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Personalized treatment is an attractive strategy that promises increased efficacy with

reduced side effects in cancer. The feasibility of such an approach has been greatly

boosted by next-generation sequencing (NGS) techniques, which can return detailed

information on the genome and on the transcriptome of each patient’s tumor, thus

highlighting biomarkers of response or druggable targets that may differ from case to

case. However, while the number of cancers sequenced is growing exponentially, much

fewer cases are amenable to a molecularly-guided treatment outside of clinical trials

to date. In multiple myeloma, genomic analysis shows a variety of gene mutations,

aneuploidies, segmental copy-number changes, translocations that are extremely

heterogeneous, and more numerous than other hematological malignancies. Currently,

in routine clinical practice we employ reduced FISH panels that only capture three

high-risk features as part of the R-ISS. On the contrary, recent advances have suggested

that extending genomic analysis to the full spectrum of recurrent mutations and

structural abnormalities in multiple myelomamay have biological and clinical implications.

Furthermore, increased efficacy of novel treatments can now produce deeper responses,

and standard methods do not have enough sensitivity to stratify patients in complete

biochemical remission. Consequently, NGS techniques have been developed to monitor

the size of the clone to a sensitivity of up to a cell in a million after treatment. However,

even these techniques are not within reach of standard laboratories. In this review we

will recapitulate recent advances in multiple myeloma genomics, with special focus on

the ones that may have immediate translational impact. We will analyze the benefits and

pitfalls of NGS-based diagnostics, highlighting crucial aspects that will need to be taken

into account before this can be implemented in most laboratories. We will make the point

that a new era in myeloma diagnostics and minimal residual disease monitoring is close

and conventional genetic testing will not be able to return the required information. This

will mandate that even in routine practice NGS should soon be adopted owing to a higher

informative potential with increasing clinical benefits.
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MOLECULAR PATHOGENESIS OF
MULTIPLE MYELOMA AND RELATED
MONOCLONAL GAMMOPATHIES

Multiple myeloma (MM) is a post-germinal center B-cell
neoplasm characterized by the accumulation of clonal plasma
cells, the production of a monoclonal antibody, and end
organ damage (1). MM is preceded by asymptomatic stages of
disease in virtually all cases. These are monoclonal gammopathy
of unknown significance (MGUS) and smoldering multiple
myeloma (SMM). MGUS is a stable condition and progresses at
a low rate of 1%/year (2). SMM patients on the contrary have
a much higher risk of transforming to MM, but this risk is not
constant: it averages 25% per year for the first 2 years, and then
declines reaching levels similar to MGUS in patients who did not
progress 10 years after diagnosis (3).

The pathogenesis of the disease comes from genomic
alterations thought to occur in the germinal center of a secondary
follicle of a lymph node. Particularly, cytogenetic changes such
as hyperdiploidy or translocations involving recurrent oncogenes
and the immunoglobulin heavy chain locus are considered
initiating events (4). In some individuals, inherited alleles (i.e.,
germline polymorphisms) can increase the risk of developing
MM but this is considered a rare occurrence and all alleles
identified so far have been shown to only confer a small
risk (5–14). On the contrary, gene mutations are frequent in
newly diagnosed MM (NDMM) and have been particularly
characterized since the advent of next generation sequencing
(NGS) technologies (15–22). The most commonly involved
genes pertain to the MAPK pathway, the NF-kB pathway,
the DNA damage response/TP53 pathway. Interestingly, great
heterogeneity of the mutational spectrum of NDMM has
consistently been reported, such that (i) only few genes are
recurrently mutated in a significant fraction of patients, with a
high number of genes mutated in <10% of them; (ii) within a
single patient, often mutations are only present in a fraction of
cells, i.e., they are subclonal (23) or may present in lesions from
some anatomical locations but not others (24, 25). Consequently,
gene mutations are thought to be late events that contribute to
MM heterogeneity and impact disease progression more than its
initiation (4). In fact, NGS analysis of sample series has shown
variable degrees of spontaneous evolution of genes mutations,
cytogenetic lesions and mutational signatures (26–33). This
suggests that MM evolves in discrete steps not just clinically
but also from a molecular point of view, with the acquisition
of subsequent genomic lesions that underlie an increasingly
aggressive clinical behavior.

Following examples from other cancers, several efforts have
been put in place to use genomics to explain chemoresistance
in relapsed disease. Indeed, serial analysis of pre-treatment
and relapsed MM samples again showed a tendency toward
evolution, where a change in subclonal structure was often
observed together with an enrichment of high-risk features (17,
34, 35). Confirming the higher prevalence of high-risk lesions
in more aggressive stages, NGS analysis of primary plasma cell
leukemia, a rare extramedullary presentation of a clonal plasma

cell dyscrasia, showed increased prevalence of TP53 mutations
and del(17p) (36).

Overall, experimental evidence so far suggests that myeloma
progression, both spontaneous in asymptomatic stages and at
relapse after treatment, is linked to its heterogeneous subclonal
composition. Consequently, both the size of the tumor mass and
the intrinsic biological features of each subclone must be studied
if these biological advances are to be brought to clinical practice
to improve prediction of MM evolution.

CURRENT CLINICAL APPROACH TO
PROGNOSTICATION IN MONOCLONAL
GAMMOPATHIES

Recent advances in NGS technologies have provided us with
an unprecedented amount of data on the cell-intrinsic features
associated with the natural history of the disease. Despite these
advances, diagnostic criteria still segregate MGUS from SMM
based on surrogate measures of disease burden (i.e., percent
plasma cell bone marrow infiltration and serum levels of the
monoclonal protein), and SMM fromMM based on the presence
of end-organ damage or myeloma-defining events (37).

