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Immune checkpoint blockade (ICB) therapies that target programmed cell death 1 (PD1)

and PD1 ligand 1 (PDL1) have demonstrated promising benefits in lung adenocarcinoma

(LUAD), and tumor mutational burden (TMB) is the most robust biomarker associated

with the efficacy of PD-1-PD-L1 axis blockade in LUAD, but the assessment of TMB

by whole-exome sequencing (WES) is rather expensive and time-consuming. Although

targeted panel sequencing has been developed and approved by the US Food and

Drug Administration (FDA) to estimate TMB, we found that its predictive accuracy

for ICB response was significantly lower than WES in LUAD. Given that previous

studies were mainly focusing on genomic variations to explore surrogate biomarkers

of TMB, we turned to examine the transcriptome-based correlation with TMB in this

study. Combining three immunotherapeutic cohorts with two independent The Cancer

Genome Atlas (TCGA) datasets, we revealed that the expression of mutS homolog

2 (MSH2), one of the most crucial genes involved in DNA mismatch repair (MMR)

pathway, was the strongest feature associated with increased TMB in multivariate

analysis. Furthermore,MSH2 expression also displayed a significantly positive correlation

with smoking signature while an inverse association with MMR deficiency (MMRd)

signature in LUAD. More importantly, high expression of MSH2 markedly correlated

with increased PD-L1 expression and CD8+ T cell infiltration, both suggesting a

prominent immunotherapy-responsive microenvironment in LUAD. Notably, detecting

MSH2 expression is much easier, faster, and cheaper than TMB in clinical practice. Taken

together, this study demonstrates the association ofMSH2 expression with TMB and the

immune microenvironment in LUAD. MSH2 expression may be developed as a potential

surrogate biomarker of TMB to identify ICB responders in LUAD.
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INTRODUCTION

Recent clinical trials with immune checkpoint blockade (ICB)
therapies have demonstrated durable clinical responses in
patients with non-small cell lung cancer (NSCLC), but only a
minority of patients respond (1–3). The combination of ICB
therapies can improve response rates but also result in more
severe adverse effects than single-agent therapy (4). Previous
studies have reported that tumor mutational burden (TMB) (1–
3, 5–7), programmed death-ligand 1 (PD-L1) expression (5, 8),
CD8+ T cell infiltration (1, 9, 10), and DNA mismatch repair
deficiency (MMRd) (5, 11) could affect the efficacy of PD-1
blockade immunotherapy (5, 12, 13). However, only TMB and
PD-L1 expression are validated as predictive biomarkers for
ICB response in phase III clinical trials across multiple cancer
types (5, 7).

Currently, TMB performs much better than other biomarkers
for predicting ICB response in NSCLC (1–3). High TMB can
potentially generate higher immunogenic neoantigens presented
on the tumor cell surface and then facilitate immune recognition
of tumor cells as foreign (1, 2, 7). However, the assessment of
TMB is expensive and time-consuming (6, 14). Alternatively,
PD-L1 expression assessed by immunohistochemistry (IHC) is
much cheaper and timelier to select candidates for ICB therapies,
but many patients whose tumors are PD-L1-positive do not
respond (1). Additionally, the localization (on tumor-infiltrating
immune cells or tumor cells) and positivity threshold of PD-
L1 expression for predicting ICB efficacy are still undetermined,
which may affect its clinical application (1, 5, 6, 8, 15). Therefore,
we hypothesized that other factors, which highly correlated with
increased TMB and were as convenient as PD-L1 expression to
be detected, might also be developed as potential biomarkers to
predict ICB response in NSCLC.

To test our hypothesis, we recruited three well-studiedNSCLC
immunotherapeutic cohorts (1–3) and one multidimensional
non-immunotherapeutic The Cancer Genome Atlas (TCGA)
dataset. As previous studies reported (2, 10, 16–19), TCGA
samples without ICB therapies are still informative to explore
tumor immune escape and can also derive surrogate biomarkers
for ICB therapies. Combining these four cohorts, we revealed that
MSH2 expression was the most robust feature associated with
increased TMB and smoking signature in multivariate analysis
and might be developed as a potential surrogate biomarker of
TMB for identifying ICB responders in lung adenocarcinoma
(LUAD), one of the commonest types of NSCLC (20, 21).

