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In this study, we proposed an automated method based on convolutional neural network

(CNN) for nasopharyngeal carcinoma (NPC) segmentation on dual-sequence magnetic

resonance imaging (MRI). T1-weighted (T1W) and T2-weighted (T2W) MRI images were

collected from 44 NPC patients. We developed a dense connectivity embedding U-net

(DEU) and trained the network based on the two-dimensional dual-sequenceMRI images

in the training dataset and applied post-processing to remove the false positive results.

In order to justify the effectiveness of dual-sequence MRI images, we performed an

experiment with different inputs in eight randomly selected patients. We evaluated DEU’s

performance by using a 10-fold cross-validation strategy and compared the results with

the previous studies. The Dice similarity coefficient (DSC) of the method using only T1W,

only T2W and dual-sequence of 10-fold cross-validation as different inputs were 0.620

± 0.0642, 0.642 ± 0.118 and 0.721 ± 0.036, respectively. The median DSC in 10-fold

cross-validation experiment with DEU was 0.735. The average DSC of seven external

subjects was 0.87. To summarize, we successfully proposed and verified a fully automatic

NPC segmentationmethod based on DEU and dual-sequenceMRI images with accurate

and stable performance. If further verified, our proposed method would be of use in

clinical practice of NPC.

Keywords: nasopharyngeal carcinoma, magnetic resonance image, dual-sequence, convolutional neural

networks, segmentation

INTRODUCTION

Nasopharyngeal carcinoma (NPC) is a cancer type arising from the nasopharynx epithelium with a
unique pattern of geographical distribution, with high incidence in Southeast Asia andNorth Africa
(1). NPC has an incidence rate of 0.2‰ in endemic regions. Radiation therapy (RT) has come as the
only curative treatment because of the anatomic constraints and its sensitivity to irradiation (2).

The accurate delineation of NPC greatly influences radiotherapy planning. NPC cannot be
clearly identified from the adjacent soft tissue on computed tomography (CT) image (3). Compared
with CT, magnetic resonance imaging (MRI) has demonstrated superior soft tissue contrast,
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thus has been used as a preferred modality to evaluate the
regional, local and intracranial infiltration of NPC. Moreover,
NPC has complex anatomical structure and often shares the
similar intensities with the nearby tissues. The NPC often present
high shape variability, making the NPC segmentation very
challenging (4). In clinical practice, NPC are delineated manually
by radiologists or oncologists, which is time-consuming and
subjective. Compared with manual delineation, automatic
segmentation methods can be faster and relatively objective.

The automatic or semi-automatic segmentation methods,
such as the traditional machine learning (ML) methods (5–11),
have already been applied to NPC segmentation. The traditional
ML methods are subjective to extract hand-crafted features with
specific methods. Alternatively, convolutional neural networks
(CNNs) allow automatic features extraction and have shown
great performance in the field of medical image analysis. For
NPC segmentation, there are some studies based on CNNs.Wang
et al. (4) and Ma et al. (12) extracted patches in 2-dimension
(2D) MRI images and trained a CNN model to classify the
patches for NPC segmentation. Wang et al. (4) showed that CNN
performed better in segmentation tasks than the traditional ML
methods. However, segmentation by patches would cost much
time in training while just makes use of the information of
small local regions. To overcome these limitations, other studies
have applied fully convolutional network (FCN) (13) or U-net
(14) structure in NPC segmentation. Men et al. (15) and Li
et al. (16) applied an improved U-net to segment NPC in an
end-to-end manner. The fully convolutional structure of U-net
allows the network to realize pixel-wise segmentation and to
input the whole image for NPC segmentation without extracting
patches. Compared with extracting patches on images, fully
convolutional structure can segment NPC with global image
information and increase the segmentation efficiency. Based on
FCN and U-net structure, there have been studies about NPC
segmentation on multimodality images. Huang et al. (17) applied
an improved U-net to segment NPC in PET and CT images.
Ma et al. (18) applied a combined CNN to segment NPC in CT
and MRI images. Similar to previous studies, the segmentation
performance by usingmultimodality information was better than
those by using single modality information. Recently, Huang
et al. (19) proposed a dense convolutional network (DenseNet)
showing great performance in the field of computer vision.
DenseNet uses a densely connected path to concatenate the input
features with the output features, enabling each micro-block to
receive raw information from all previous micro-blocks. Inspired
by the successful application of deep CNNs inNPC segmentation,
in this study we proposed a dense connectivity embedding U-net
(DEU) based on U-net, dense connectivity and dual-sequence
MRI for accurate and automatic segmentation of NPC.

