpropagation to update weights and biases per
layer (21). In addition, we have applied a dropout layer by
randomly dropping 30% weights before the output layer to
improve the generalization ability, but application of the weight
decay was found to decrease the performance ability of the AI
framework. The model was trained for 1,500 iterations with a
batch size 200 in producing a model update to support multiple
updates for each iteration.

Definition of the Prognostic Subtypes
The term “latent risk (AI-framework-estimated recurrence
probability > 0.5)” refers to a subset of ICCs that are
under severe risk of recurrence at any time after resection;
resection of the tumor is therefore not likely to be curative
regardless of curative intent. “Latent stable (AI-framework-
estimated recurrence probability<0.5)” refers to a relatively
constant disease status that resection of the tumor provides
a long-term satisfactory prognosis. To support understanding,
latent risk and latent stable can be simply considered as AI-high
risk and AI-low risk, respectively.

Statistical Analysis
The primary and secondary endpoints were DFS and OS,
respectively. The model was evaluated by comparing with the
AJCC stage and Cox multivariate hazard proportional model-
derived individualized scores, which were indicated by changes
in χ

2, integrated discrimination improvement (IDI) and a net
reclassification improvement (NRI) with 95% confidence interval
(CI), and receiver operating characteristic (ROC) curves with
area under curve (AUC) values. Although an AJCC stage for ICC
was not developed with intent for survival prediction, it still is
the most commonly applied staging system in clinical medicine
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FIGURE 1 | Workflow of the ICC AI-framework. TensorFlow-based deep learning and machine learning techniques to evaluate latent risk ICC by integrating the

generally obtainable pathologic, serologic, and etiologic clinical factors of the patients from four independent clinical centers. The workflow includes four steps (Step 1:

randomization of derivation and validation datasets; Step 2: Selection of the significant covariates; Step 3: deep learning algorithm for evaluation of individual scores;

Step 4: stratification of latent risk and stable).

supportive of survival estimation. Kaplan-Meier (KM) curves
with the log-rank test for P-value andMantel-Haenszel for hazard
ratio (HR) were generated for evaluation and digitalization of
survival outcomes. P < 0.05 is regarded statistically significant.
The ICC AI framework was constructed using the TensorFlow
(v1.2.1) on servers equipped with dual Intel (R) Core (TM) i7-
4650U CPU @1.70 Ghz 2.30 GHz, 8 GB RAM, and Intel (R)
HD Graphics 5000. All statistical analyses were performed using
Python (v3.6.5) and R Project for Statistical Computing (v3.4.4).

RESULTS

Development of the ICC AI Framework
An AI framework to evaluate individualized probabilities for
identifying categorical prognostic subtypes was developed. For
this purpose, independent significant covariate features and the
DL algorithm were selected using non-overlapping derivation
and validation datasets (Figure 1). Demographic, etiological,
pathological, and serological characteristics were evaluated using
univariable and multivariable Cox regression models for disease-
free survival. The 28 evaluated characteristics were gender; age;
hepatitis B virus (HBV) and hepatitis C virus infections; HBV
DNA; antiviral treatment; syphilis infection; liver cirrhosis and
fluke; fatty liver; smoking and alcohol abuse; diabetes mellitus;
hypertension; tumor location and differentiation; AFP, CA 19-9,
125, and 242; CEA; albumin; platelet count; vascular invasion;
lymph node metastasis; tumor size and number; and surgical
extent. The evaluation identified 12 of the features as most
important, including tumor size and number, surgical extent,
lymph node metastasis, hepatitis B surface antigen (HBsAg),

AFP, CA19-9, CEA, albumin, platelet count, diabetes mellitus,
and cholelithiasis (Tables 1, 2). Albumin (>35 vs. ≤35 g/L),
AFP (>50 vs. ≤50 ng/ml), and CA 19-9 (>37 vs. ≤37 U/ml)
were categorized into normal and abnormal groups according
to the standardized cut-off values for normal ranges; the platelet
count was stratified into <100, 100–300, and >300 × 109/L;
CEA was stratified into <2.5, 2.5–5.0, and >5.0 ng/ml; tumor
size was stratified into <2.5, 2.5–5.0, and >5.0 cm; and tumor
number was categorized into single, double, and multiple
tumors. Tests were conducted to confirm if the covariates were
significant prognostic factors for the OS in the derivation dataset.
The multivariable analysis found all involved factors, except
albumin and diabetes, to be significantly and independently
predictive of the OS (Supplementary Table 1). Additionally,
HBsAg, AFP, tumor size, and resection type were identified as
insignificant independent prognostic factors in the validation
dataset (Supplementary Table 2). Finally, a training dataset (n
= 1,421) was used to derive the framework based on the
12 identified features. The framework was derived with time-
to-event outcomes using a backpropagation technique, which
synchronously updated each lay’s weights and biases to optimize
the statistical likelihood of the framework.