MATERIALS AND METHODS

Clinical Immunotherapeutic Patients
Given the intratumoral heterogeneity across different cancer
subtypes, it is more reliable to discover the specific determinants
for ICB efficacy within the same cancer subtype (5), so we
only focused on the LUAD subtype according to its dominating
proportion in previous NSCLC immunotherapeutic cohorts (1–
3). We collected three LUAD cohorts containing both clinical
and genomic characteristics, which were initially reported in
Science (1), Journal of Clinical Oncology (JCO) (3), and Cancer

Cell (2) journals. For the Science-LUAD cohort, it contained 29
LUAD patients treated with PD-1 blockade (pembrolizumab)
(1). For the Cancer Cell-LUAD cohort, it involved 59 LUAD
patients treated with PD-1 plus CTLA-4 blockade (nivolumab
plus ipilimumab) (2). For the JCO-LUAD cohort, it contained 186
LUAD patients who had received anti-PD-(L)1 monotherapy or
in combination with anti-CTLA-4 (3).

TCGA-LUAD Datasets Without
Immunotherapy
Non-immunotherapeutic TCGA-LUAD datasets were extracted
from the UCSC Xena multi-omics database platform (22)
(https://tcga.xenahubs.net), including somatic mutation (n =

543) and RNA-seq expression (n = 576) profiles. We first
removed adjacent normal samples fromRNA-seq expression data
and then only analyzed those LUAD samples that had both
genomic and transcriptomic profiles (n= 478).

Tumor Mutational Burden (TMB) Estimates
TMB was defined as the number of somatic non-synonymous
single nucleotide variants. Raw somatic mutation data in
three immunotherapeutic cohorts were extracted from the
respective Supplementary Materials (1–3). Mutation profiles
were assessed by whole-exome sequencing (WES) on the
Illumina platform in Science-LUAD (1) and Cancer Cell-LUAD
(2) cohorts while determined by MSK-IMPACT targeted
panel sequencing on specific cancer-associated genes in JCO-
LUAD (3) cohort. The detailed methodology for generating
mutation calls has previously been described (1–3). For the
TCGA-LUAD dataset, somatic mutation data were retrieved
from the UCSC Xena multi-omics database platform (https://
xenabrowser.net/datapages/?dataset=TCGA.LUAD.sampleMap
%2Fmutation_broad&host=https%3A%2F%2Ftcga.xenahubs.
net&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.
edu%3A443) and preprocessed at the Broad Institute Genome
Sequencing Center (22). WES data were generated on the
Illumina platform. Mutation calls were calculated using the
MuTect method (23), and only calls with variant allele frequency
(VAF) >4.0% were included (22). The R package “maftools”
(24) was then used to calculate the total number of somatic
non-synonymous point mutations within each sample.

RNA-seq and Gene Set Enrichment
Analysis (GSEA)
For three immunotherapeutic cohorts, RNA-seq data were
not available. For TCGA-LUAD datasets, RNA-seq data were
assessed using the Illumina RNA sequencing platform. We
downloaded the level 4 gene expression data from the UCSC
Xena platform (22). The pre-processing and quality control
of expression data have previously been described (22). The
unit of mRNA expression value is pan-cancer normalized
log2 (norm_count+1).

For pathway enrichment analysis, we used MSigDB
(Molecular Signatures Database) of KEGG gene sets (25) to
enrich the significant pathways, which were determined by a list
of genes that highly correlated with increased TMB (Table S2;
AUC > 0.65, P < 0.0001). For the enriched results, a P > 0.05
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was considered statistically significant. We also recruited another
tool, GSEA software (http://software.broadinstitute.org/gsea/
index.jsp) (25), to confirm the pathway we enriched. GSEA
integrates the expression data with phenotypes’ information
to determine whether a gene set significantly correlates with
a defined phenotype. The normalized enrichment score
(NES) and the nominal P-value are two primary statistics
to examine the GSEA results. The ranking metric score is
used to measure the correlation of a gene with a phenotype,
with a positive value indicating a correlation with the first
phenotype and a negative value indicating a correlation with
the second.