MATERIALS AND METHODS

Patient Data Acquisition and
Pre-processing
Totally 44 NPC patients were retrospectively recruited from ∗∗∗∗

with 34 males and 10 females. The age of the patients ranged

from 34 to 73 years old. The ethics committee of Panyu Central
Hospital performed the ethical review and approved this study
and waived the necessity to obtain informed written consent
from the patients. The T1-weighted (T1W) and T2-weighted
(T2W) images were both acquired with a 1.5T Siemens Avanto
scanner (Siemens AG Medical Solutions, Erlangen, Germany).
The spatial resolution of T1W images are 0.93 × 0.93 ×

4 mm3 and T2W images are 0.48 × 0.48 × 4 mm3. The
scanning range was from mandibular angle to suprasellar cistern
(25 slices), or from suprasternal fossae to suprasellar cistern
(45 slices). The gold standard of NPC boundary (including
the primary tumor and the metastatic lymph node) was
manually delineated by an experienced radiologist and double-
checked by an experienced oncologist on the T2W images
with reference to T1W images and saved as the gold standard
images with a value of one in the lesions and 0 in the
other regions. The diagnostic criteria for a detectable lymph
node included the following: (1) lateral retropharyngeal nodes
with a minimal axial dimension of ≥5mm and 10mm for
all other cervical nodes, except for the retropharyngeal group,
and if the minimum axial dimension of the lymph nodes ≥6
was considered high-risk metastatic; (2) lymph nodes with a
contrast-enhancing rim or central necrosis; (3) nodal grouping
(i.e., the presence of three or more contiguous and confluent
lymph nodes as clusters); (4) extracapsular involvement of
lymph nodes.

To make use of the information of both T1W and T2W
images, we performed co-registration of T1W to T2W images
by using Mattes mutual information (20) as correlation metric.
To do this, a one plus one evolutionary method (21) (initial
radius 0.004, maximum iterations 300) was used to find
the best parameters. To resample the T2W images to the
same spatial resolution as T1W images, the T2W images and
the gold standard images of the same patients were down-
sampled by using linear interpolation. The length and width
of the T2W images and gold standard images were reduced
by 50%. All the T2W and T1W images were normalized
by performing min-max normalization. All the image slices
were padded zero and cropped into 256 × 256 dimension.
Totally 1950 pairs of T1W and T2W images were used for
this study.

Automatic Segmentation of NPC by Deep
Learning
To study the advantage of integrating dual-sequence
information, we designed an experiment to compare
different inputs, by using 10-fold cross-validation
strategy. We trained three models for the comparisons
of different inputs, namely, using only T1W, using only
T2W and dual-sequence (both T1W and T2W) MRI
images, respectively.

Comparison Between Different Inputs

Network architecture
We developed a DEU to inherit both advantages of dense
connectivity and U-net-like connections. The network
architecture is shown in Figure 1. The T1W and T2W
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FIGURE 1 | Architecture of the proposed CNN model. N × N × C, N is the size of feature map and C is the number of feature maps. N × N Conv, the convolutional

layer with N × N kernel size; K = N, N is the growth filters number; N × N Average pooling, the average pooling layer with N × N kernel size; Concate layer, the

concatenation layer; ReLU, rectified linear unit.

images were inputted into the network by two independent
paths, respectively. As an end-to-end segmentation framework,
the structure consists of an encoder part and a symmetric
decoder part.

