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Tumor growth and metastasis rely on tumor vascular network for the adequate supply of

oxygen and nutrients. Tumor angiogenesis relies on a highly complex program of growth

factor signaling, endothelial cell (EC) proliferation, extracellular matrix (ECM) remodeling,

and stromal cell interactions. Numerous pro-angiogenic drivers have been identified,

the most important of which is the vascular endothelial growth factor (VEGF). The

importance of pro-angiogenic inducers in tumor growth, invasion and extravasationmake

them an excellent therapeutic target in several types of cancers. Hence, the number of

anti-angiogenic agents developed for cancer treatment has risen over the past decade,

with at least eighty drugs being investigated in preclinical studies and phase I-III clinical

trials. To date, the most common approaches to the inhibition of the VEGF axis include

the blockade of VEGF receptors (VEGFRs) or ligands by neutralizing antibodies, as well

as the inhibition of receptor tyrosine kinase (RTK) enzymes. Despite promising preclinical

results, anti-angiogenic monotherapies led only to mild clinical benefits. The minimal

benefits could be secondary to primary or acquired resistance, through the activation

of alternative mechanisms that sustain tumor vascularization and growth. Mechanisms

of resistance are categorized into VEGF-dependent alterations, non-VEGF pathways and

stromal cell interactions. Thus, complementary approaches such as the combination of

these inhibitors with agents targeting alternative mechanisms of blood vessel formation

are urgently needed. This review provides an updated overview on the pathophysiology

of angiogenesis during tumor growth. It also sheds light on the different pro-angiogenic

and anti-angiogenic agents that have been developed to date. Finally, it highlights

the preclinical evidence for mechanisms of angiogenic resistance and suggests novel

therapeutic approaches that might be exploited with the ultimate aim of overcoming

resistance and improving clinical outcomes for patients with cancer.
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INTRODUCTION

Angiogenesis
Angiogenesis is the process of formation of new blood vessels from pre-existing vessels. It is
a highly regulated process that involves migration, growth, and differentiation of endothelial
cells (ECs). This regulated mechanism is crucial in embryonic development, wound healing, and
reproduction (1). Nonetheless, alterations in any of its regulatory pathways may lead to metabolic
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diseases, cardiovascular disorders, diabetic retinopathy, psoriasis,
systemic lupus erythematosus, and importantly tumor growth
and metastasis (2–5).

In the avascular phase, tumor growth is usually restricted
in size due to a balance between pro-angiogenic and anti-
angiogenic factors that control vascular homeostasis (6). Beyond
a few millimeters in size, solid tumors build, and increase their
own blood supply to provide adequate oxygen and nutrients
(Figure 1). This process, referred to as the angiogenic switch,
from an avascular state to an angiogenic phase, is crucial for
tumors to grow and continue unrestricted proliferation (7).
Hence, unlike normal physiological processes favoring negative
regulation of angiogenesis, tumors favor its upregulation.

Multiple non-mutually exclusive mechanisms have been
described as major players in tumor neovascularization. These
include sprouting angiogenesis, non-sprouting angiogenesis,
vasculogenesis, vasculogenic mimicry, and intussusception.
Sprouting angiogenesis, however, remains the most well-studied
mechanism used by tumor cells to produce their vasculature
(8). Due to the importance of this latter process in tumor
cell growth, invasion, and extravasation, different angiogenesis
inhibitors (AIs) have been developed.

In this review, we will discuss the different driver molecules
promoting angiogenesis in cancer. These include the angiogenic
or angiostatic chemokines, the contribution of the endothelial
progenitor cells (EPCs), the tumor vasculogenic mimicry, the
markers for tumor-derived ECs, and pericytes. We will also
provide an overview on the clinically tested anti-angiogenic drugs
slowing down angiogenesis and leading to tumor starvation.
Finally, the resistance mechanisms arising in cancer cells
against these drugs and the potential therapeutic solutions will
be discussed.

Angiogenesis: Pathophysiology During
Tumor Growth
Unlike normal angiogenesis and neovascularization, tumor
angiogenesis is an uncontrolled and disorganized process.

FIGURE 1 | Role of sprouting angiogenesis in tumor growth. (A) During early stages of development, tumor is still small in size and relies on local existing blood

vessels for oxygen and nutrients supply. (B) As the tumor grows, sprouting of new vessels from local existing blood vessels occurs to fulfill the need for more oxygen

and nutrients supplies. (C) Sprouting angiogenesis results in a more complex network of vasculature to provide adequate blood supply for the growing tumor.

It results in vessels with thin walls, incomplete basement
membranes, and atypical pericytes (8). Since the needs of
rapid tumor cell proliferation surpass the capacity of host
vasculature, hypoxia and low supplies of nutrients characterize
early stages of tumor development. Hypoxia triggers the
expression of pro-angiogenic factors such as vascular endothelial
growth factor (VEGF) and platelet-derived growth factor
(PDGF) (9–11).

Matrix metalloproteinases (MMPs) secreted by tumor cells
degrade the basementmembrane as a first essential step to initiate

angiogenesis (12). This alters cell-cell interactions and facilitates

the migration of ECs through the created gap into the tumor
mass, which in turn results in the proliferation and formation

of new blood vessels, followed by vessel pruning and pericyte
stabilization (Figure 2).

Angiogenesis: Regulation
Angiogenesis is a tightly balanced mechanism regulated by both
pro-angiogenic and anti-angiogenic factors (13). In malignant
tumors, this balance is shifted toward a pro-angiogenic milieu to
maintain sustainable angiogenic processes (14). Involved soluble
growth factors include VEGF, PDGF, fibroblast growth factor
(FGF)-2, angiopoietins (Angs), transforming growth factors
(TGFs)- beta and alpha, and epidermal growth factors (EGF).
Insoluble membrane-bound factors include integrins, ephrins,
cadherins, MMPs, and hypoxia inducible factor-1 (HIF-1).