Mutational Signature Analysis
We used the “SignatureAnalyzer” R package (26, 27) to calculate
the percentage of mutation signature within each tumor sample.
“SignatureAnalyzer” can capture the non-negative matrix
factorization algorithm (NMF) to decipher mutation signatures
within cancer genomes, and then it automatically calculates
the optimal number of mutation signatures (W) and the
fraction of mutation signature in an individual sample. Mutation
Annotation Format (MAF) files are available in the TCGA-LUAD
dataset (http://gdac.broadinstitute.org/) and necessary for this
analysis. The detailed method of mutation signature analysis
has been described (https://software.broadinstitute.org/cancer/
cga/msp).

Immune Cellular Infiltration Estimates
The abundance of tumor-infiltrating immune cells (CD8+ T
cells, T-regulatory cells, and macrophages) in LUAD samples was
assessed using the CIBERSORT algorithm (28). CIBERSORT
is an influential deconvolution method that uses support
vector regression to quantify the cellular components from
bulk tissue gene expression profiles. Based on gene expression
data, CIBERSORT can accurately estimate the immune
composition within a given tumor sample. We extracted
the relative proportion of immune cells of TCGA-LUAD
samples from the Pan-Cancer Atlas (https://www.cell.com/pb-
assets/consortium/PanCancerAtlas/PanCani3/index.html) (18)
and then compared them according to the indicated MSH2
expression status.

Statistical Analyses
Statistical analyses were performed using R software (version
3.5.2) and GraphPad Prism software (version 7.0.0). Student’s
t-test or Mann-Whitney U test was used to determine the
differences between two groups. Kruskal-Wallis test was
used to determine the differences among three or more
groups. We used ROC curves with the highest Youden
index to determine the optimum cut-off of TMB and
MSH2 expression.

The proportion of gene mutation was compared using
Fisher’s exact test. Pairwise correlations were calculated using the
Spearman correlation formula. Multivariate logistic and linear
regression models were conducted to assess the impact of gene
expression on TMB, adjusting for other covariates described. All
reported p-values were two-sided.

RESULTS

Clinical and Genomic Characteristics of
Selected Cohorts
We retrieved many previous studies and cancer databases,
only collecting four high-quality LUAD datasets that contained
both clinical and genomic information: 29 LUAD patients
treated with anti-PD-1 therapy (Science-LUAD) (1), 59
LUAD patients treated with PD-1 plus CTLA-4 blockade
(Cancer Cell-LUAD) (2), 186 LUAD patients treated with
anti-PD-1/PD-L1 therapies or in combination with anti-
CTLA-4 therapy (JCO-LUAD) (3), and 478 LUAD patients
without immunotherapy (TCGA-LUAD) (Figure 1; Table S1).
Pre-therapy tissues from LUAD patients were assessed by
whole-exome sequencing (WES) in Science-LUAD, Cancer
Cell-LUAD, and TCGA-LUAD cohorts while targeted panel
sequencing (MSK-IMPACT panel, covering specific cancer-
related genes) in JCO-LUAD dataset (Figure 1; Table S1).
Since TCGA-LUAD datasets had more samples than the
other three cohorts, we randomly divided it into two
independent cohorts to further validate our hypothesis
(Discovery-LUAD and Validation-LUAD, respectively) (Figure 1;
Table S1).

TMB was defined as the total number of somatic non-
synonymous point mutations. Except for the JCO-LUAD cohort
[median six and interquartile range (IQR) 3-11] assessed
by targeted panel sequencing, the quantity and range of
TMB in TCGA-LUAD (median 178 and IQR 80-326 in the
Discovery-LUAD cohort; median 167 and IQR 68-313 in the
Validation-LUAD cohort) were similar to that in Science-
LUAD (median 201 and IQR 109-302) and Cancer Cell-
LUAD (median 143 and IQR 40-296) cohorts (Figure 2A),
suggesting the homogeneity of these cohorts as previously
reported (1, 2).