The encoder part reduces the size of input data sets and
extracts high representative features effectively. The decoder part
recovers the extracted features to the same size of input images
by deploying deconvolution, which is transposed convolution
for upsampling. The encoder part consists of four encoder
blocks and a dense connectivity block. An encoder block

contains three 3 × 3 convolutional (conv) layers, two group
normalization (GN) (22) layers and two leaky rectified linear
unit (LReLU) (23) layers. The outputs of convolutional layer
are inputted into a GN layer, and the groups of GN layer
were set as 8. Because GN has shown better performance
than batch normalization (BN) (24) with small batches (22),
we employed GN in the proposed network. To optimize
the effect of training and prevent gradient vanishing or
exploding, each convolutional layer is followed by LReLU to
the output of GN layer. The convolutional layer with two

Frontiers in Oncology | www.frontiersin.org 3 February 2020 | Volume 10 | Article 166

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ye et al. Segmentation of NPC on MRI

strides is designed for downsampling the feature maps. LReLU
is defined as:

yi =

{

xi , xi≥ 0

αxi , xi<0
(1)

where α between 0 and 1 decides the slope of the negative part. It
is set as 0.1 in the proposed network.

The dense connectivity block consists of a dense block and a
transition block. The dense block is a direct connection from any
layer to all subsequent layers, motivated by bottleneck structure
(25). The dense block consists of GN-LReLU-conv (1 × 1 kernel
size)-GN-LReLU-conv (3 × 3 kernel size). The transition block
consists of a GN layer and an 1 × 1 convolutional layer followed
by a 2× 2 average pooling layer. Two encoder blocks are used to
extract the low-level features of T1W images and T2W images,
respectively, and then concatenate them in channel-wise as the
input of the dense connectivity block. Another two encoder
blocks are designed for the permutation and combination of the
low-level features from the output of the dense connectivity block
to acquire high-level features.

The decoder part consists of five decoder blocks. A decoder
block contains a 3 × 3 deconvolutional layer (deconv), a
concatenation layer, two 3 × 3 convolutional layers with stride
2, two LReLU and two GN layers. Deconvolution may cause
information loss of the high-resolution images. To address this
problem, the concatenation layer is used to fuse the feature maps
in the convolution layers from the encoder part with the current
feature maps in the deconvolutional layer. These skip-layers are
able to capture more multi-scale contextual information and
improve the accuracy of segmentation. At the final layer the
feature maps are computed by a 1 × 1 convolutional layer with
pixel-wise sigmoid.

With all the decoder blocks, the decoder part finally
reconstructs the feature maps to an output image with the size of
256× 256, the same as that of the input images. For the network
optimization, the Dice loss (26) between the gold standard and
the segmented results is calculated as objective function.

Model implementation details
We implemented the proposed DEU in Keras (27) using
Tensorflow (28) backend, and trained it on Nvidia Geforce GTX
1080 TI with 11 GB GPU memory. The batch size was set as
1. We used Adam (29) optimizer with a learning rate of 0.0001
and the epochs number of 200. During each training epoch, data
augmentation was applied to enlarge the training dataset and to
reduce overfitting by flipping and re-scaling each image.

To further improve the segmentation accuracy, we performed
post-processing to refine the segmentation results. Since the 2D
network may ignore the context information of neighboring
slices, the segmentation results with 2D network may include
some isolated false positive (FP) areas. We extracted the
segmentation results by using connected components algorithm
on 3D images for each patient. We then removed the isolated
regions which were segmented in only one slice to improve the
segmentation accuracy.

