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Introduction: Glioblastoma multiforme (GBM) is the most common deadly brain

malignancy and lacks effective therapies. Immunotherapy acts as a promising novel

strategy, but not for all GBM patients. Therefore, classifying these patients into different

prognostic groups is urgent for better personalized management.

Materials and Methods: The Cell type Identification by Estimating Relative Subsets of

RNA Transcripts (CIBERSORT) algorithm was used to estimate the fraction of 22 types

of immune-infiltrating cells, and least absolute shrinkage and selection operator (LASSO)

Cox regression analysis was performed to construct an immune infiltration-related

prognostic scoring system (IIRPSS). Additionally, a quantitative predicting survival

nomogram was also established based on the immune risk score (IRS) derived from

the IIRPSS. Moreover, we also preliminarily explored the differences in the immune

microenvironment between different prognostic groups.

Results: There was a total of 310 appropriate GBM samples (239 from TCGA and 71

from CGGA) included in further analyses after CIBERSORT filtering and data processing.

The IIRPSS consisting of 17 types of immune cell fractions was constructed in TCGA

cohort, the patients were successfully classified into different prognostic groups based

on their immune risk score (p = 1e-10). What’s more, the prognostic performance of

the IIRPSS was validated in CGGA cohort (p = 0.005). The nomogram also showed

a superior predicting value. (The predicting AUC for 1-, 2-, and 3-year were 0.754,

0.813, and 0.871, respectively). The immune microenvironment analyses reflected a

significant immune response and a higher immune checkpoint expression in high-risk

immune group.

Conclusion: Our study constructed an IIRPSS, which maybe valuable to help clinicians

select candidates most likely to benefit from immunological checkpoint inhibitors (ICIs)

and laid the foundation for further improving personalized immunotherapy in patients

with GBM.
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INTRODUCTION

Glioblastoma multiforme (GBM) is the most common deadly
brain malignancy, with an incidence of 3.19 per million person
(1) and representing ∼1% of new tumor cases worldwide (2),
which is indeed characterized by a remarkably poor prognosis,
presenting only a 2-year survival rate of 26–33% and a 5-year
survival rate of 4–5% (1). The treatment of GBM is of great
challenge, and maximal safe surgical resection is served as the
first-line treatment (3) to relieve clinical symptoms, prolong
survival time and contribute to the pathological diagnosis.
Unfortunately, infiltrative cells always exist and prevent complete
resection of the surgery which ultimately leads to recurrence,
resistance, and death (4). Therefore, the current standard
therapy for newly diagnosed GBM is surgical removal followed
by concurrent chemoradiotherapy and adjuvant chemotherapy
with temozolomide (5). Disappointedly, the median overall
survival improves limited and remains around 15 months
(1, 5) despite continued innovations in neurosurgical techniques,
improvements in radiotherapy, and the emergence of novel
chemotherapeutic agents over the past three decades (6). Facing
these discouraging situations, advancement of novel strategies in
GBMmanagement is warranted.

Immunotherapy has recently gained more and more attention
on fighting against tumors and made a great contribution
in treating diverse hard-to-treat tumors such as non-small
cell lung cancer and melanoma (7, 8), which contributed
to extending this therapeutic concept to GBM. However, its
clinical efficacy in GBM remains to be further elucidated.
The unique blood-brain barrier (BBB) makes the brain a
relatively immune privileged organ (2, 9) which induces
tightly regulated immune responses and leads to a so-
called immunosuppressive microenvironment. Consistently,
immunosuppressive microenvironment ubiquitously exists in
GBM that involves tumor intrinsic and extrinsic components
(10), which leads to a unique challenge in the treatment
of this cancer. GBM has a great degree of heterogeneity
with intra- and inter-tumoral (10, 11), leading to only a
subset of the treated patients benefit from the most successful
immunotherapy. This suggests the need for searching novel
targets that might be conducive to better stratify patients with
different prognosis and identify the candidates who will really
benefit from immunotherapy. Because of the establishment
of an immunosuppressive microenvironment, understanding
the immune landscape, and changing immunosuppressive
microenvironment seems a reasonable strategy for GBM. Tumor-
infiltrating immune cells have been reported to correlate with
clinical prognosis in various tumors (8, 12, 13) and affect the
clinical response to immunotherapy in GBM (14), indicating
that immune-infiltrating cells may be a promising biomarkers
repository for better personalized management of GBM.

Recently, a newly proposed computational algorithm, known
as “Cell type Identification By Estimating Relative Subsets
Of RNA Transcripts (CIBERSORT),” was developed (15) and

successfully applied to analyse the immune cell types in

several malignant tumors like colorectal cancer (12), gastric

cancer (13), and renal cell carcinoma (16). Therefore, in the

present study, we employed CIBERSORT, for the first time, to
determine the relative fractions of 22 immune cell subsets in
GBM using gene expression profiles. Subsequently, we used the
least absolute shrinkage and selection operator (LASSO) Cox
regression analysis to construct an immune infiltration-related
prognostic scoring system (IIRPSS), classifying patients into
different prognostic subgroups based on their IRS. We further
explored the relationships between the immune risk groups, the
immune infiltration cells, and immune checkpoint modulators.
Meanwhile, the immune statuses of different immune risk groups
were explored as well by gene set enrichment analysis (GSEA). It
is hoped that this study will provide promising targets and some
novel insights into the immunotherapy of GBM.