WES Outperformed Targeted Panel
Sequencing for Assessing TMB as an ICB
Biomarker
Previous studies reported that TMB assessed by WES or
targeted panel sequencing was significantly associated with
improved efficacy of ICB therapies in LUAD (1–3). Moreover,
the assessment of TMB by targeted panel sequencing also
highly correlated with WES (r = 0.86, P < 0.001) (3).
However, using receiver operator characteristic (ROC)
curves as previously suggested (1–3, 16), we found that
WES-based TMB achieved consistently better performance
than targeted panel sequencing for predicting ICB response
in LUAD (Figure 2B; AUC = 0.82 (Science-LUAD), 0.80
(Cancer Cell-LUAD), and 0.60 (JCO-LUAD), respectively).
Additionally, TMB assessed by WES [Figure 2B; AUC
= 0.82 (Science-LUAD); and 0.80 (Cancer Cell-LUAD),
respectively] also performed better than PD-L1 expression
detected by IHC for predicting ICB response in LUAD
[Figure S1A; AUC = 0.61 (Cancer Cell-LUAD); and 0.69
(JCO-LUAD), respectively].
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FIGURE 1 | Flowchart of four selected clinical cohorts for statistical analysis. NSCLC, non–small cell lung cancer; WES, Whole-Exome Sequencing; LUAD, lung

adenocarcinoma; PD-1, programmed cell death-1; CTLA-4, cytotoxic T lymphocyte antigen-4; MSK-IMPACT, Memorial Sloan Kettering-Integrated Mutation Profiling

of Actionable Cancer Targets; TCGA, The Cancer Genome Atlas; ICB, immune checkpoint blockade.

FIGURE 2 | WES outperformed targeting-sequencing for assessing TMB as an ICB biomarker. (A) Quantitative analysis of TMB between TCGA- LUAD and the other

three published LUAD cohorts for immunotherapy. (B) Receiver operating characteristic (ROC) curves for the correlation of TMB with clinical response to ICB therapies

in the three cohorts. AUC, area under a ROC curve; Cutpoint, the Youden index-associated cutoff value of TMB. (C) Samples in the Discovery-LUAD cohort were

stratified into two groups based on the Youden index-associated cutpoint of TMB from the Science-LUAD cohort. TMB-High: ≥166.5; TMB-Low: <166.5. ****P <

0.0001, ns, non significant.

MSH2 Expression Significantly Correlated
With Increased TMB and Performed Better
Than PD-L1 on Predicting TMB in LUAD
Given that transcriptomic data in three immunotherapeutic
cohorts were not available, we turned to use multidimensional
TCGA-LUAD datasets, which contained both genomic and
transcriptomic features, to further explore the potential
determinants associated with increased TMB in LUAD.

To demonstrate the potential clinical usefulness of TMB for
predicting ICB response in LUAD, the Youden index was used

to choose the optimum cut point of TMB (16, 29). The index-

associated cut point of TMB in Science-LUAD was very close
to that in the Cancer Cell-LUAD cohort (Figure 2B; TMB =

166.5 and 186, respectively), which was also very approximate

to a previous report in NSCLC (TMB = 178) (1). Given that

Science-LUAD cohort was only treated with PD-1 blockade and
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FIGURE 3 | MSH2 expression highly correlated with increased TMB and performed better than PD-L1 on predicting TMB in the Discovery-LUAD cohort. (A) Volcano

plot of AUC and rank sum P-values demonstrating the positive correlation of transcriptomic features with increased TMB in the Discovery-LUAD cohort. AUC, area

under a ROC curve. (B) Pathway enrichment analysis of genes whose expression significantly and positively associated with increased TMB (AUC > 0.65, P <

0.0001), with P > 0.05 considered statistically significant. (C) Quantitative analysis of PD-L1, MSH2, and MSH6 mRNA expression in two groups according to

indicated TMB status. (D) ROC curves for the association of PD-L1, MSH2, and MSH6 mRNA expression with TMB status. ALL1: the combination of PD-L1, MSH2,

and MSH6 mRNA expression. ****P < 0.0001, **P < 0.01.

performed better than Cancer Cell-LUAD cohort on predicting
ICB efficacy (Figure 2B; AUC = 0.82 and 0.80, respectively),
we stratified the Discovery-LUAD cohort into two groups based
on the TMB cutoff from Science-LUAD cohort (Figure 2C; TMB
= 166.5).