The network architecture for the single sequence model is
different from the dual-sequence model which is shown in

Figure 1. The single sequence model has one single path for
extracting features at the beginning of the network. The outputs
of the first encoder block are fed to the dense connectivity
block directly. The other structure of the single sequence model
is the same as in DEU. We evaluated the single sequence
model by using 10-fold cross-validation strategy and compared
the performance of single sequence models with the dual-
sequence model by using Mann-Whitney U test. We collected
seven additional cases as an external validation dataset to
evaluate the robustness and generalization ability of our dual-
sequence model.

Performance evaluation
We used the testing dataset to evaluate the segmentation
performance of all models by calculating Dice similarity
coefficient (DSC) (30), sensitivity and precision as follows:

DSC=
2TP

FP+2TP+FN
(2)

Sensitivity=
TP

TP+FN
(3)

Precision=
TP

TP+FP
(4)

where true positive (TP) denotes the correctly identified tumor
area, FP denotes the normal tissue that was incorrectly identified
as a tumor, false negative (FN) denotes the tumor area that
is incorrectly predicted as normal tissue. DSC describes the
overlap between the segmentation results and the gold standard
of NPC. Sensitivity describes the overlap between the correctly
identified tumor area and the gold standard of NPC. Precision
describes the ratio of the correctly identified tumor area in the
segmentation result.

Comparison With Previous Studies

We evaluated the proposed method by using 10-fold cross-
validation strategy. We also compared our results of DEU with
the previous studies. However, performing a direct comparison
across different studies is difficult due to differences in the
datasets. Therefore, we directly compared our results with those
in these publications, in terms of DSC. Although they may
not be reasonably comparable, these comparisons to some
extent provide insights about how our method outperforms the
similar studies.

TABLE 1 | Comparisons of segmentation performance between different MRI

sequences using 10-fold cross-validation strategy.

Input DSCa Sensitivity Precision

T1W 0.620±0.064 0.642±0.070 0.654±0.072

T2W 0.642±0.118 0.654±0.115 0.688±0.146

T1W+T2W 0.721±0.036 0.712±0.045 0.768±0.045

aDSC, Dice similarity coefficient.
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RESULTS

Comparison Between Different Network
Inputs
As shown in Table 1, the mean DSC, sensitivity, precision of
the models with different inputs (T1W only, T2W only, and
dual-sequence) were 0.620 ± 0.064, 0.642 ± 0.118 and 0.721
± 0.036, respectively in 10-fold cross-validation experiment.
There were significant differences between the DSC values
between the single sequence models and the dual-sequence
model (T1W vs. dual-sequence, p ≤ 0.01; and T2W vs.
dual-sequence, p = 0.047), by Mann-Whitney U test. The
mean DSC with dual-sequence MRI images input was higher
than that with single-sequence MRI images input. An example
of automatic segmentation result is shown in Figure 2, in
which the DSC of our proposed method using only T1W,
only T2W and dual-sequence MRI images were 0.721, 0.784,
and 0.912, respectively. Two typical examples with poor results
are shown in Figure 3, in which the DSC of our proposed
method using dual-sequence MRI images were 0.610 and 0.467,
respectively. The average DSC of these seven external cases
was 0.87.

Comparison With Other Studies
With our trained DEU model in 10-fold cross-validation
experiment, a tumor segmentation task for an example (a co-
registered T1W image and a T2W image, two-dimensional) took

about 0.02 s, and <1 s for a patient. The feature maps of DEU are
shown in Figure 1A.