Validation of the ICC AI-Framework
The performance of the model was assessed by comparing the
consistency of the disease status with that of the individualized
stage/score from the validation set (n= 234; Figure 2A). Relative
maldistributions were observed in the range-adjusted American
Joint Committee on Cancer (AJCC) staging system (BS = 0.48)
and the Cox multivariable models (BS = 0.49), whereas the
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TABLE 1 | Baseline demographic and clinical characteristics of the patients.

Derivation dataset

(n = 1,421)

Validation dataset

(n = 234)

Age, years 57 (49–64) 58 (50–65)

Gender, male 915 (64.4) 140 (59.8)

Albumin, g/L 40.4 (36.1–43.5) 41.0 (39.0–43.0)

Platelet count, 109/L 184 (142–238) 189 (147–228)

Diabetes 136 (9.6) 25 (10.7)

HBV infection, HBsAg 624 (43.9) 28 (12.0)

Cholelithiasis 132 (9.3) 18 (7.7)

AFP, ng/ml 3.0 (2.0–5.5) 2.8 (1.9–4.4)

CA19–9, U/ml 57.8 (17.8–548.1) 32.1 (11.6–239.0)

CEA, ng/ml 2.8 (1.7–5.7) 2.4 (1.5–4.8)

Tumor size, cm 6.0 (4.0–8.0) 5.0 (3.5–8.0)

Tumor number

Single 1221 (85.9) 188 (80.3)

Multiple 200 (14.1) 46 (19.7)

Lymph node metastasis 332 (23.4) 60 (25.6)

Resection type

Minor hepatectomy 1052 (74.0) 134 (57.3)

Hemi or extended

hepatectomy

369 (26.0) 100 (42.7)

TNM stagea

I–II 1089 (76.6) 174 (74.4)

III–IV 332 (23.4) 60 (25.6)

Data are n (%) or median (IQR). HBsAg, hepatitis B surface antigen; AFP, alpha fetoprotein;

CA, carbohydrate antigen; CEA, carcinoembryonic antigen. aTNM stage: American Joint

Committee on Cancer 8th edition staging for intrahepatic cholangiocarcinoma.

framework (BS= 0.17) demonstrated well-propagated DL scores.
Furthermore, visualization of the score-dependent disease status
revealed predominance in the AI framework, demonstrating
gradual increase of recurrence in proportion to the DL score
(Figure 2B). Additionally, the AI framework, covariates, AJCC
staging system, and Cox multivariable regression were evaluated
using ROC curves and AUC values, and the Cox score and AJCC
stage were evaluated by the validation dataset (Figure 2C). The
framework was derived (AUC = 0.84) and validated (AUC =

0.78) to be excellent, whereas the AJCC stage (AUC = 0.60)
and Cox score (AUC = 0.70) showed less sensitivity. Calibration
plot also showed good association between actual proportion
and predicted probability for the AI framework (Figure 2D).
In terms of integrated discrimination index (IDI) and net
reclassification index (NRI), performance of the framework was
significantly better compared with the AJCC (derivation: χ

2 =

54.93, P < 0.001, IDI= 0.30, NRI= 19.62; validation: χ2 = 7.22,
P < 0.001, IDI = 0.29, NRI = 11.85) and Cox (derivation: χ

2

= 849.09, P < 0.001, IDI = 0.51, NRI = 63.46; validation: χ2 =

146.44, P < 0.001, IDI= 0.46, NRI= 46.11) models (Table 3).

Survival Outcomes of the Latent Risk and
Stable Subtypes
Taking into consideration the entire dataset, the ratio of the
latent risk group to the stable group was found to be ∼8:2
using probabilistic stratification of the AI framework. KM
curves were generated to evaluate the prognostic subtypes. The

TABLE 2 | Selection of top covariates using the Cox multivariable regression.