According to the above TMB-defined groups in theDiscovery-
LUAD cohort, we performed the ROC test to all genes,
examining the association of TMB with all transcriptomic
features (Figure 3A). A list of genes, which highly and positively
correlated with increased TMB (AUC > 0.65, P < 0.0001),
were significantly enriched in the mismatch repair (MMR)
pathway (Figures 3A,B; Tables S2, S3), consistent with the result

of gene set enrichment analysis (GSEA) (Figure S2A). Notably,
MSH2 and MSH6 are two key cancer-related MMR genes
and were as similar as PD-L1 expression significantly up-
regulated in patients with high TMB in Discovery-LUAD cohort

(Figures 3A–C; Table S3). These results could be reasonably
speculated that patients with high TMB would potentially
accelerate the expression of MMR-related genes to repair the
impaired genome.

Additionally, we also examined the impact of MSH2 and
MSH6 expression on TMB in the context of PD-L1 expression.

There were moderate correlations of TMBwithMSH2 andMSH6
expression (Figure S3A; r = 0.46 and 0.39, respectively) while no
significant association with PD-L1 expression (Figure S3A; r =
0.13). In multivariate analysis incorporating MSH2, MSH6, and
PD-L1 expression, MSH2 expression was the most robust gene
associated with increased TMB in the Discovery-LUAD cohort
(Figure 3D; Figures S3B,C). Of note, the ROC test incorporating
MSH2, MSH6, and PD-L1 expression did not significantly
improve the predictive ability for TMB compared with MSH2
expression alone [Figure 3D; AUC = 0.74 (MSH2) and 0.76
(ALL1), respectively].

MSH2 Expression Outperformed Other
MMR-Related Genes for Predicting TMB in
LUAD
The MMR pathway is crucial for maintaining genomic integrity,
and the deficiency of MMR (MMRd) is also highly sensitive to
ICB therapies (11, 30). The potential mechanism is that tumors
with MMRd can result in microsatellite instability (MSI) and are
a specific subset of high TMB tumors (5). However, in LUAD, the
positivity rate of MMRd/MSI assessed by genomic variations is
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FIGURE 4 | MSH2 expression outperformed other MMR-related genes for predicting TMB in the Discovery-LUAD cohort. (A,B) Quantitative analysis of PMS2 and

MLH1 mRNA expression in two groups based on TMB status. (C) Pairwise correlations between TMB and four MMR-related gene expression. Cross indicated no

significant correlation (P > 0.05); r: Spearman correlation coefficient. (D) ROC curves for the association of MSH2, MSH6, PMS2, and MLH1 mRNA expression with

TMB status. ALL2: the combination of MSH2, MSH6, PMS2, and MLH1 mRNA expression. (E,F) Forest plots for univariate and multivariate logistic or linear analysis

of TMB with indicated gene expression. Of note, MSH6 expression was not analyzed in multivariate regression model given its tight correlation with MSH2 expression.

OR, odds ratio. ns, not significant.

<1% and much lower than the objective response rate to PD-
1 blockade in unselected patients (13, 19, 30–33). Given that
previous studies were mainly focusing on genomic variations
to explore the MMRd mechanism in LUAD (13, 33) and our
data showed that MSH2 expression was strongly associated with
increased TMB in Discovery-LUAD cohort (Figure 3; Figure S3),
we further examined the transcriptome-based MMRd status in
LUAD patients with high TMB.

MSH2, MSH6, PMS2, and MLH1 are four genes that play a
critical role in DNA MMR (13, 30). Four proteins codified by
these genes function in heterodimer pairs (MSH2-MSH6 and
MLH1-PMS2) to preserve genomic integrity (13, 30). In clinical
practice, the inactivation of one of the four genes detected by
next-generation sequencing (NGS) or IHC suggests an MMRd
mechanism within a tumor (13, 30). However, MSH2 and MLH1
are obligatory partners for forming the two heterodimers, while
MSH6 and PMS2 can be replaced by other MMR proteins,
such as MSH3, PMS1, and MLH3 (13, 30). We observed that
MSH2 was significantly mutated in patients with high TMB,
but it only accounted for 5.7% of high TMB tumors in LUAD
(Figures S4A–D). In addition, except for the other two MMR
genes, MLH1 and PMS2 were not significantly up-regulated
in patients with high TMB (Figures 3C, 4A,B), suggesting a
low abundance of MLH1-PMS2 heterodimers existed in high
TMB tumors. Furthermore, MSH2 whose expression displayed

the strongest correlation with increased TMB than the other
three MMR genes (Figure 4C), and the ROC test incorporating
MSH2,MSH6, PMS2, andMLH1 expression did not significantly
improve the predictive ability for TMB compared with MSH2
expression alone [Figure 4D; AUC = 0.74 (MSH2); and 0.75
(ALL2), respectively].