SMM is a clinical diagnosis that encompasses a wide
range of cases, from indolent ones that behave similar to
MGUS to aggressive ones that are to progress quickly to
MM. Consequently, several risk factors have been proposed
to stratify patients based on the risk of progression. Some
are based on laboratory values, others on imaging, but only
few on intrinsic characteristics of tumor cells: among those,
high-risk cytogenetic lesions, gene expression profiling and
abnormal immunophenotype (3, 38, 39). However, only rarely
such complex techniques are performed in routine diagnosis
of SMM. Consequently, the most commonly used risk model
for SMM progression relies on % bone marrow plasma cells,
levels of the monoclonal protein and free light chains (2, 40–43).
Unfortunately, different risk scores show poor overlap (44) and
imperfect prediction, which is likely due to the fact that direct
measures of the clone size and its intrinsic biological features are
not captured by the most widely used approaches.

In NDMM, prognosis has historically been dictated by
serum levels of albumin and beta-2 microglobulin within the
international staging system (ISS) (45). Only recently the ISS has
been complemented by LDH levels and FISH analysis of del(17p),
t(4;14), t(14;16) in plasma cells to provide a more accurate
measure of risk (R-ISS) (46). Additional studies have shown how
the addition of further FISHmarkers, or the use of SNP arrays can
refine prognostication (47–50), but novel prediction scores lack
prospective validation and wide applicability so far. Therefore, a
lot of variability exists regarding which culture conditions and
FISH probes should be used to identify different chromosomal
abnormalities (51). This variability stems from the standard
practice of each center, but also from national and international
guidelines which may slightly differ, and from availability
of reimbursement. For example, NCCN guidelines version
2.2020 (https://www.nccn.org/professionals/physician_gls/PDF/
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myeloma.pdf) recommend FISH on plasma cells for del(1p),
gain (3 copies) or amplification (>3 copies) of chromosome 1q,
del(13q), t(4;14), t(11;14), t(14;16), t(14;20), and del(17p) at time
of diagnosis. An alternative staging system to the IMWG R-ISS is
the Mayo Clinic mSMART 3.0 (www.msmart.org) that stratifies
myeloma patients into high or standard risk groups. The former
includes del(17p), t(4;14), t(14;16), t(14;20), amp(1q), high risk
gene expression profile signature, high plasma cell S-phase,
combinations of 2 or more high-risk genetic abnormalities. The
latter includes hyperdiploidy, t(11;14) or t(6;14).

UNFULFILLED PROMISES IN MOLECULAR
DIAGNOSIS APPLIED TO MYELOMA

NGS has shown how MM genome is characterized by
conspicuous heterogeneity and a subclonal structure that gains
complexity as the disease evolves. The hypothesis underlying this
review is that a precise characterization of this complexity in
each patient offers a better possibility to predict, if not prevent,
disease evolution and thus improve clinical management. On
the contrary, risk scores used in current practice are blind to
this complexity, as they rely on clinical and laboratory markers
and on a handful of cytogenetic lesions assessed by FISH
that are not enough to capture the described complexity and
measure MM aggressiveness. NGS thus has the potential to
produce a Copernican revolution in how we approach plasma
cell dyscrasias in the clinic, i.e., moving from surrogate measures
of tumor burden to actual quantification of disease extension
coupled with detailed biological analysis of the subclones present
in each case.

However, 9 years since the first NGS study in MM has
been published (15), clinical practice has been relatively
slow in embracing NGS as a diagnostic technique that may
complement the standard approach based on morphology,
FISH and flow cytometry. Likely, MM intrinsic heterogeneity
and the variety of treatment options have hampered the
rapid identification of novel prognostic and predictive
markers, and there is no consensus so far as to whether,
and how, NGS should be used to re-define high-risk
disease (52, 53). Furthermore, NGS in MM requires
cumbersome sample pre-processing with CD138 cell
purification in most cases to obtain meaningful results.
As an example, NGS studies in acute myeloid leukemia
have gained traction in the clinic in a much quicker way,
owing to a lower disease complexity and clearer translational
results (54–57).

However, we believe that part of the explanation could
also stem from a knowledge gap between routine clinical
care and the field of NGS analysis. In fact, NGS can be
perceived as a slow, complex, expensive technique that returns
results that are hard to interpret and reproduce, and with
little clinical value. On the contrary, a targeted NGS panel
can inform on gene mutations, aneuploidies, segmental copy-
number abnormalities (CNAs), and translocations in a much
more comprehensive way than FISH, karyotyping or SNP
arrays (58), at a lower cost than a comprehensive FISH

panel, with short on-hand processing time and turnaround
time and promising clinical correlates. Here, we propose that
NGS should be part of the initial diagnostic workup of every
NDMM case, at least in tertiary care centers and within
clinical trials. This will allow a more precise definition of
prognostic and predictive factors that are of clinical significance
today. Furthermore, the creation of large NGS data banks
that could be mined in the future will allow the quick
discovery and validation of novel genomic correlates of prognosis
and treatment response that could only become relevant for
future treatments.

NEXT GENERATION SEQUENCING

The Technique of Next-Generation
Sequencing
In the last decade, the introduction and development of
new sequencing technologies opened new biologic scenarios
especially in onco-hematologic fields (59). Currently, Illumina
(San Diego, CA) and Thermo Fisher (Waltham, MA) are
the most used platforms. They are referred to as “next-
generation,” although effectively they represent a “second
generation” of technologies after the irreversible terminator
sequencing invented by Sanger. Illumina’s integrated NGS
instruments use a reversible-terminator based technology. They
can read up to 300 bps and importantly, perform paired-
end sequencing. This implies that they are able to detect
chimeric DNA molecules where the two ends derive from
different chromosomes of chromosomal segments, such as
in the case of a translocation breakpoint being present in
the middle. In fact, many sequencing projects are nowadays
aimed at identifing whole-genome translocations and CNAs
and not mutations, and to do so a new strategy based on
low-coverage, long-insert DNA libraries has been developed to
increase the likelihood of identifying chimeric reads at low
coverage. This has the potential to represent a new gold standard
replacing FISH in the future, since it carries higher accuracy,
lower cost and higher throughput. Consequently, Illumina
represents the most commercialized NGS platform especially
for large genome-wide studies, metagenomics, and gene
expression studies (60). Differently, Thermo Fisher sequencing
technology, commercialized as Ion Torrent’s semiconductor
sequencing relies on hydrogen atoms release during DNA
polymerization (61). These machines generally provide reads
length up to 150–200 bp and are often employed in smaller
scale targeted resequencing projects such as those required
for diagnostic purposes. As they perform mostly single-end
sequencing, their performance in detecting structural variants
is weaker.