Univariable analysis Multivariable analysis

HR (95% CI) P-value HR (95% CI) P-value

Albumin <35 g/L 1.96 (1.66–2.31) <0.001 1.26 (1.05–1.51) 0.015

Platelet count, ×109/La 1.68 (1.45–1.94) <0.001 1.21 (1.04–1.40) 0.011

Diabetes 1.63 (1.34–1.99) <0.001 1.41 (1.15–1.72) 0.001

HBsAg 0.82 (0.72–0.93) 0.002 0.79 (0.69–0.90) 0.001

Cholelithiasis 1.57 (1.28–1.92) <0.001 1.40 (1.13–1.73) 0.002

AFP >50 ng/ml 1.49 (1.19–1.86) 0.001 1.60 (1.26–2.02) <0.001

CA19–9 > 37 U/ml 1.49 (1.32–1.69) <0.001 1.18 (1.03–1.37) 0.020

CEA, ng/mlb 1.37 (1.27–1.47) <0.001 1.12 (1.03–1.22) 0.011

Tumor size, cmc 1.69 (1.56–1.84) <0.001 1.59 (1.46–1.73) <0.001

Tumor numberd 1.51 (1.37–1.67) <0.001 1.28 (1.15–1.42) <0.001

Lymph node metastasis 1.93 (1.68–2.22) <0.001 1.40 (1.21–1.63) <0.001

Resection typee 1.57 (1.42–1.74) <0.001 1.17 (1.05–1.31) 0.005

HR, hazard ratio; CI, confidence interval; HBsAg, hepatitis B surface antigen; AFP,

alpha fetoprotein; CA, carbohydrate antigen; CEA, carcinoembryonic antigen. awas

stratified into <100, 100–300, and >300. bwas stratified into <2.5, 2.5–5.0, and

>5.0. cwas stratified into ≤2.0, 2.1–3.0, 3.1–5.0, and >5.0. dwas stratified into single,

double, and multiple. ewas stratified into minor hepatectomy, hemihepatectomy, and

extended hepatectomy.

differences between latent risk and stable groups in disease-
free survival (DFS) (HR, 4.920; 95% CI, 4.272–5.666; P <

0.001; Figure 3A) and overall survival (OS) (HR, 3.526; 95% CI,
3.026–4.108; P < 0.001; Figure 3B) in the training dataset were
significant. On the contrary, in the validation dataset, similar
results were observed in both DFS (HR, 3.559; 95% CI, 2.500–
5.067; P < 0.001; Figure 3C) and OS (HR, 3.190; 95% CI, 2.150–
4.733; P < 0.001; Figure 3D). The censored subjects-excluded 1-,
3-, and 5-year OS were 95.0, 79.4, and 38.9% vs. 73.2, 36.1, and
2.3%, respectively, in the latent stable group compared to latent
risk group, and the DFS were 87.5, 60.0, and 36.4% vs. 54.1, 21.1,
and 1.3%, respectively, in the validation dataset.

Potential Applicability of the AI-Prognostic
Subtypes
In this paper, an attempt has been made to study whether an AI
framework is able to provide guidance for clinical interventions
as recommended in NCCN as seen in Figure 4 (22). While
evaluating the effectiveness, PAT can result into significant
survival benefit (median survival benefit, 19 months; HR, 0.459;
95% CI, 0.360–0.586; P < 0.001) in the latent risk group.
However, no significant difference was observed in the latent
stable group (HR, 0.800; 95% CI, 0.374–1.713; P= 0.719). In case
of the local intrahepatic recurrent patients, the AI-framework-
derived prognostic subtypes could be effectively utilized to
stratify patients who have been significantly benefited from PRT
(HR, 4.684; 95% CI, 2.997–7.320; P < 0.001) and PRP (HR,
4.625; 95% CI, 2.458–8.704; P < 0.001), respectively. On the
contrary, the patients who underwent radiotherapy did not show
any significant difference as seen in case of the latent risk and
stable groups (HR, 1.839; 95% CI, 0.670–5.046; P = 0.364).
Moreover, chemotherapy did not indicate any significant results
of survival amongst the prognostic subtypes (HR, 1.421; 95% CI,
0.574–3.521; P = 0.482).
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FIGURE 2 | Validation of the ICC AI-framework. (A) Evaluation of the consistency between disease status and the AJCC stage, Cox score, and DL, respectively. BS,

brier score. (B) Coherence comparison among staging/scoring systems. Light yellow, events. (C) ROC curves with AUC values of the AI derivation and validation, Cox

score, AJCC stage, and involved covariates. (D) Calibration plot for evaluation of the actual proportion and predicted proportion of the events using the

validation dataset.

DISCUSSION

We adopted a DL approach to learn prognostic prediction

using significant clinical factors and created dimidiate prognostic

subtypes with distinctive prognosis and efficacy of clinical

interventions. This model was compared for accuracy with

the most widely used, pre-existing AJCC staging system and
the Cox methodology, which was systematically evaluated in

context to current clinical standard for recurrent ICC. In
comparison to the previous studies on prediction of OS, the
current framework specifically caters to cancer-specific survival,
excluding mortality due to unknown causes. Moreover, this
approach increases the accuracy of equal covariates-generated
Cox multivariable hazard proportional model and the stratified
prognostic subtypes depicting significant differences amongst
various recurring treatments. Collectively, the DL approach
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TABLE 3 | Discriminative and risk: reclassification ability of the ICC AI-framework.