MATERIALS AND METHODS

Patients and Datasets
The Cancer Genome Atlas (TCGA) GBM normalized gene
expression array (n = 539) from the Affymetrix HT Human
Genome U133a microarray platform and relevant clinical
information were obtained from the UCSCXena website (https://
xena.ucsc.edu/). Another part of GBMmRNA-Seq datameasured
using Illumina HiSeq 4,000 and corresponding clinical data
were downloaded from the Chinese Glioma Genome Atlas
(CGGA) (http://www.cgga.org.cn/index.jsp).

Data Processing
We extracted 132 primary GBM samples in batch1 and 82
samples in batch2 from CGGA acquired data, respectively. These
patients were all with survival data and their survival time was
more than 30 days. Afterward, the two mRNA-Seq profiles were
separately normalized by the log2(x+1) method.

Cibersort Estimation
CIBERSORT, a deconvolution algorithm based on normalized
gene expression profiles, has been validated by fluorescence-
activated cell sorting (FACS), which can be used to characterize
22 types of immune infiltration cell composition of complex
samples (16). Each gene expression series was separately
uploaded to the CIBERSORTweb tool (https://cibersort.stanford.
edu/), and a reference LM22 expression signature with 100
permutations was used for the algorithm. CIBERSORT, using
Monte Carlo sampling, derives a deconvolution p-value for
each sample. The results of the predicted infiltrating immune
cell fractions with an appropriate p < 0.05 were considered to
be accurate, which were eligible for further analysis. For each
sample, all the output estimates of each immune cell type were
normalized to sum up to 1 (13), therefore, the annotated cell
fraction can be directly compared between different immune cell
subsets and platforms (17).

Construction an Immune
Infiltration-Related Prognostic Scoring
System
Patients with a CIBERSORT p ≥·05 were eliminated in the
subsequent analysis, as were those in TCGA dataset with normal
or recurrent samples and patients whose overall survival was
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lacking or no more than 30 days. For the purpose of constructing
this scoring system, TCGA dataset played the role as the training
set and CGGA as the validation set. Moreover, the estimated
cell fraction was served as binary variables, and was given a
specific value of 1 or 2 if lower or higher than the optimal
cut-off values which were determined for the entire cohort
by the web portal “Cutoff Finder” (http://molpath.charite.de/
cutoff/) and were calculated with survival: significance (log-rank
test) method.

LASSO Cox analysis, as a wildly used high-dimensional
predictor regression method (18), selecting the optimal penalty
parameter lambda using 10-fold cross-validations to prevent
overfitting (19), can achieve shrinkage and variable identify
simultaneously (20), and thus, which is an appropriate solution
to establish signatures if there are numerous correlated covariates
(21). Therefore, we utilized LASSO Cox regression analysis in
the training set to establish an IIRPSS by a linear combination
of selected prognostic cell compositions among 22 immune cell
types weighted by the optimal coefficients. Simultaneously, the
prognostic prediction power of this IIRPSS was further validated
in the CGGA cohorts. Additionally, the immune risk score
(IRS) was demonstrated an independent prognosis factor by
univariate and multivariate Cox regression in training as well as
the validation set.

Gene Set Enrichment Analysis
GSEAwas performed in TCGA cohort to investigate the potential
immune status between high-risk and low-risk phenotypes based
on immune-related gene ontology gene sets downloaded from
the Molecular Signatures Database (MSigDB, http://software.
broadinstitute.org/gsea/msigdb/index.jsp). The significant cutoff
value was defined as the false discovery rate (FDR< 0.25) and the
nominal p < 0.05.

Statistical Analysis
All the statistical analyses were carried out using R software
(version 3.5.1) and considered significant when corresponding
p < 0.05. The LASSO method was used to establish Cox
proportional hazard models, and the Kaplan–Meier (K-M)
analysis was implemented to calculate survival rates using the
log-rank test. To quantitatively predict the probability of survival,
a nomogram was conducted. The time-dependent receiver
operating characteristic (ROC) curves were applied to assess
the performance of the predictive nomogram, determined by
the area under the ROC curve (AUC), and relevant calibration
plots were also visualized. The levels of immune cell fractions
between groups were assessed by Wilcoxon’s Sign Rank Test and
displayed with the violin plot. The correlations between the IRS
and immune checkpoints expression levels were evaluated by
Pearson’s correlation test.

RESULTS

Patient Characteristics
There were 239 GBM samples from TCGA and 71 samples from
CGGA with eligible survival information available for further

analyses after appropriately CIBERSORT filtering. The details of
patients’ characteristics are summarized in Table 1.