In the near future, a third generation of sequencing
technologies will be widely adopted. The most advanced
platforms are provided by Pacific Biosciences and Oxford
Nanopores, and they are based on single molecule sequencing
without DNA fragmentation, thus producing reads in
the thousands of bases. While these are still error-prone
machines and not suitable for clinical-grade mutation calls,
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they may outperform current technologies for detection of
structural variants.

Depending on the input DNA and the processivity of the
machines, DNA sequencing can be performed at the level of
the whole-genome (WGS), the coding genome (whole-exome,
WES) or limited areas of interest (targeted panels). These three
sequencing strategies have all been variably adopted to investigate
MM heterogeneity. Their principal characteristics are resumed
in Table 1. Preference between WGS, WES or a targeted panel
depends on the type of variants that need to be detected
(e.g., mutations vs. aneuploidies vs. structural aberrations)
and on the total target footprint. Clearly, smaller footprints
allow faster and cheaper analysis, through the possibility of
multiplexing more patients into each experiment. Also, IT
requirements for downstream analysis are less demanding.
For this reason, the choice of the experiment is greatly
influenced by the research-diagnostic question, but also by
the instrument/technology available and the sample load in
each laboratory. Currently, for clinical purposes a targeted
panel able to detect mutations, copy number alterations and
all the known IGH/IGK/IGL rearrangements represents the
most cost-effective solution for risk stratification in MM (21,
35, 58, 62–64). However, this approach is intrinsically limited
for research in that it requires prior knowledge of what to
look for, and hence it might miss unknown -but relevant-
translocations or gene mutations. On the other hand, a WGS
approach has the potential to capture the full spectrum of
genomic aberrations in MM, but at a much higher cost and time
of analysis.

Bio-informatic Analysis
A standard computer cannot process the output of a NGS
machine, nor can a clinical scientist analyze it. Rather, a dedicated
machine and a bioinformatics data analyst are required to process
the raw sequencing output into data of biological and clinical
value (Figure 1). Bioinformatics is the science that combines
knowledge derived from biology, computer science and data

analysis, with the aim of understanding and giving a role to data
from biological processes of a living organism.

The raw output of an NGS sequencer consists of text files, i.e.,
strings representing the nucleotide sequences and ASCII-coded
values that describe their quality. Based on this quality, each
read can be included or discarded, or trimmed of the low-quality
bases. Subsequently, the strings of disordered sequences present
in the raw files are aligned to the reference genome. One of the
most widely used algorithms is the Burrows-Wheeler Aligner
(BWA) (65). The alignment output is a binary file containing
the mapped reads, which can reach hundreds Gb for a single
human genome. The aligned files are then processed to analyze
multiple information.

To identify single nucleotide variants and small insertions and
deletions (SNVs and INDELs), base calls are compared to the

reference genome and often to a matched germline sample from

the same patient. The latter is required for larger scale discovery

effort such as whole-exome or -genome sequencing, where

germline individual variation can lead to the inclusion of a large

number of false positive somatic calls. Conversely, small targeted

gene panels may be analyzed without a germline control, since

the sequencing is only performed to identify recurrent oncogenic
somatic variants. Importantly, mutation calls are quantitative,
i.e., the frequency of the variant (variant allelic frequency, VAF)
is calculated and this is proportional to the number of DNA
molecules (and thus to the number of cells) bearing that mutation
over the total number of sequenced molecules (cells). This
implies that the potential to discover a mutation is proportional
to the coverage of the sample, i.e., the average number of
sequencedDNAmolecules per base of the target region. Coverage
can be lower for clonal mutations, that are present in all cells of
a tumor and thus in 50 or 100% of reads (for heterozygous and
homozygous mutations, respectively). However, coverage must
be higher for subclonal mutations, i.e., those present in a limited
number of tumor cells, and in samples with low purity where
a number of DNA molecules comes from contamination, non-
tumor cells. Furthermore, coverage is limited by cost: it can be
higher if the footprint of the DNA region is little, and must be

TABLE 1 | Types of tests available for genetic/genomic analysis in MM.

Target Cost per sample Type of variants detected Number of

variants detected

Advantages Limitations

WGS Whole genome ∼e1,500 per

sample

Mutations (coding and

non-coding), indels,

aneuploidies, CNAs, structural

rearrangements, signatures

Thousands Comprehensive genomic

characterization

Cost, analysis, storage of

data, low depth

WES Coding genome (2%) ∼e500 per sample Mutations (coding), indels,

aneuploidies, CNAs

Hundreds Lower cost, carries most of

clinically useful information,

easier analysis

No information on

non-coding genome

Targeted Custom number of

genes/regions

Variable Mutations (coding), indels,

aneuploidies, CNAs

Variable Customizable, lowest cost

and complexity of analysis,

limited storage required

Not useful for discovery

approaches

FISH Custom number of

regions

∼e100 per probe Deletions, gains, translocations None Familiar to most

laboratories, short

turnaround time

No mutations detected,

ideal for a low number of

probes
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FIGURE 1 | A proposed workflow for comprehensive genomic and transcriptomic analysis.
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lower if the whole genome is sequenced. Consequently, there is
no set rule to determine the perfect coverage beforehand, and
all the factors described above must be considered. As a rule of
thumb, a coverage of 30× (i.e., 30 DNA molecules sequenced
at each genomic position) is enough to detect clonal mutations
and subclonal mutations present in a large fraction of cells, and
is typically applied to whole-genome studies. A coverage of 200–
500× can allow reliable detection of mutations down to 2–5%
of cells and is usually applied to exome studies. A coverage
>1000× is usually applied to small targeted panels and can
identify variants in <1% of cells, especially with the help of
ad-hoc algorithms (66). Clearly, this is estimated assuming high
tumor purity, which is not always the case.