Interestingly, using both multivariate logistic and linear
regression analysis, we revealed that TMB displayed a
significantly positive association with MSH2 expression
while an inverse correlation with MLH1 expression in
Discovery-LUAD cohort (Figures 4E,F). Furthermore, GSEA
incorporating all MMR-related genes also confirmed these
findings (Figures S2B,C). These results suggested that down-
regulated MLH1 expression in patients with high TMB might
result in the dysfunction of the MMR machinery and then
potentially facilitate the accumulation of mutations in LUAD.

To further consolidate and extend our findings, we performed
two additional analyses. First, we used multivariate regression
analysis to demonstrate thatMSH2 expression was independently
associated with increased TMB, with adjustment for patients’
sex, age, and pack-year (smoking index) in the Discovery-LUAD
cohort (Figures S5A,B). Second, we validated the hypothesis that
MSH2 expression was the strongest determinant associated with
increased TMB in another independent Validation-LUAD cohort
(Figures 5A–D).
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FIGURE 5 | MSH2 expression outperformed other indicated genes for predicting TMB in the Validation-LUAD cohort. (A) Pairwise correlations between TMB and the

indicated gene expression. Cross indicated no significant correlation (P > 0.05); r: Spearman correlation coefficient. (B) ROC curves for the association of PD-L1,

MSH2, MSH6, PMS2, and MLH1 mRNA expression with the TMB status. ALL3: the combination of PD-L1, MSH2, MSH6, PMS2, and MLH1 mRNA expression.

(C,D) Forest plots for univariate and multivariate logistic or linear analysis of TMB with the indicated gene expression. Of note, MSH6 expression was not analyzed in

multivariate regression model given its high correlation with MSH2 expression. OR, odds ratio.

MSH2 Expression Outperformed Other
MMR-Related Genes for Predicting
Smoking Signature in LUAD
It is well-known that LUAD exhibiting high TMB is strongly
associated with cigarette smoking, and smoking signature is also

highly sensitive to ICB therapies in LUAD (1, 26). Consistent
with previous studies (1, 26), we found that patients with high
TMB significantly increased the fractions of smoking signature

in LUAD (Figure 6A; Figures S6A–D). However, MMRd/MSI
signature, as determined by NGS data, displayed significantly
decreased proportions in patients with high TMB (Figure 6B;

Figures S6A–D), suggesting that genome-assessed MMRd/MSI
signature was not suitable as a potential predictor of increased
TMB and improved ICB efficacy in LUAD.

Furthermore, using multivariate regression analysis, we
demonstrated that MSH2 expression was the most robust
MMR feature positively associated with smoking signature while

inversely correlated with MMRd/MSI signature in Discovery-
LUAD cohort (Figures 6C,D), suggesting that high MSH2

expression might also be a potential predictor of increased
smoking signature in LUAD.

High Expression of MSH2 Significantly
Correlated With Increased PD-L1

Expression and CD8+ T Cell Infiltration
Within the Tumor Microenvironment
PD-L1 expression and the infiltration of CD8+ T cells are
two important biomarkers for assessing the immunotherapeutic
microenvironment in LUAD (1, 5, 10, 12). Therefore, we
further examined the association of MSH2 expression with PD-
L1 expression and CD8+ T cell infiltration within the tumor
microenvironment. We stratified the Validation-LUAD samples
into two groups according to the Youden index-associated
cutoff value of MSH2 expression (Figure 7A). We revealed that
patients with high MSH2 expression significantly increased PD-
L1 expression and CD8+ T cell infiltration while decreased
the infiltration of T-regulatory cells (Tregs) (Figures 7B–D). It
has been reported that tumor-associated macrophages (TAMs)
were also important for assessing the efficacy of anti-PD-
1/PD-L1 therapies (34). We found that inflammatory M1
macrophages, but not pro-tumor M2, were also significantly
infiltrated into the tumor tissues with high MSH2 expression
(Figures S7A,B). These results suggested that patients with
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FIGURE 6 | MSH2 expression positively correlated with smoking signature but negatively associated with MMRd signature in the Discovery-LUAD cohort. (A,B)

Quantitative analysis of smoking and MMRd/MSI signature in two groups based on the TMB status. (C) Forest plot for univariate and multivariate linear analysis of

smoking signature with the four MMR-related gene expression. (D) Forest plot for univariate and multivariate linear analysis of MMRd/MSI signature with the four

MMR-related gene expression. Of note, MSH6 expression was not analyzed in multivariate regression model given its tight correlation with MSH2 expression.