IIRPSS Construction and Validation
The optimal cutoff values of the 22 immune infiltration cells
were displayed in Table S1. LASSO Cox regression analysis was
used to construct IIRPSS in the training set (Figures 1A,B).
Ultimately, 17 types of immune cells were selected in this
scoring system, and the coefficient in the calculation formula for
calculating the IRS can be also found in Table S1. The patients
were divided into immune high- and low-risk groups based on
the optimal IRS 2.626 (Figure 1C) that was founded by “Cutoff
Finder,” and their survival statuses were distributed in Figure 1D.
Moreover, patients in the high-risk immune group showed a
significantly shorter overall survival than the low-risk immune
group (Figure 1E, p= 1e-10).

To further validate the robustness of the IIRPSS, we applied
the same formula and IRS cutoff value to the CGGA validation
set. Similarly, every patient was ranked by their IRS (Figure 1F)
and assigned to different immune risk groups based on the
cutoff IRS. Their survival time and statuses were detailed
in Figure 1G. Meanwhile, the K-M curve revealed that the
patients in low-risk immune group showed a longer overall
survival compared with those in high-risk immune group
(Figure 1H, p= 0.005).

Additionally, we also demonstrated that the IRS was an
independent prognostic factor in GBM by using univariate and
multivariate Cox regression analysis in training and validation
cohorts (Table 2). Considering the classification of GBM by
the world health organization (WHO) in 2016, including GBM
IDH-wildtype, GBM IDH-mutant and GBM NOS representing
a diagnosis that lacks full IDH evaluation (22). Therefore, the
clinical variables (including age and gender), as well as the genetic
variable (IDH status), were served as covariates in Cox regression
analyses. Moreover, there were only 3 GBM NOS samples in the
CGGA cohort, and thus, they were eliminated in the analysis to
minimize statistical bias.

Nomogram Construction
To quantitatively predict the prognosis of GBM patients,
we constructed a nomogram in TCGA cohort (Figure 2A)
that integrated variables showing prognostic trends in Cox
analyses. It revealed that the IRS was the leading factor

TABLE 1 | Summary of patient’s clinical characteristics.

Characteristic TCGA set CGGA set

Age ≤45 52 23

>45 187 48

Gender Male 157 41

Female 82 30

IDH Wildtype 98 54

Mutant 13 14

NOS 128 3

NOS was defined as a diagnosis for whom IDH status has not been fully evaluated.
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FIGURE 1 | Construction and validation of the IIRPSS. (A,B) 17 types of immune cells selected by LASSO Cox regression analysis. Left: using 10-fold

cross-validation to the optimal penalty parameter lambda. Right: LASSO coefficient profiles of the immune-infiltrating cells. (C–E) Distribution of the IIRPSS in the

training (TCGA) cohort. Upper panel: classification of patients into different immune risk groups based on the optimal IRS. Middle panel: distribution of patients’

survival time and status. Bottom panel: Kaplan–Meier survival curves between immune low- and high-risk groups. (F–H) Validation of the IIRPSS in the CGGA cohort.

Distribution of IRS, survival status and Kaplan–Meier survival curves, respectively.

for predicting nomogram, other factors including IDH status
showed inferior impact. The calibration plots (Figure 2B)

presented a better performance, more importantly, the ROC

curve also showed a satisfactory prediction sensitivity and

specificity with its 1-year predicting AUC = 0.754, 2-year

predicting AUC = 0.813, 3-year predicting AUC = 0.871
(Figure 2C).

Preliminary Exploration of Immune
Microenvironment Based on the IIRPSS
To better understand the immune infiltration microenvironment
in GBM, we first investigated the composition of the 17 types
of immune cells selected in the IIRPSS construction between
different immune risk groups in TCGA cohort. The relative
proportion of immune cells derived from CIBERSORT was
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TABLE 2 | Univariate and multivariate Cox regression analysis in training and validation cohorts.

Characteristics Univariate Multivariate

HR (95%CI) p-value HR (95%CI) p-value

TCGA Age 2.861 (1.956–4.184) 5.95e-08 1.837 (1.216-2.776) 0.004

Gender 1.326 (0.976–1.801) 0.071 1.164 (0.852-1.591) 0.341

IDH mutant 0.257 (0.111–0.591) 1.39e-03 0.442 (0.186-1.053) 0.065

IDH NOS 0.598 (0.442–0.808) 8.74e-04 0.718 (0.528-0.976) 0.034

IRS 2.718 (2.125–3.477) 1.73e-15 2.322 (1.797-3.001) 1.21e-10

CGGA Age 1.981 (1.098–3.574) 0.023 1.554 (0.814-2.967) 0.182

Gender 0.704 (0.406–1.221) 0.211 0.840 (0.472-1.493) 0.552

IDH status 0.549 (0.277–1.085) 0.084 0.799 (0.368-1.733) 0.570

IRS 2.047 (1.324–3.166) 1.28e-03 1.798 (1.137-2.843) 0.012

Age was defined as 1, ≤45, 2, >45; gender was defined as 0, female, 1, male; status of IDH was given a value of 0, wildtype; 1, mutant; 2, NOS in Cox regression analysis; HR, hazard

ratio; CI, confidence interval.

Bold values means p < 0.05, which represents statistically significant.