The median DSC in 44 patients was 0.735 (range,
0.383–0.946). The mean DSC, mean sensitivity, mean precision
of all patients were 0.721 ± 0.036, 0.712 ± 0.045, 0.768 ± 0.045.
The results of previous studies about NPC segmentation in MRI
are shown in Table 2. The DSC in the study by Li et al. (16) was
0.736, however in their study they manually selected the images
of tumor for segmentation, which means that their method was
semi-automatic. Deng et al. (10) and Ma et al. (12) achieved a
high DSC of 0.862 and 0.851, respectively, however, their method
was applied on the MRI images containing the tumor and was
also semi-automatic. Ma et al. (18) obtained mean DSC of 0.746,
however, their method was applied on the slices containing
the nasopharynx region. Song et al. (8), Yang et al. (9), and
Huang et al. (17) obtained mean DSC of 0.761, 0.740 and 0.736,
respectively, which was a little higher than our DSC, however
in their study PET/CT images were used. The performance of
Wang et al. (4) method (mean DSC of 0.725) was very close to
our method, which was evaluated in only four patients. Men
et al. (15) segmented NPC based on CT images and the mean
DSC of 0.716 was slightly lower than ours.

DISCUSSION

We proposed an automated NPC segmentation method
based on dual-sequence MRI images and CNN. We

FIGURE 2 | An example of the segmentation results with T1W only, T2W only and dual-sequence images. (A) T1W image. (B) Automatic segmentation result with

T1W image only (green line) and gold standard (red line) presented on the T1W image. Part of the lesion presented lower signal intensity in T1W image (arrow).

(C)Automatic segmentation result with dual-sequence images (blue line) and gold standard (red line) presented on the T1W image. (D) T2W image. (E) Automatic

segmentation result with T2W only image (yellow line) and gold standard (red line) presented on the T2W image. Some normal tissue beside the tumor presented high

signal intensity as compared with the surrounding tissue (arrow). (F) Automatic segmentation result with dual-sequence images (blue line) and gold standard (red line)

presented on the T2W image.
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achieved better performance with dual-sequence MRI
images than with single-sequence MRI images, as shown
in Table 1 and Figure 2. The good performance on

FIGURE 3 | Two typical examples of NPC segmentation with low accuracy.

The Dice similarity coefficient (DSC) of first row and second row are 0.610 and

0.467, respectively. (A,C) Automatic segmentation result with dual-sequence

images (green line) and gold standard (red line) presented on the T1W image.

(B,D) Automatic segmentation result with dual-sequence images (green line)

and gold standard (red line) presented on the T2W image.

the external validation dataset indicated that our model
was robust.

As shown in Figures 2A,D, the image features of NPC in
the T1W image and the T2W image were different. The T1W
image depicted part of the lesion as a region with lower signal
intensity (Figure 2B, arrow). Such low signal intensity region
was incorrectly identified as normal tissue, because the network
could not gain tumor features from the low signal intensity
region. As shown in Figure 2D, the boundary of NPC was
clearly shown in T2W image which was easy to segment by
the network. Some normal tissue beside the tumor (Figure 2E,
arrow) presented high signal intensity as compared with the
surrounding tissue. This may cause that the normal tissue beside
the tumor was incorrectly identified as tumor (Figure 2E). The
proposed method extracted the different features from T1W
and T2W images by two independent paths and fused them
in the dense connectivity block. As show in Figures 2C,F, the
high accuracy result with dual-sequence MRI showed that the
different image information was fused as efficient features for
more accurate segmentation.

The proposed CNN model has shown advantages in feature

extraction and feature analysis. As shown in Figure A1, the

feature maps of encoder part might have relatively high spatial
resolution, but the features of tumor were not emphasized, since

the encoder part was designed for extracting the features of

tumor and normal tissue. The decoder part reconstructed the
feature maps from encoder part to output the segmentation
results, and in this procedure, the features of tumor were
emphasized. As shown in Figure A1, the tumor in the feature
map of the decoder part showed high signal intensity but
had low spatial resolution. The skip-layer structure fused
the high spatial resolution feature maps from encoder part
and the feature maps of decoder part. The tumor in fused
feature map showed high spatial resolution and high signal
intensity. The feature maps showed that the skip-layer improved

TABLE 2 | Comparisons of segmentation performance between our proposed CNN model and the similar studies.