Different methods to identify variants exist: some are based
on allele frequency, counting for each position of the number of
normal and alternative alleles, others on probabilistic Bayesian
methods, where for each genomic position the probability of
observing every possible genotype is returned (67). Importantly,
different software can differ in sensitivity and/or specificity,
and no gold standard exists to identify variants. However,
concordance between different software is usually in excess of
90% for oncogenic variants with high VAF, making calls quite
reliable for clinical purposes. However, the concordance can
drop to <60% for unknown variants with low VAF, which are
nevertheless often discarded in clinic. A new approach that
has gained traction is that of using multiple callers to identify
variants, and retain only those identified by at least two of them,
to increase specificity.

To identify CNAs, NGS offers higher resolution and a more
precise identification of breakpoints over conventional arrays,
as the depth of coverage in a genomic region is correlated
with the total number of DNA molecules sequenced in that
region, i.e., its copy number (68). Furthermore, NGS data can
be used to evaluate translocations. This analysis is possible
when sequencing is performed on a paired-end protocol (i.e.,
using Illumina machines). Here, opposite ends of the same
read that map to distant positions in the same chromosome or
different chromosomes are analyzed as they likely highlight a
structural rearrangement. Subsequently, single reads spanning
the breakpoint can be searched to map the translocation with a
base-pair resolution (69).

Another important information that can be evaluated
using NGS data is mutational signatures. These are “genomic
fingerprints” left around a variant by the biological process
that caused it. These are usually processes responsible for DNA
duplication and repair, or physical/chemical damage to the DNA.
Usually, each process has a preferential activity for a particular
nucleotide context, i.e., the base at 5′ and the one at 3′ of the
mutation. Combining the six possible types of mutations and the
16 possible contexts, algorithms return the 96-class trinucleotide
profile of the mutational spectrum of each sample. This can be
further analyzed to extract the mutational signatures (and thus
the processes) that contributed to its generation (70).

Last, it must not be forgotten that other types of genetic
material can be sequenced. In the case of a cDNA input,
NGS can inform on expression levels of genes, expressed
mutations, expressed fusion transcripts and splice variants

that may have a future in the prognostication in MM. NGS
machines can also return information on epigenetic changes
related to cancer. Bisulfite-converted DNA can be sequenced
to detect methylated cytosines (methyl-seq). Accessible DNA
regions can be identified by probing open chromatin with the
hyperactive mutant Tn5 Transposase (ATAC-Seq). The activity
of transcription factors and the effect of histone modifications
can be assessed, along with any other protein-DNA interaction,
by sequencing DNA immunoprecipitated with specific
antibodies (ChIP-Seq).

CURRENT NGS APPLICATIONS IN MM IN
THE CLINIC

At diagnosis, NGS studies are not routinely performed and
FISH is still the main approach to molecular characterization
of the cancer cells in MM. This carries the intrinsic limitation
of investigating only a handful of CNAs and translocations.
However, knowing the complexity of the MM genome
the amount of information FISH can return is limited,
and so could be its prognostic value in comparison with
other approaches.

Conversely, the main current application of NGS in the
field of MM relies on detection of measurable residual disease
MRD through sequencing of the IGH/IGK/IGL loci. This is
a very powerful technique, mostly used within clinical trials
to date, and mostly through outsourcing the analysis to a
commercial service. In a recent meta-analysis, MRD negativity
was found to confer an ∼50% relative reduction in the risk
of both progression and mortality (71). Historically, molecular
MRD has been assessed through a multiplex polymerase chain
reaction (PCR) of the IGH locus with consensus primers (72–
76) followed by Genescan, heteroduplex analysis, or Sanger
sequencing (77). Nevertheless, this approach also amplifies
normal B cells resulting in low sensitivity (78, 79). Conversely,
an Allele Specific Oligonucleotides (ASO) technique consisting
in a real-time PCR with in patient-specific primers and probes
has a much higher accuracy and is able to detect up to 1
clonal cell in 100,000 analyzed (80). However, the high rate
of somatic hypermutation that occurs in MM cells allows the
identification of a molecular marker in only 50–60% of patients.
Moreover, detection of the tumor-specific IGH rearrangement
often requires cloning of two or more PCR products, resulting
in an expensive and labor-intensive procedure. Finally, the
ASO qPCR approach does not allow to evaluate the clonal
evolution in patients with relapsed MM, thus resulting in false
negative results (81). The recent adoption of NGS downstream
of consensus primer PCR, resulting in sequencing of all the
PCR products, has overcome most of these problems and results
in a precise catalog of the IGH, IGK and IGL rearrangements
in each case (82). In the diagnostic sample, the tumor-
specific rearrangement can usually be easily identified and
looked for in the remission sample, always using consensus
primers thus increasing the applicability of the technique
and allowing a resolution of 1 clonal cell out of a million
analyzed cells.
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The wide adoption of NGS-mediated MRD measuring with
a sensitivity of 10−6 is supported by a wealth of clinical data.
Recently, Perrot et al. published NGS data from the IFM/DFCI
study for young newly diagnosed NDMM patients. In this study,
the authors showed that different levels of NGS-MRD cut-off
could predict different outcomes in terms of both progression-
free (PFS) and overall survival (OS) at both pre- and post-
maintenance time points (83). Importantly, the PFS benefit
associated with MRD negativity by NGS was similar among
the different patient subgroups, thus confirming the theory
that MRD is the strongest prognostic marker that overcomes
certain adverse risk factors identified at diagnosis (i.e., low-risk
cytogenetics and ISS stage II or III), as also reported in other
studies (72). The prognostic value of MRD was also independent
of previous therapy (transplant vs. no transplant). Moreover,
NGS was also explored in other trials for elderly NDMMpatients:
the ALCYONE and MAIA studies demonstrated that, even
if experimental arms (Dara-VMP and Dara-RD, respectively)
induced 3- or 4-fold higher rates of MRD negativity compared
with control arms (VMP and RD, respectively), the achievement
of MRD negativity translated into a significant improvement in
PFS independently of previous therapy (84–86). These data are
consistent with those of relapsed MM patients enrolled in the
CASTOR and POLLUX studies (87–89).