FIGURE 2 | Nomogram construction in TCGA set. (A) A nomogram to quantitatively predict 1-, 2-, and 3-year survival for GBM patients based on IRS, clinical and

molecular parameters. (B) Calibration curves of the nomogram for showing the consistency between predicted and actual survival. (C) A series of time-dependent

ROC curves for assessing the performance of the prediction nomogram.

used for this purpose. As showed in Figure 3, the fractions
of immune-infiltrating cells varied obviously, M0 macrophages
and M2 macrophages accounted for the majority but no
difference was found between groups. Besides, there were
11 types of immune cells significantly differently infiltrated
in different immune risk groups. Compared with low-risk
immune group, naïve B cells, follicular helper T cells, activated
Natural Killer (NK) cells, and activated mast cells were the
infiltration is significantly lower in high-risk group, while,
memory B cells, plasma cells, resting CD4+ memory T cells,
activated CD4+ memory T cells, gamma delta T cells, M1
macrophages and activated dendritic cells were significantly
high-infiltrated. Moreover, there were no significant infiltrations
of other 4 immune-infiltrating cells observed including CD8+

T cells, CD4+ naïve T cells, resting dendritic cells, and resting
mast cells.

At the same time, we also analyzed the relationships between
immune checkpoint expression and the IRS. The Pearson’s
correlation analysis (Figure 4) revealed that IRS value was
significantly and positively correlated with several immune
checkpoints expression, including CTLA-4 (p = 9.05e-04), PD-
L2 (p = 2.47e-03), CD27 (p = 2.47e-04), IDO (p= 1.3e-05),
GZMB (p = 9.28e-04), ICOS (p = 0.013), and 4-1BB
(p= 0.028). PD-1 was also positively correlated with IRS but
without significance.

In addition, to further explore the immune status between
immune high- and low-risk phenotypes, immune-related
functional annotation was performed by GSEA. The results
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FIGURE 3 | Violin plot for comparing the fractions of 17 types of immune cells included in the IIRPSS between immune low- and high-risk groups in TCGA.

FIGURE 4 | The correlations between IRS and (A) CTLA-4; (B) PD-L2; (C) CD21; (D) IDO; (E) GZMB; (F) ICOS; (G) 4-1BB; and (H) PD-1.

suggested that there were 29 immune-related gene ontology
terms significantly enriched in high-risk immune group
(Figure 5A), but none enriched in low-risk immune group. The
top 10 items were further visualized in Figure 5B.

DISCUSSION

GBM is a brain tumor characterized by highly intratumoral
heterogeneity and intratumoral heterogeneity (10), which leads
to an embarrassing situation that only a subset patient acquire
therapeutic efficacy after checkpoint blockade immunotherapy.
Facing this challenge, it may be a feasible strategy to stratify
patients and find those who are most likely to benefit

from immunotherapy. However, traditional methods for
detecting immune-infiltrating cells, such as flow cytometry or
immunohistochemistry (17), have the defection of not being
able to comprehensively assessing different immune cells or
discriminate the closely related cell subpopulations. These
methods are heavily limited by the number of fluorescent
channels and immunophenotypic markers available (16).
CIBERSORT, a bioinformatics tool, was known as the most

accurate method available (17) to integrate transcriptomics

profiles and analyze the large-scale immune landscape.

Thus, in the present study, we first used the novel CIBERSORT
algorithm to analysis 22 immune cell subsets landscape in
patients with GBM based on TCGA transcriptomics data and
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FIGURE 5 | GSEA for comparing immune-related GO terms between immune low- and high-risk groups. (A) Total of 29 immune-related GO terms significantly

enriched in high-risk immune group. (B) The visualization of the top 10 enrichments in high-risk immune group.

further construct an IIRPSS by LASSO Cox regression analysis.
The patients could be successfully classified into different groups
according to their IRS, and their prognoses were significantly
varied from group to group. Additionally, the performance of this
IIRPSS was validated in the CGGA cohort. Moreover, the IRS was
demonstrated as an independent prognostic factor by univariate
and multivariate Cox analyses. Most important, to predict the
survival of patients with GBM more accurately, a predicting
nomogram was established on the basis of IRS. Besides, this
nomogram also combined patient’s age and IDH status. IDH
status was the molecular marker in 2016 WHO classification
of GBM. Interestingly, the IRS was the dominant factor in the
nomogram rather than IDH status, indicating our IIRPSS was
superior to IDH status as an excellent prognostic factor.