Model performance IDI (95% CI) Risk reclassification

Change in χ
2 P-value Events Non-events NRI (95%CI)

Risk up Risk down Risk up Risk down

AI vs. Cox

Derivation 849.09 <0.001 0.51

(0.50–0.52)

0.90 0.06 0.54 0.34 63.46

(61.68–65.24)

Validation 146.44 <0.001 0.46

(0.44–0.47)

0.88 0.08 0.61 0.29 46.11

(40.56–51.66)

AI vs. AJCC

Derivation 54.929 <0.001 0.30

(0.29–0.30)

0.64 <0.01 0.48 0.03 19.62

(18.8–20.45)

Validation 7.2197 0.007 0.29

(0.28–0.31)

0.61 <0.01 0.54 0.04 11.85

(9.39–14.32)

IDI, integrated discrimination improvement; CI, confidence interval; NRI, net reclassification improvement; AJCC, American Joint Committee on Cancer.

FIGURE 3 | Kaplan-Meier estimation of the prognostic subtypes. (A) The OS of training dataset according to the latent status. (B) The DFS of training dataset

according to latent status. (C) The OS of validation dataset according to the latent status. (D) The DFS of validation dataset according to the latent status.

was found to be effective in estimation of survival and to
devise a categorical strategy to deal with heterogeneity of ICCs
by classifying them into latent risk and stable groups for
clinical interventions.

We have attempted to maximize the chances for identification
of prognostic factors for ICC since it is a disease with diverse
outcomes and the issues in identification of the prognostic factors
arises due to its exclusivity (23, 24). Therefore, we adopted an 8:2
ratio in randomization of the derivation and validation datasets

for meticulous detection of prognostic factors, which enabled us
to detect 12 independent prognostic factors. These factors are
pre-specified by the Cox hazards regressionmodel, as it is difficult
to apply different factors owing to complexity.

Recent studies have demonstrated that a post-operative
prophylactic adjuvant therapeutic approach can account
for significant survival benefits by preventing events or
by prolonging the time-to-recurrence (25–27). Latent risk
ICC might be the reason for survival benefits, because the latent
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FIGURE 4 | Outcomes of the NCCN guidelines clinical interventions according to the latent status. Kaplan-Meier curves were generated for each clinical intervention,

including prophylactic adjuvant treatment and recurrence treatment, according to the latent status. For generation of the survival curves, post-recurrence survival was

applied for transarterial chemoembolization, percutaneous microwave coagulation, radiotherapy, and chemotherapy, whereas overall survival was applied for

prophylactic adjuvant treatment.

stable group was associated with significantly favorable prognosis
without the application of adjuvant treatments.

According to the National Cancer Database of the American
College of Surgeons and the American Cancer Society that
takes into account ∼70% of the US population, the median
OS for chemotherapy (n = 2,176) and chemoradiotherapy
(n = 666) are 10.5 (95% CI, 10.0–11.5) and 13.6 (95% CI,
12.3–15.7) months, respectively, for unresectable ICC (28,
29). In our study, estimated latent risk for recurrent ICC
treated with chemotherapy and chemoradiotherapy showed no
significance compared with the latent stable. Recent studies
have suggested, with reasonable evidence, that the application
concurrent chemoradiotherapy has better efficacy is better than
solely applying adjuvant chemotherapy or radiotherapy (28,
29). Therefore, evaluation of the latent risk combined with
chemoradiotherapy may lead to significant survival benefits,
though this awaits further validation by future trials.

Although our study provides insights into the use of DL for

ICC in a clinical factor setting, some clinical interventions, such
as immunotherapy and liver transplantation, are not involved,
and the framework is therefore not comprehensive for all
circumstances. Furthermore, while we have used our techniques
for ICC—the application of the AI-based clinical factors-derived
estimative approaches for other tumors might provide auxiliary
perspicacious insights. The evaluation of the resection candidate
also needs to be considered. There were few patients with regional
disease, which is considered not a candidate for surgical resection
in some surgery centers. Lastly, the proportion of etiologic
subtypes needs to be considered when interpreting the results.

There were relatively large proportion of ICCs arose from HBV
infection, which is not prevalent inWestern countries. Therefore,
validation by Western population is essential for the framework
to be applied in clinical practice.

In conclusion, the AI approach revealed precision prognostic
estimation compared to the AJCC stage for ICC and Cox
multivariable regression model in terms of survival prediction
and prognostic subtype stratification in patients with ICC after
resection. Future validation studies are required to confirm its
applicability in patients with ICC from other regions and in
other cancers.
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