NOVEL INSIGHTS OF CLINICAL VALUE
PROMOTED BY NGS IN MULTIPLE
MYELOMA

Smoldering Myeloma
The current clinical approach to SMM is watch-and-wait.
However, evidence in favor of early treatment is growing, at least
for high-risk stages (28, 90, 91). Therefore, improved prognostic
scores that could reliably identify high-risk SMM would address
a growing clinical need.

Recently, DNA and RNA-based NGS approaches applied
to both individual SMM samples and paired SMM-MM cases
have shown that these asymptomatic stages carry a globally
lower number of mutations than NDMM (28, 29). However,
clonal heterogeneity was observed at this stage as well, implying
spontaneous evolution of cancer cells through acquisition of
new genetic lesions conferring a proliferative/survival advantage.
This was particularly true at the level of single-cell RNA, where
some cases labeled as MGUS instead revealed plasma cells with
a clearly malignant phenotype (33). Interestingly, analysis of
serial samples highlighted two patterns of progression: (i) one
where cases evolved from minor or entirely new subclones,
often without discernible changes of amount of monoclonal
protein, and (ii) another where clinical progression was not
associated with genomic changes, and was generally quicker
(26, 27, 31, 32). Clearly, the former are true asymptomatic
cases that need to acquire new lesions to shift their clinical
behavior toward an aggressive phenotype, but in the latter case
two scenarios are plausible: these are either indolent cases that
evolve due to changes in the microenvironment (92, 93), or more
likely actual aggressive myelomas that just need more time to

accumulate enough tumor burden and/or end-organ damage to
meet clinical criteria for progression. Since the advent of NGS,
analysis of rearrangements in SMM has been possible at a whole-
genome scale. This has been particularly fruitful in the case of
MYC rearrangements, which are frequent in MM but hard to
study due to promiscuous partners and distant breakpoints. A
recent study has clarified how only IGH-MYC rearrangements
confer high-risk of SMM progression, mandating that risk
scores are updated to reflect this analysis (94). Also complex
rearrangements, a newly discovered phenomenon in MM (23),
were equally present in SMM albeit at a lower cancer cell fraction
(32). Last, a differential timing of activity of mutational processes
was observed in SMM: early mutations, likely from pre-cancer
initiation stages, arise from the activity of the DNA deaminase
AID or from processes associated with cell aging. Late mutations,
i.e., the ones arising at the time of disease progression, are more
often caused by a cancer-associated mutational process driven
by aberrant activity of the APOBEC family of DNA deaminases
(32, 95, 96). Therefore, from a genomic point of view, high-
risk SMM cases are most similar to NDMM cases and their
identification will help stratification of patients (Table 2).

Limitations of the described studies are several, ranging from
low number of samples, to contamination from normal cells
in some cases, to an inevitable bias toward higher-risk SMM
cases. However, data are promising enough to believe that NGS
will in the future unravel the actual determinants of disease
progression in SMM and that will have a profound impact on
clinical management of asymptomatic patients.

Newly Diagnosed Myeloma
At diagnosis, MM is staged in three risk groups based on the R-
ISS that relies on surrogates of disease burden (albumin, beta-2
microglobulin, LDH) and FISH for three high-risk cytogenetic
features (t4;14), t(14;16), del(17p) (46). Clearly, the extended
genotyping ability provided by NGS holds the promise of further
refining the prediction of such risk (19, 21, 95, 98), as well as that
of identifying novel predictive markers that may guide treatment
(99–101). However, the prognostic information at diagnosis in
MM has historically been only relevant for the patient in terms
of management of expectations, as no risk-adapted treatment in
myeloma is available. Instead, the landscape is rapidly changing,
and four main aspects are to take into account when thinking of
prognostication and treatment of myeloma in the coming years:
(i) not all high-risk prognostic factors are captured by the R-ISS
(52, 53); (ii) novel treatmentsmay significantly change the catalog

TABLE 2 | Papers showing a prognostic value of extended genotyping in

smoldering myeloma.

Study Method of detection What detected

Bolli et al. (32) WGS APOBEC signature

Maura et al. (23) WGS Complex rearrangements

Misund et al. (94) WGS, targeted IGH-MYC translocations

Boyle et al. (97)

(ASH abstract)

WES, targeted Mutational burden
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of high-risk features; (iii) treatment may become risk-adapted
soon; (iv) predictors of response, even if devoid of prognostic
value, may soon enter clinical practice.