Considering the importance of immune microenvironment
in the progression of GBM and the efficacy of individualized
immunotherapy, we preliminarily explored the immune
microenvironment based on the IIRPSS. Firstly, the 17 types

of immune-infiltrating cells incorporated in the construction
of this IIRPSS were explored between different immune risk
groups. Here we discussed several immune-infiltrating cells most
relevant to anti-GBM. Macrophages were the most majority
tumor immune-infiltrating cells in GBM, including M0, M1,
and M2 cells. It is generally considered that M0 macrophages
are unactivated and without specific function (19). While M0
can differentiate into M1 and M2 under different stimulations,
and they, respectively, exhibit inflammatory response against
tumor cells and immunosuppressive response promoting tumor
cells proliferation and differentiation (23). However, this concept
of dual-polarization status is likely to be oversimplified (24)
and is strongly debated (25). In addition, there is a great
challenge of this cognition that tumor-related macrophages
could co-express M1 and M2 biomarkers and a continuously
activated macrophage exists in GBM (25). More importantly, the
function of macrophage will changes quickly when exposure to
GBM, leading to innate and adaptive immune suppression (26).
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Therefore, reversing the immunosuppressive microenvironment
caused by macrophages may be promising therapies in GBM.
Previous bioinformatics analysis showed that macrophages
play a negative role, while CD8+ T cells play a positive role in
survival prediction of GBM patients (27). Pan-cancer analysis
also revealed that several T cells, including gamma delta and
CD8+ T cells, are broadly favorable prognostic signatures (28).
Tumor-infiltrating T cells (29), especially CD8+ cytotoxic T
lymphocytes, act as critical components of adaptive immunity
in attacking tumor cells. However, their low infiltrating levels
also indicate the impaired immune function in GBM; while
tumor-infiltrating CD4+ T cells play the roles of a double-
edged sword in tumor-specific immunity. Follicular helper
CD4+ T cells (30) perform a central role in initiating and
activating immune responses against tumor and helping CD8+
T cells function, which may be a reason why it is relatively
high in the low-risk immune group. On the contrary, CD4+

regulatory T cells inhibit anti-tumor immunity and accelerate
tumor progression. Even worse, the majority of CD4+ tumor-
infiltrating T cells suppress immune response in GBM (29),
which may explain the phenomenon that resting and activated
CD4+ T cells are both higher in high-risk immune group.
However, the truth may be much more complicated. Han et al.
(29) found that either high CD4+ and low CD8+ T cells level
or low CD4+ and high CD8+ T cells level correlates with
poor prognosis, indicating that appropriate CD8+/CD4+ T
cells ratio is much important to maintain effective anti-tumor
immunity and could be therapeutically significant. NK cells (31),
as important cellular components of the innate immune system,
can directly kill tumor cells without previous activation, and
the cytotoxic activity is powerful. Consistent with our findings,
Studies revealed that NK cells are a low infiltrated population
of immune cells in the GBM tumor microenvironment, but
they still have great cytotoxic activity (32). However, Wu et al.
found that the lack of NK cells was associated with better
prognosis in GBM. Therefore, how the infiltrating NK cells
functions in GBM microenvironment still need more studies to
eclucidate (33).

The complexity of the immune microenvironment of GBM
is a great impediment to successful immunotherapy. Recently,
immune checkpoint inhibitors (ICIs) initiated a new era of anti-
cancer immunotherapy (34). Therefore, we performed a deeper
investigation for exploring the relationships between immune
checkpoints and immune risk groups as well as the immune
statuses of different groups to look for the patients who may be
likely to obtain the maximal benefit from immune checkpoint
blockade. Our GSEA findings indicated an obvious enrichment
of immune-related GO terms in the high-risk immune group,
including innate and adaptive immune responses, which could
reflect a more active immune microenvironment in this group.
However, several immune checkpoints tended to express higher
in the microenvironment. It is a reasonable speculation that
the active immune microenvironment is inhibited by relevant
immune checkpoint protein-mediated suppression pathways.
So, the high-risk immune group patients may be the biggest
beneficiaries of ICIs. These results were in accordance with

previous studies (35–38). Recently, Han et al. demonstrated
that immune checkpoint molecule herpes virus entry mediator
(HVEM), also known as tumor necrosis factor receptor (TNFR)
superfamily 14 (TNFRSF14), is over expressed and related
to poor prognosis in GBM (39). HVEM maybe serve as a
new immune-therapeutic target for the treatment of GBM.
Considering limited studies have been conducted, further
studies are still needed to achieve effective and successful
immunotherapy in GBM.

There were some limitations to the present study. First, it
was a retrospective study, which may lead to an analytical
bias. Therefore, a prospective cohort study is needed to
achieve a better fit. Second, genomic landscape analysis revealed
some aspects of the immune microenvironment but lacked
comprehensive exploration.

In summary, our study used the immune-infiltrating cells to
construct an IIRPSS for the first time in GBM, classifying patients
into different immune risk groups. In addition, we further
established a nomogram to quantitatively predict a patient’s
survival based on IRS derived from this IIRPSS as well as clinical
data. Moreover, we also preliminarily explored the differences in
the immune microenvironment between different groups. These
findings may provide a guideline to identify candidates most
likely to benefit from ICIs and valuable resources to improve
personalized immunotherapy of GBM patients.

DATA AVAILABILITY STATEMENT

The datasets included in this study are available from the
UCSC Xena website (https://xena.ucsc.edu/) and the Chinese
Glioma Genome Atlas (CGGA) (http://www.cgga.org.cn/index.
jsp). More information of TCGA data and CGGA data
are below:

dataset ID: TCGA.GBM.sampleMap/HT_HG-U133A
download: https://tcga.xenahubs.net/download/TCGA.GBM.
sampleMap/HT_HG-U133A.gz; Full metadata
dataset ID:mRNAseq_693; mRNAseq_325
download http://www.cgga.org.cn/download.jsp.