****P < 0.0001.

high MSH2 expression displayed a significant immunotherapy-
responsive microenvironment in LUAD.

Of particular note, one LUAD patient who derived durable
clinical benefit from anti-PD-1 therapy showed the strong
staining of both PD-L1 expression and CD8+ T cell infiltration.
Moreover, this patient also displayed the strongest staining of
MSH2 expression among the four key MMR proteins, which
directly supported our hypothesis that MSH2 expression might
be a potential surrogate biomarker of TMB to predict ICB
response in LUAD [Figures 7E,F; raw IHC data retrieved from
Dong et al. (10)].

DISCUSSION

ICB-based therapies targeting CTLA-4 or PD-1 have shown a
promising future in multiple cancer types, but the molecular
mechanism between them is completely different (35).
Additionally, anti-PD-1 therapy performs much better than
anti-CTLA-4 therapy on the efficacy, survival, and adverse
events (5, 35). Therefore, this study mainly focused on LUAD for
anti-PD-1 therapy.

TMB is one of the most important biomarkers for predicting
ICB response in NSCLC (1–3, 7), and it also shows predictive
efficacy for ICB therapies in other types of solid tumors (7, 36),
but it still has some limitations (5, 6, 14, 19). For example, the
cut-offs of TMB for identifying ICB responders are different for
different tumor types, and the test platform for assessing TMB
has also not been standardized (5, 14, 19). Thus, more studies
are turning to develop surrogate biomarkers that highly correlate
with the TMB status, such as genetic mutations of DNA damage
response pathways and TP53/KRAS (10, 19, 37). However, these
mutations are positive for only a minority of patients, and the
broad detection of these TMB-related gene mutations in clinical
practice remains challenging (19). Titin (TTN) is the longest
gene within the whole genome, and its mutations have also
been proposed as a surrogate TMB biomarker for predicting
ICB response in solid tumors (19). However, TTN mutations
are not the cause of high TMB in tumors, and its mutations
also account for a small cohort of candidates (29.68%) (19,
38). In addition, targeted panel sequencing, such as MSK-
IMPACT panel, has also been developed and approved by US
Food and Drug Administration (FDA) to estimate TMB, but
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FIGURE 7 | High expression of MSH2 highly correlated with increased PD-L1 expression and CD8+ T cell infiltration in the Validation-LUAD cohort. (A) Samples in

the Validation-LUAD cohort were stratified into two groups based on the Youden index-associated cutoff of MSH2 expression from Figure 5B. MSH2-High: ≥0.295

(n = 109); MSH2-Low: <0.295 (n = 128); two samples whose expression profiles were missing. (B–D) Quantitative analysis of PD-L1 expression and the infiltration of

immune cells in individual tumor tissues based on MSH2 expression. (E,F) IHC staining of PD-L1, CD8, and four MMR- related genes in one LUAD patient who

derived durable clinical benefit from anti-PD-1 therapy. raw IHC data retrieved from Dong et al. (10). ****P < 0.0001, **P < 0.01, *P < 0.05.

its predictive accuracy for ICB response is significantly lower
than WES in LUAD (Figure 2B), which suggests that it still
needs more optimizations. Moreover, blood-based TMB (bTMB)
is being developed to predict ICB response in NSCLC, while
blood samples for detecting bTMB must contain the mutated
circulating tumor DNA (ctDNA) that must be shed from the
tumor, which has limited its clinical application (39).