Regarding the first point, the high-throughput genotyping
possibilities offered by NGS, coupled with the availability of
large datasets amenable to analysis, have highlighted several risk
factors that go beyond the ones described above. Perhaps the
most cited ones are those included in the definition of “double
hit” MM, where features such as amp(1q) in the context of
R-ISS stage III and bi-allelic inactivation of TP53 by means
of mutations of one allele and deletion of the other confer
poor prognosis independently of the R-ISS. Importantly, the
prognostic value of CNAs in chr1q seems limited to amplification
of 4 or more copies of the chromosome, a quantitative result that
NGS can capture (98). Other markers have a less clear impact.
Among those are del(1p) and del(12p)(48) and a rare state
of hypodiploidy/hyperaploidy associated with del(17p) (102–
104), which is evident by karyotyping and where NGS could be
particularly informative. Furthermore, the recent discovery of the
poor prognostic value of immunoglobulin lambda translocations
and their lack of response to IMiDs (105) highlights once more
the value of an “unbiased,” whole-genome approach in discovery
of prognostic markers. In contrast, single gene mutations seem
to have very little prognostic value in most cases (17, 21).
The one exception is the Myeloma XI UK trial, where patients
were treated with IMiDs in first line. In this context, EGR1
and IRF4 mutations conferred good prognosis, and ZFHX4 a
bad one (19). However, the study of the whole mutational
spectrum of NDMM genomes allowed to draw some correlations
between hypermutated samples and worse prognosis (17, 22).
This concept can be extended to the analysis of cytogenetic
lesions, where several papers have highlighted that prognosis is
inversely proportional to their number, often independently of
their type (21, 47, 49). Lastly, initial reports on the analysis of
mutational signatures to prognosis have highlighted that cases
with high contribution from APOBEC have worse prognosis
independently from the number ofmutations and the cytogenetic
subgroup (95, 106). Altogether, data collected in the last years are
pointing at a much larger array of lesions that need analyzing
to accurately prognosticate NDMM, as it looks like survival is
influenced by an increasing genomic complexity more than the
presence/absence of a handful of genetic lesions. Unsurprisingly,
novel risk scores are emerging that take into account a larger
number of lesions to improve prognostication in NDMM
(50) (Table 3).

In addition to the well-established role of genomic lesions
in the onset and development of MM, deregulated epigenetic
mechanisms are emerging as important in MM pathogenesis
and prognosis. In the past decade, several studies have suggested
that epigenetic mechanisms via DNA methylation, histone
modifications and non-coding RNA expression are important
contributing factors in MM. Their relevance ranges from disease
initiation, progression, clonal heterogeneity and response to
treatment. All of these post-translational modifications (PTMs)
can be tested by next-generation sequencing, focusing on the
status of a single gene or small group of genes, potentially
revealing their impact on patients’ prognosis. For example,

TABLE 3 | Papers showing a prognostic value of extended genotyping in newly

diagnosed myeloma.

Study Method of detection What detected

Palumbo et al. (46) FISH t(4:14), t(14;16), del(17p)

Carballo-Zarate et al. (49) Karyotype, FISH

(HDMM patients only)

del(1p), amp(1q), t(11;14),

del(13q), del(17p)

Bolli et al. (21) Targeted 197 different events

(mutations, CNAs,

translocations)

Maura et al. (95) WES Mutational signatures

Walker et al. (22) WES Any driver gene mutation

Walker et al. (98) WES TP53 mutations, amp(1q),

t(4:14), t(14;16), del(17p)

Perrot et al. (50) FISH, Cytoscan HD

arrays

Trisomy 5, Trisomy 21, t(4;14),

amp(1q), del(1p32), del(17p)

Barwick et al. (105) WGS IGL translocations

in MM global DNA hypomethylation correlates with disease
progression (107) and poor prognosis (108). Moreover, DNA
methylation has been shown to influence the expression
of microRNA genes with tumor suppressor functions (109–
111). Deregulation of miRNAs expression and function has
been suggested to have a clear impact on tumor initiation,
progression and metastasis in cancer including MM (112–
114). Global analysis of miRNA expression in MM has also
revealed a clinical relevance as the analysis could correlate
miRNA expression to disease progression, molecular subtype,
survival and response to treatment (115–120). More recently,
several whole genome sequencing and gene expression studies
have underpinned that histone PTMs can model chromatin
structure driving complex regulatory networks (121). However,
epigenetic mechanisms are far from reaching enough evidence
to be proposed as clinical-grade prognostic markers and
further work and technological advances are needed before this
can happen.

Whole transcriptome analysis, both by microarrays or
RNAseq, can also be used to identify gene expression signatures
with prognostic value. The University of Arkansas for Medical
Sciences (UAMS) group has proposed some years ago the
GEP70 test as a significant predictor of outcome, independent
of clinico-pathologic and genetic features (122). More recently,
the SKY92 signature has been validated and combined with
the International Staging System (ISS) to identify patients
with different risk disease with high sensitivity (123). Despite
extensive validation and convincing results though, gene-
expression based prognostic scores have not gained widespread
adoption. Problems are a lack of consensus over which signature
should be used, and a laborious and non-standardized sample
processing and data analysis.

Therefore, genetic and genomic markers are by far the
prognostic markers in MM that are closer to clinical adoption.
However, high-risk features are also necessarily defined relative
to the treatments available. The one exception is del(17p), that
is universally confirmed across age groups and treatment types.
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Examples of less stable features include the t(4;14), which seems
to respond well to first-line bortezomib (99), similar to cases
with deletion of the TRAF3 gene (124). On the contrary, the
negative prognostic effect of ZFHX4 mutations seems limited to
patients receiving IMiDs as first line, as discussed above. Likely,
with an increasing array of anti-myeloma agents, this list is
going to expand realizing themuch-valued paradigm of precision
medicine through the identification of further correlates of drug
response. Again, this will mandate that extended genotyping is
performed at diagnosis for every patient.

Finally, the treatment landscape of NDMM is rapidly
changing thanks to the introduction of novel agents and
combinations. Risk-adapted treatment is already proposed
by some groups, e.g., with respect to performing or not
autologous stem cell transplantation (ASCT) in first line
for standard-risk patients (125, 126). Conversely, tandem
ASCT has shown improved survival in patients with high-
risk features and is widely used in Europe in this setting
(127). Last, the introduction of minimal residual disease
(MRD) monitoring in people achieving deep responses also
carries big promises. MRD-negative status seems to predict
longer-term survival regardless of the treatment administered
and of the risk at diagnosis (83), so that in future clinical
trials it may become a new standard endpoint. In fact,
many upcoming clinical trials are designed with different
treatment arms based on the risk score at diagnosis and
on the achievement of MRD-negative status, so that the
future may bring innovative strategies to personalize treatment
in MM.