AUTHOR CONTRIBUTIONS

WY conceived and designed the study, analyzed the results, and
completed the image visualization. GT wrote the manuscript.
All authors participated in the preparation approved the
final manuscript.

ACKNOWLEDGMENTS

We are sincerely thankful for the public database: TCGA
and GGA.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.00154/full#supplementary-material

Frontiers in Oncology | www.frontiersin.org 8 February 2020 | Volume 10 | Article 154

https://xena.ucsc.edu/
http://www.cgga.org.cn/index.jsp
http://www.cgga.org.cn/index.jsp
https://tcga.xenahubs.net/download/TCGA.GBM.sampleMap/HT_HG-U133A.gz
https://tcga.xenahubs.net/download/TCGA.GBM.sampleMap/HT_HG-U133A.gz
http://www.cgga.org.cn/download.jsp
https://www.frontiersin.org/articles/10.3389/fonc.2020.00154/full#supplementary-material
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Tang and Yin Immune Infiltration-Related Prognostic Scoring

REFERENCES

1. Batash R, Asna N, Schaffer P, Francis N, Schaffer M. Glioblastoma

multiforme, diagnosis and treatment; recent literature review. Curr

Med Chem. (2017) 24:3002–9. doi: 10.2174/09298673246661705161

23206

2. De Felice F, Pranno N, Marampon F, Musio D, Salducci M, Polimeni

A, et al. Immune check-point in glioblastoma multiforme. Crit

Rev Oncol Hematol. (2019) 138:60–9. doi: 10.1016/j.critrevonc.2019.

03.019

3. Gao WZ, Guo LM, Xu TQ, Yin YH, Jia F. Identification of a

multidimensional transcriptome signature for survival prediction of

postoperative glioblastoma multiforme patients. J Transl Med. (2018)

16:368. doi: 10.1186/s12967-018-1744-8

4. Pinel S, Thomas N, Boura C, Barberi-Heyob M. Approaches to physical

stimulation of metallic nanoparticles for glioblastoma treatment.

Adv Drug Deliv Rev. (2018) 138:344–57. doi: 10.1016/j.addr.2018.

10.013

5. Jain KK. A critical overview of targeted therapies for glioblastoma. Front

Oncol. (2018) 8:419. doi: 10.3389/fonc.2018.00419

6. Kesarwani P, Prabhu A, Kant S, Chinnaiyan P. Metabolic

remodeling contributes towards an immune-suppressive phenotype

in glioblastoma. Cancer Immunol Immunother. (2019) 68:1107–

20. doi: 10.1007/s00262-019-02347-3

7. Romani M, Pistillo MP, Carosio R, Morabito A, Banelli B. Immune

checkpoints and innovative therapies in glioblastoma. Front Oncol. (2018)

8:464. doi: 10.3389/fonc.2018.00464

8. Rohr-Udilova N, Klinglmuller F, Schulte-Hermann R, Stift J, Herac

M, Salzmann M, et al. Deviations of the immune cell landscape

between healthy liver and hepatocellular carcinoma. Sci Rep. (2018)

8:6220. doi: 10.1038/s41598-018-24437-5

9. Tomaszewski W, Sanchez-Perez L, Gajewski TF, Sampson JH. Brain tumor

microenvironment and host state: implications for immunotherapy.

Clin Cancer Res. (2019) 25:4202–10. doi: 10.1158/1078-0432.CCR-

18-1627

10. Wang X, Guo G, Guan H, Yu Y, Lu J, Yu J. Challenges and potential

of PD-1/PD-L1 checkpoint blockade immunotherapy for glioblastoma.

J Exp Clin Cancer Res. (2019) 38:87. doi: 10.1186/s13046-019-

1085-3

11. Lynes J, Sanchez V, Dominah G, Nwankwo A, Nduom E. Current options and

future directions in immune therapy for glioblastoma. Front Oncol. (2018)

8:578. doi: 10.3389/fonc.2018.00578

12. Xiong Y, Wang K, Zhou H, Peng L, You W, Fu Z. Profiles

of immune infiltration in colorectal cancer and their clinical

significant: a gene expression-based study. Cancer Med. (2018)

7:4496–508. doi: 10.1002/cam4.1745

13. Zeng D, Zhou R, Yu Y, Luo Y, Zhang J, Sun H, et al. Gene expression

profiles for a prognostic immunoscore in gastric cancer. Br J Surg. (2018)

105:1338–48. doi: 10.1002/bjs.10871

14. Zhao J, Chen AX, Gartrell RD, Silverman AM, Aparicio L, Chu T, et al.

Immune and genomic correlates of response to anti-PD-1 immunotherapy

in glioblastoma. Nat Med. (2019) 25:462–9. doi: 10.1038/s41591-019-

0349-y

15. Newman AM, Liu CL, Green MR, Gentles AJ, Feng W, Xu Y, et al. Robust

enumeration of cell subsets from tissue expression profiles. Nat Methods.