Studies Algorithm Images used Average DSCa Patient number Journal

Deng et al. (10) SVMb DCE-MRIc 0.862 120 Contrast Media and Molecular Imaging, 2018

Song et al. (8) Graph-based

cosegmentation

PET 0.761 2 IEEE Transactions on Medical Imaging, 2013

Yang et al. (9) MRFsd PET, CT, MRI 0.740 22 Medical Physics, 2015

Stefano et al. (11) AK-RWe PET 0.848 18 Medical and Biological Engineering and

Computing, 2017

Wang et al. (4) CNNf MRI 0.725 15 Neural Processing Letters, 2018

Ma et al. (12) CNNs+3D graph

cut

MRI 0.851 30 Experimental and Therapeutic Medicine, 2018

Men et al. (15) DDNNg CT 0.716 230 Frontiers in Oncology, 2017

Li et al. (16) CNN CE-MRI 0.890 29 Biomed Research International, 2018

Huang et al. (17) CNN PET-CT 0.736 22 Contrast Media and Molecular Imaging, 2018

Ma et al. (18) C-CNNh CT-MRI 0.746 90 Physics in Medicine and Biology, 2019

Proposed method CNN Dual-sequence MRI 0.721 44 –

aDSC, Dice similarity coefficient; bSVM, support vector machine; cDCE-MRI, dynamic contrast-enhancedmagnetic resonance imaging; dMRFs, Markov random fields; eAK-RW, adaptive

random walker with k-means; fCNN, convolutional neural network; gDDNN, deep deconvolutional neural network; hC-CNN, combined convolutional neural network.
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the accuracy of segmentation. To summarize, our proposed
network showed accurate NPC segmentation in dual-sequence
MRI images.

As shown in Table 2, the mean DSC of the proposed method
in 10-fold cross-validation experiment was 0.721 and some
studies have reported higher DSC than ours. However, in the
studies by Deng et al. (10), Stefano et al. (11), Song et al.
(8), Ma et al. (12, 18), and Li et al. (16), their methods were
not fully automatic with which the tumor were segmented in
the manually drawn volume of interest. The proposed method
allowed fully automatic tumor segmentation. Yang et al. (9)
and Huang et al. (17) used tumor metabolic information in
PET images which made the tumor was easily to be detected.
Wang et al. (4) evaluated their method with only four patients.
To summarize, we proposed a fully automatic segmentation
method with accurate and stable performance in dual-sequence
MRI images.

Our proposed method has some limitations. Firstly, the
patients sample size was relatively small, and the patients were
collected from single center. Future work with a lager sample,
especially from multicenter, would be necessary to further verify
our method. Secondly, the segmentation performance of the
proposed method was unsatisfactory in some small lymph nodes.
As shown in Figure 3, part of the normal lymph node and
tumor were incorrectly identified. The reason may be that the
image feature of normal lymph nodes was similar to that of
abnormal lymph nodes in the axial MRI images. We may adapt
the DEU to multi-view MRI images in future work. Thirdly, the
co-registration of T1W and T2W images is still challenging. A
method without co-registration may be proposed in future work.

In this study, we successfully proposed and verified an
accurate and efficient automatic NPC segmentation method
based on DEU and dual-sequence MRI images. Although
both DenseNet and UNet has been applied widely in tumor
segmentation tasks, no article has been published combining
them for the automatic segmentation of the NPC on dual-
sequence MRI. We the first time applied this method in the
automatic segmentation of the NPC and showed more stable
and better performance than other methods. With dual-sequence
images, the combination of different features from T1W and
T2W images increased the segmentation accuracy. The DEU
extracted the features of T1W and T2W in different path
automatically and fused the features with dense connectivity
block, which also contributed to the increased accuracy. 10-
fold cross-validation results showed that the proposed method

gained good performance. Future studies may aim to improve
the segmentation accuracy with improved network structure
or domain knowledge, avoiding the co-registration between
different modalities. If further verified with lager sample and
multicenter data, our proposedmethodwould be of use in clinical
practice of NPC.
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