Relapsed and Refractory Myeloma
Much less is known about the genomics of relapsed-
refractory myeloma. Initial studies suggest that cases retain
a significant heterogeneity, with subclones showing expansion
or reduction based on the type of treatment, increased
number of mutations, copy-number abnormalities, complex
rearrangements and contribution from novel mutational
signatures (17, 23, 34, 35, 96). Targeted sequencing studies
have highlighted increasing prevalence of mutations conferring
resistance to IMiDs (particularly in CRBN, IKZF1, IKZF3)
and PIs (PSMB5, PSMB8, PSMB9, PSMD1, and PSMG2)
(62, 128). However, mutated cases are still a great minority
and mutations are often subclonal, suggesting that while
functionally relevant, the clinical impact of these mutations and
their utility to guide further treatment will need validation.
To little surprise, single-agent targeting of actionable
gene mutations has revealed unsatisfactory in MM so
far (24, 129, 130).

On the contrary, analysis of cases refractory to both Pis
and IMiDs has highlighted a higher prevalence of high-risk
cytogenetic features such as amp(1q) and del(17p) that may
explain chemoresistance much more readily (131). The evidence
that new mutations and cytogenetic lesions can be acquired at
relapse suggests the utility to repeat genotyping at this stage.
However, future studies will also be required to assess whether
the predictive and/or prognostic value of genomic alterations
described in NDMM is conserved in advanced stages.

FUTURE CLINICAL APPLICATIONS OF
NGS IN THE CLINIC

The recent advances described above suggest that, in the near
future, routine management of MMwill require such a vast array
of genetic findings that an NGS platform would be perfectly
suited to address this need (Figure 2). NGS has been already
shown to perform as well as or even outperform FISH for
structural changes (58, 63, 64). However, cost, turnaround time
and regulatory aspects also need to be taken into account.
Given the growing number of FISH probes required for a
comprehensive characterization of MM and the decreasing cost
of sequencing, there is little doubt that soon targeted NGS panels,
or even WGS will become cheaper than running, for example, 8
FISH probes as per NCCN guidelines. Turnaround time of FISH
can be as short as 24 h. NGS requires slightly more time than
this, in the order of 2–3 working days as a minimum. However,
treatment of MM is rarely an emergency, and even most acute
cases of cord compression or renal failure can be managed with a
short course of steroids while waiting for test results. Regulatory
aspects are more difficult to discuss as they are also crucially
variable from country to country, or even in different regions of
the same country. But given the above considerations and the
added value of NGS sequencing over FISH, there is little doubt
that authorities will allow reimbursement of a cheaper, solid and
more comprehensive test than FISH.

Prognosis in Asymptomatic Stages
In SMM, NGS approaches could capture complex genomic
information that may be relevant to stratify risk of progression.
Data such as the total mutational burden, the presence of
complex rearrangements and IGH-MYC rearrangements in
particular, the contribution of APOBEC mutational signature
would need a comprehensive assessment through whole-genome
sequencing. Techniques such as mate pair sequencing (63) may
be particularly well-suited to identify IGH-MYC translocations
and complex rearrangements due to their erratic breakpoints
and promiscuous partners, features that limit FISH accuracy in
detecting these events (132). While costs may limit this approach,
a targeted panel of gene mutations, recurrent translocations,
and CNAs could still improve our prognostication abilities over
current biochemical and imaging techniques.

Prognosis at Diagnosis and After Induction
In NDMM, NGS analysis will inform on current higher risk
cytogenetic markers as per IMWG recommendations. But more
importantly, genome-wide copy-number analysis will inform
on genome-wide CNAs, aneuploidies and translocations that
may change the prognosis of the patient. The simultaneous
analysis of gene mutations will provide an added value for
prognostication, particularly for TP53 mutations. Clearly, the
quantitative nature of NGS data will also provide an estimate of
the number of cells affected by each lesion, which has clinical
correlates. Also, a comprehensive mutational analysis of each
case will highlight cases that are hypermutated and those with
an increased contribution from APOBEC, again markers of high-
risk disease.
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FIGURE 2 | Potential applications of NGS in the clinic, in different disease states and biological samples. BM, bone marrow; PB, peripheral blood; MRD, minimal

residual disease.

After induction treatment, NGS can be used to assess MRD as
described above. This is probably the most mature application
of NGS, and the one that is to see adoption in routine
clinical practice first. Hurdles that will need overcoming are
the standardization of a protocol to ensure inter-laboratory
comparability, access to sequencing facilities and high costs.
However, even the more standardized and culturally more
accessible use of flow cytometry, despite providing results of
similar prognostic value (133), has not gained universal adoption.
In the near future, the MRD status may not only be used to
inform the patient on his prognosis, but also to guide post-
remission treatment -which drugs and for how long- and the
need for an autologous stem cell transplant.

Prognosis at Relapse: Time for
Personalized Care?
In RRMM, further BM sampling and genomic analysis may
provide improved prognostication and correlates of drug
response (Table 4). Examples impacting current clinical practice
include the use of second-line ixazomib, that in Italy is only
reimbursed upon demonstration of a high-risk cytogenetic
status that may be absent at diagnosis. More broadly, recent
results suggest that a “targeted treatment” could be closer
than expected in the RRMM setting. The most promising
results come from venetoclax, a novel inhibitor of the anti-
apoptotic BCL-2 protein, which carry single agent activity
in RRMM (100) and has shown impressive survival data in
combination with bortezomib and dexamethasone. Intriguingly,
these advantages are evident in the t(11;14) cytogenetic subgroup
(136), again mandating detailed genotyping of the disease.
However, BCL2/MCL1 and BCL2/BCL-XL RNA ratio appear
to be equally good predictive markers for venetoclax response
(134, 137), while BCL2 mutations and MCL1 amplification
predict resistance (135). This suggests that RNAseq analysis
along with DNA sequencing could improve stratification of
patients. Use of BRAF inhibitors in BRAFV600E mutated cases
is an approach that failed to fulfill initial promises due to the

TABLE 4 | Genomic and trasncriptomic correlates of drug response in RRMM.