(2015) 12:453–7. doi: 10.1038/nmeth.3337

16. Zhang S, Zhang E, Long J, Hu Z, Peng J, Liu L, et al. Immune infiltration

in renal cell carcinoma. Cancer Sci. (2019) 110:1564–72. doi: 10.1111/cas.

13996

17. Zhou R, Zhang J, Zeng D, Sun H, Rong X, Shi M, et al. Immune

cell infiltration as a biomarker for the diagnosis and prognosis of

stage I-III colon cancer. Cancer Immunol Immunother. (2019) 68:433–

42. doi: 10.1007/s00262-018-2289-7

18. Tian MX, Liu WR, Wang H, Zhou YF, Jin L, Jiang XF, et al.

Tissue-infiltrating lymphocytes signature predicts survival in patients

with early/intermediate stage hepatocellular carcinoma. BMC Med. (2019)

17:106. doi: 10.1186/s12916-019-1341-6

19. Peng D, Wang L, Li H, Cai C, Tan Y, Xu B, et al. An immune infiltration

signature to predict the overall survival of patients with colon cancer. IUBMB

Life. (2019) 71: 1760–70. doi: 10.1002/iub.2124

20. Zhu GQ, Zhou YJ, Qiu LX, Wang B, Yang Y, Liao WT, et al. Prognostic

alternative mRNA splicing signature in hepatocellular carcinoma: a study

based on large-scale sequencing data. Carcinogenesis. (2019) 40: 1077–

85. doi: 10.1093/carcin/bgz073

21. Kiran M, Chatrath A, Tang X, Keenan DM, Dutta A. A prognostic

signature for lower grade gliomas based on expression of long non-

coding RNAs. Mol Neurobiol. (2018) 56:4786–98. doi: 10.1007/s12035-018-

1416-y

22. Louis DN, Perry A, Reifenberger G, von Deimling A, Figarella-Branger D,

Cavenee WK, et al. The 2016 World Health Organization classification of

tumors of the central nervous system: a summary. Acta Neuropathol. (2016)

131:803–20. doi: 10.1007/s00401-016-1545-1

23. Ge P, Wang W, Li L, Zhang G, Gao Z, Tang Z, et al. Profiles

of immune cell infiltration and immune-related genes in the tumor

microenvironment of colorectal cancer. Biomed Pharmacother. (2019)

118:109228. doi: 10.1016/j.biopha.2019.109228

24. Prionisti I, Buhler LH, Walker PR, Jolivet RB. Harnessing microglia and

macrophages for the treatment of glioblastoma. Front Pharmacol. (2019)

10:506. doi: 10.3389/fphar.2019.00506

25. Zeiner PS, Preusse C, Golebiewska A, Zinke J, Iriondo A, Muller

A, et al. Distribution and prognostic impact of microglia/macrophage

subpopulations in gliomas. Brain Pathol. (2019) 29:513–29. doi: 10.1111/bpa.

12690

26. Poon CC, Sarkar S, Yong VW, Kelly JJP. Glioblastoma-associated microglia

and macrophages: targets for therapies to improve prognosis. Brain. (2017)

140:1548–60. doi: 10.1093/brain/aww355

27. Pereira MB, Barros LRC, Bracco PA, Vigo A, Boroni M, Bonamino MH,

et al. Transcriptional characterization of immunological infiltrates and their

relation with glioblastoma patients overall survival. Oncoimmunology. (2018)

7:e1431083. doi: 10.1080/2162402X.2018.1431083

28. Gentles AJ, Newman AM, Liu CL, Bratman SV, Feng W, Kim D,

et al. The prognostic landscape of genes and infiltrating immune

cells across human cancers. Nat Med. (2015) 21:938–45. doi: 10.1038/

nm.3909

29. Han S, Zhang C, Li Q, Dong J, Liu Y, Huang Y, et al. Tumour-

infiltrating CD4(+) and CD8(+) lymphocytes as predictors of clinical

outcome in glioma. Br J Cancer. (2014) 110:2560–8. doi: 10.1038/bjc.

2014.162

30. Gu-Trantien C, Willard-Gallo K. PD-1(hi)CXCR5(-)CD4(+) TFH cells play

defense in cancer and offense in arthritis. Trends Immunol. (2017) 38:875–

8. doi: 10.1016/j.it.2017.10.003

31. Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new

tricks. Nat Rev Cancer. (2016) 16:7–19. doi: 10.1038/nrc.2015.5

32. Golan I, Rodriguez de la Fuente L, Costoya JA. NK cell-based glioblastoma

immunotherapy. Cancers. (2018) 10:522. doi: 10.3390/cancers101

20522

33. Wu S, Yang W, Zhang H, Ren Y, Fang Z, Yuan C, et al. The

prognostic landscape of tumor-infiltrating immune cells and immune

checkpoints in glioblastoma. Technol Cancer Res Treat. (2019)

18:1533033819869949. doi: 10.1177/1533033819869949

34. Park J, Kwon M, Kim KH, Kim TS, Hong SH, Kim CG, et al. Immune

checkpoint inhibitor-induced reinvigoration of tumor-infiltrating CD8(+)

T cells is determined by their differentiation status in glioblastoma.