Unlike previous studies that focused on genomic variations
(10, 19, 37, 40), we turned to the transcriptomic landscape
to explore the potential surrogates of TMB in LUAD. We
revealed that MSH2 was the most robust MMR gene whose
expression significantly correlated with increased TMB in LUAD.
Mechanistically, given the low mutation rates of MMR-related
genes in LUAD, the transcriptome-based dysfunction of the
MMR machinery is more likely to be the cause of high TMB.
Therefore, this study mainly focuses on MMR-related gene
expression. The other nine genes (CDCA5, MCM10, GINS4,
KIAA1524, KIF2C, NUF2, CDC20, CDC7, THOC4; Figure 3A;
Table S2) showing better performance than MSH2 may also
be potential TMB indicators in LUAD, which still needs more
mechanistic investigations.

MMRd testing has primarily been developed and tested
in patients with colorectal and endometrial cancer to predict
ICB response given their relatively high positive rates (13,

30, 33, 41). Mechanistically, tumors with MMRd are often
hypermutated and can result in microsatellite instability (MSI)
within the genome. Therefore, MSI has been proposed as a
marker of MMRd in previous studies (13, 30, 33). However, in
contrast to the findings in colorectal and endometrial cancer
(13, 26), we found that MMRd/MSI signature was significantly
low in LUAD with high TMB (Figure 6B; Figures S6A–D),
suggesting that genome-based MMRd/MSI might not cause a
high mutation load in LUAD. In addition, we observed that
highMSH2 expression showed a significantly inverse association
with increased MMRd/MSI signature in LUAD (Figure 6D).
Given that the relationships between MMRd/MSI and TMB
are complex and different for different tumor types (13), more
mechanistic investigations are required to illuminate these results
in LUAD.

In previous studies (13, 30, 33), all fourMMRproteins (MSH2,
MSH6, PMS2, and MLH1) were always detected together by IHC
to determine the MMRd status within a tumor. However, the
IHC method was used to indirectly infer the mutation status of
the four MMR genes (13, 30, 33). Of particular note, in LUAD,
the IHC-based method has rarely been used to detect the MMRd
status (13, 30, 33).

Importantly, our data revealed that a transcriptome-based,
not genome-based, MMRd mechanism widely existed in LUAD,
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which might partly illuminate the cause of high TMB in LUAD.
The potential mechanism is that both MSH2 and MLH1 proteins
are essential partners for forming the MMR machinery (13, 30).
However, we observed that TMB significantly and positively
correlated with MSH2 expression but inversely correlated with
MLH1 expression in LUAD (Figures 4E,F; Figures S2B,C).
Moreover, MLH1 was the only gene whose expression was
significantly down-regulated in LUAD tissues compared with the
other threeMMR genes (Figures S8A–D).MLH1 expressionmay
be suppressed by its promoter methylation in LUAD (33, 42, 43).
These results suggested that down-regulated MLH1 expression
might impair theMMRmachinery to repair the damaged genome
and then caused more mutation load in LUAD.

One limitation of this study is that we only collected one
LUAD sample showing the direct evidence that MSH2 expression
alone could be a surrogate TMB biomarker to predict ICB
response in LUAD. Because of the lack of public LUAD data, we
could not directly validate this result in a large cohort. However,
more prospective clinical trials are required to validate this
correlation. Another limitation is that the TMB cutoff (TMB =

166.5) for stratifying LUAD samples was based on a small number
of samples, which still needs large cohorts to determine. However,
given the intratumoral heterogeneity across different cancer
subtypes (1–3, 7, 16, 17), our data are much more homogeneous
and thus more reliable to find the specific biomarkers benefiting
the specific patients. Additionally, we also recruited another
independent cohort (Validation-LUAD cohort) to validate our
conclusion and proposed a mechanistic connection between
MSH2 expression and increased TMB in LUAD.

Since ICB therapies are associated with specific adverse events,
it is profound to identify predictive biomarkers to select patients
who are more likely to derive the maximum benefits from ICB
therapies. Therefore, more multi-omic datasets are indispensable
to explore and improve the efficacy of immunotherapies. It is
possible that MSH2 expression can be applied jointly with other

factors to acquire a greater prediction performance, which is
already suggested that combining multiple biomarkers are more
robust than a single analyte for predicting ICB efficacy (7, 10, 12,
17, 29, 39).

In summary, our data suggest that MSH2 expression
highly correlates with increased TMB and the immunotherapy-
responsive microenvironment in LUAD. Prospective clinical
trials are required to further confirm these results.
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