Study Method of detection What detected

Andrulis et al. (129) Immunohistochemistry BRAFV600E

Heuck et al. (130) Targeted, gene

expression profile

KRAS, NRAS, BRAF

mutations

Kortüm et al. (62) Targeted CRBN and CRBN pathway

genes

Barrio et al. (128) Targeted, WES Proteasomal subunit genes

Kumar et al. (100),

Matulis et al. (134),

Neri et al. (135)

(ASH abstract)

FISH, functional studies,

gene expression arrays,

single cell RNAseq

t(11;14), BCL2/MCL1, and

BCL2/BCL-XL RNA ratio,

mitochondrial priming

quick onset of resistance. However, selection of cases where the
mutation is clonal, and the combined use of MEK inhibitors
could hold promise for the future (24, 130). A more speculative
example would be represented by the inhibition of EZH2
in UTX-deleted cases (138). Other mutations could carry a
negative predictive value: hotspot CRBN mutations suggesting
resistance to lenalidomide (62); proteasomal subunit mutations
predicting resistance to bortezomib (128); XPO1 mutations
predicting resistance to selinexor (139). Interestingly, most such
lesions are often subclonal, and single cell sequencing techniques
are starting to uncover an unexpectedly complex spectrum of
phenotypes within the myeloma bulk (135). However, despite
their potential, such approaches are still far from a possible
clinical application.

Finally, novel studies are aimed at incorporating a
precision medicine approach in MM. The MyDRUG study
(clinicaltrials.gov ID NCT03732703) has six arms where a
backbone of ixazomib, pomalidomide, and dexamethasone is
used in conjunction with a targeted agent aimed at mutations
of any of the following genes: CDKN2C, FGFR3, KRAS, NRAS,
BRAFV600E, IDH2, or t(11,14). Clearly, inclusion in the study
mandates comprehensive NGS analysis.
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Mini-Invasive Approaches for Genotyping
and Prognostication
The analysis described above rely on cellular DNA from
BM CD138+ cells. However, a major breakthrough may be
represented by mini-invasive approaches based on circulating
tumor cells (CTCs) and circulating cell-free DNA (cfDNA). At
diagnosis, these approaches have proven reliable in describing
the main clonal gene lesions and aneuploidies in the majority
of NDMM patients, where enough tumor cfDNA and/or CTCs
are present (140–142). However, a fascinating possibility is that
of applying these “liquid biopsy” approaches to add further
accuracy to progression free survival (PFS) prediction by defining
MRD negativity. In fact, while cellular (e.g., flow cytometry)
and molecular (NGS of IgH rearrangements) methods for MRD
detection are very sensitive, they are restricted to a single-site
BM biopsy, which is in contrast to the patchy and heterogeneous
pattern of bone marrow infiltration observed in MM. This may
lead to some degree of uncertainty in MRD-negative results,
where the disease can still be present away from the bone marrow
sampling site. The proof of concept of this caveat is illustrated
by the presence of MRD negative patients that still display a
monoclonal protein at serum protein electrophoresis (82), and
by the poorer survival of a small fraction of MRD-negative, PET-
positive patients (143). Some research groups have explored the
feasibility of cfDNA analysis to monitor IGH rearrangements by
adopting different NGS MRD approaches (144–146). However,
the number of CTCs and genome equivalents in cfDNA is so
low in MRD settings that these techniques, although feasible,
still lack several logarithms of sensitivity before they can
reach 10−6 and be proposed as standard approaches. Likely,
a technical advance is required before the number of tumor
genomes sequenced is maximized and this technique provides
increased sensitivity.

Another way to longitudinally monitor MM patients and
the competitive emergence of subclones through cfDNA is the
evaluation of the allelic fraction of known mutations. Some
studies have reported the possibility to monitor a single mutation
(such as BRAFV600E, NRASQ61K) by serial sampling of ctDNA
(147, 148). This represents a valid approach that takes into
account the spatial heterogeneity of MM, and its usefulness
would be maximal if the mutation in study is druggable or
predicts response to treatment. Another study employed a
targeted panel to characterize paired BM and PB samples before
treatment. Patients with a higher number of mutations or a
higher mutational fractional abundance in PB had significantly
shorter overall survival (OS). Moreover, a decrease in ctDNA

levels at day 5 of cycle 1 of treatment (C1D5) correlated with
superior progression-free survival (PFS) (p= 0.017) (149).

Interestingly, ctDNA can be also used to track disease load
and clonal evolution of MM by low pass WGS (142). This
method allows the identification of copy number alterations
even when the tumor load is relatively low. In a pilot study,
the potential of cfDNA as a longitudinal marker for disease
progression and therapy response has been explored. A patient
was monitored before and after therapy both in BM and
ctDNA, and efficacy of therapy was evident by decreasing
levels of serum free light-chains (sFLC) and concordant
trajectory of tumor fraction in cfDNA. The cfDNA copy
number profiles on day 0 and day 19 (with no change
in management) were concordant. Tumor fraction became
undetectable with response to treatment (days 41, 69). However,
with relapse extensive clonal evolution occurred (day 224,
after relapse) as drug resistance developed. Importantly, the
copy number profile of cfDNA and BM on day 224 were
concordant. These promising evidences need to be further
confirmed by additional studies, and probably pave the
way to the use of ctDNA for disease monitoring in the
near future.

Once validated, the usefulness of ctDNA, both by IGH
rearrangements and/or mutations and/or tumor fraction,
together with indirect immunobiochemical markers (e.g.,
monoclonal protein) and imaging techniques (such as PET-CT
or WB-MRI) could possibly help to re-define more precisely the
minimal residual disease in MM. Even more interesting, these
approaches could be applied to the setting of SMM monitoring,
where increase rather than decrease of tumor cfDNA would
be observed in progressive cases: this could in theory be
less technically challenging and provide earlier detection of
symptomatic evolution.
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