Clin Cancer Res. (2019) 25:2549–59. doi: 10.1158/1078-0432.CCR-

18-2564

35. Wang Z, Song Q, Yang Z, Chen J, Shang J, Ju W. Construction of immune-

related risk signature for renal papillary cell carcinoma. Cancer Med. (2019)

8:289–304. doi: 10.1002/cam4.1905

36. Chen YP, Zhang Y, Lv JW, Li YQ, Wang YQ, He QM, et al. Genomic

analysis of tumor microenvironment immune types across 14 solid

cancer types: immunotherapeutic implications. Theranostics. (2017) 7:3585–

94. doi: 10.7150/thno.21471

37. Nghiem PT, Bhatia S, Lipson EJ, Kudchadkar RR, Miller NJ, Annamalai

L, et al. PD-1 blockade with pembrolizumab in advanced merkel-cell

Frontiers in Oncology | www.frontiersin.org 9 February 2020 | Volume 10 | Article 154

https://doi.org/10.2174/0929867324666170516123206
https://doi.org/10.1016/j.critrevonc.2019.03.019
https://doi.org/10.1186/s12967-018-1744-8
https://doi.org/10.1016/j.addr.2018.10.013
https://doi.org/10.3389/fonc.2018.00419
https://doi.org/10.1007/s00262-019-02347-3
https://doi.org/10.3389/fonc.2018.00464
https://doi.org/10.1038/s41598-018-24437-5
https://doi.org/10.1158/1078-0432.CCR-18-1627
https://doi.org/10.1186/s13046-019-1085-3
https://doi.org/10.3389/fonc.2018.00578
https://doi.org/10.1002/cam4.1745
https://doi.org/10.1002/bjs.10871
https://doi.org/10.1038/s41591-019-0349-y
https://doi.org/10.1038/nmeth.3337
https://doi.org/10.1111/cas.13996
https://doi.org/10.1007/s00262-018-2289-7
https://doi.org/10.1186/s12916-019-1341-6
https://doi.org/10.1002/iub.2124
https://doi.org/10.1093/carcin/bgz073
https://doi.org/10.1007/s12035-018-1416-y
https://doi.org/10.1007/s00401-016-1545-1
https://doi.org/10.1016/j.biopha.2019.109228
https://doi.org/10.3389/fphar.2019.00506
https://doi.org/10.1111/bpa.12690
https://doi.org/10.1093/brain/aww355
https://doi.org/10.1080/2162402X.2018.1431083
https://doi.org/10.1038/nm.3909
https://doi.org/10.1038/bjc.2014.162
https://doi.org/10.1016/j.it.2017.10.003
https://doi.org/10.1038/nrc.2015.5
https://doi.org/10.3390/cancers10120522
https://doi.org/10.1177/1533033819869949
https://doi.org/10.1158/1078-0432.CCR-18-2564
https://doi.org/10.1002/cam4.1905
https://doi.org/10.7150/thno.21471
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Tang and Yin Immune Infiltration-Related Prognostic Scoring

carcinoma. N Engl J Med. (2016) 374:2542–52. doi: 10.1056/NEJMoa16

03702

38. Weber JS, D’Angelo SP, Minor D, Hodi FS, Gutzmer R, Neyns B, et al.

Nivolumab versus chemotherapy in patients with advanced melanoma

who progressed after anti-CTLA-4 treatment (CheckMate 037): a

randomised, controlled, open-label, phase 3 trial. Lancet Oncol. (2015)

16:375–84. doi: 10.1016/S1470-2045(15)70076-8

39. Han MZ, Wang S, Zhao WB, Ni SL, Yang N, Kong Y, et al. Immune

checkpoint molecule herpes virus entry mediator is overexpressed and

associated with poor prognosis in human glioblastoma. EBioMedicine. (2019)

43:159–70. doi: 10.1016/j.ebiom.2019.04.002

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Tang and Yin. This is an open-access article distributed under

the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No

use, distribution or reproduction is permitted which does not comply with these

terms.

Frontiers in Oncology | www.frontiersin.org 10 February 2020 | Volume 10 | Article 154

https://doi.org/10.1056/NEJMoa1603702
https://doi.org/10.1016/S1470-2045(15)70076-8
https://doi.org/10.1016/j.ebiom.2019.04.002~
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	Development of an Immune Infiltration-Related Prognostic Scoring System Based on the Genomic Landscape Analysis of Glioblastoma Multiforme
	Introduction
	Materials and Methods
	Patients and Datasets
	Data Processing
	Cibersort Estimation
	Construction an Immune Infiltration-Related Prognostic Scoring System
	Gene Set Enrichment Analysis
	Statistical Analysis

	Results
	Patient Characteristics
	IIRPSS Construction and Validation
	Nomogram Construction
	Preliminary Exploration of Immune Microenvironment Based on the IIRPSS

	Discussion
	Data Availability Statement
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