From these, VEGF was broadly studied and shown to
significantly contribute to the induction and progression of
angiogenesis (15). We will start by listing the different members
of the VEGF family. In the following sections, a general overview

on the role of the other angiogenic factors in normal and tumor

angiogenesis will be described. In addition, direct and indirect
angiogenesis inhibitory mechanisms will be discussed.

Vascular Endothelial Growth Factor Family
The VEGF family comprises seven members, VEGFs A to F and
placenta growth factor (PGF) (16). These members are ligands
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FIGURE 2 | Phases of sprouting angiogenesis. (A) increased permeability across the endothelial cell layer, (B) cell division, (C) proteolysis of basement membrane

components, (D) migration ofthe endothelial cells, and (E) lumen fonnation. Altematively, (1) circulating endothelial progenitor cells contribute to the sprouting

mechanism, (2) adhere to endothelial cells, (3) extravagate through the endothelial cell layer, (4) cluster together, and (5) integrate into the sprout fonned by

endothelial cells.

that interact with multiple receptors present on the vascular
endothelium (17) (Figure 3).

Vascular Endothelial Growth Factor A
VEGF-A is the most potent angiogenic factor that is encoded
by a gene located on the short arm of chromosome six
(18). Its interaction with the transmembrane tyrosine kinase
receptors, VEGF receptors (VEGFRs)-1 and 2, and their co-
receptors, NRPs-1 and 2, present on vascular ECs results in the
dimerization and phosphorylation of intracellular receptors (19).
This further activates downstream signaling cascades involving
phosphatidylinositol 3-kinase (PI3K)/protein kinase B (Akt),
mitogen-activated protein kinase (MAPK), and extracellular
regulated kinase (ERK) (20, 21).

VEGF-A expression is stimulated by hypoxia, growth
factors, and cytokines such as IL-1, EGFs, PDGFs, and
tumor necrosis factor (TNF)-α (16). It was noted in most
solid tumors and some hematologic malignancies (20).
VEGF-A is considered the backbone of angiogenesis during

physiologic as well as pathologic processes. The deletion of
one or both VEGF-A alleles in mouse pre-clinical models
resulted in either vascular abnormalities or complete
absence of vasculature leading to death (22). Interestingly,
a striking positive correlation between the level of VEGF-A
expression, tumor progression, and cancer patients’ survival was
observed (23, 24).

Vascular Endothelial Growth Factor B
VEGF-B is encoded by a gene located on chromosome eleven.
It differs from VEGF-A by its promotor region (25, 26). It was
found to be upregulated in many types of tumors including
prostate, kidney, and colorectal cancers (CRCs) (27, 28). Since
the VEGF-B promoter lacks the HIF-1 and AP-1 sites found in
the VEGF-A promotor, stimuli such as hypoxia or cold do not
induce VEGF-B expression (29, 30).

A study was conducted to explore the role of VEGF-B in
cancer development. Results revealed that VEGF-B-deficient
transgenic mice with pancreatic endocrine adenocarcinoma had
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FIGURE 3 | VEGF ligands, their receptors, and respective signaling pathways.

larger tumors compared to transgenic expression of VEGF-B but
no difference in tumor vasculature (31). In addition, knockout
studies have highlighted the role of VEGF-B in inflammatory
angiogenesis and regeneration of coronary collaterals through
arteriogenesis (32, 33).

Vascular Endothelial Growth Factors C, D, and E
The VEGF-C encoding gene is located on chromosome four (34–
36). Experiments performed on transgenic mice demonstrated
the ability of VEGF-C to induce selective lymphangiogenesis
without accompanying angiogenesis (37). Several studies showed
a positive correlation between VEGF-C expression, lymphatic
invasion, metastasis, and survival in cancer patients. For
instance, while the 2-year survival rate of patients with uterine
cervical cancers with high VEGF-C level in metastatic lymph
nodes was 38%, that of patients with normal levels was
81% (38, 39).

VEGF-D is closely related to VEGF-C with which it shares
61% homology (40). Similar to VEGF-C, VEGF-D can bind
and activate the VEGFRs 2 and 3 (41, 42). Depending
on the activated receptor, separate downstream cascades are
activated to induce the growth and proliferation of ECs in
the vascular and lymphatic systems (43). As such, VEGF-D

activity is crucial for hypoxia-induced vascular development
(44) in melanoma, lung, breast, pancreatic, and esophageal
cancer (43, 45–48).

VEGF-E is a potent angiogenic factor. Its isoform,
VEGF-E nz-7, binds with high affinity to VEGFR-2 to
stimulate efficient angiogenesis and increase vascular
permeability (49).

Placental Growth Factor
PlGF is a member of the VEGF subfamily that binds to VEGFR-
1 and its co-receptors, NRP-1 and 2. PlGF/VEGFR-1 signaling
activates the downstream PI3K/Akt and p38 MAPK pathways
independent of VEGFA signaling (50, 51). This stimulates the
growth and migration of ECs, macrophages, and tumor cells
(52, 53).

Upregulation of PlGF expression has been observed in tumors
resistant to anti-VEGF therapy suggesting that PlGF might
serve as a promising therapeutic target in this setting (54–
57). In addition, PlGF knockout (pgf−/−) mice were noted to
have normal embryonic angiogenesis and impaired pathological
angiogenesis following exposure of their tumors to ischemia (58).
This suggests that by neutralizing PlGF, pathological angiogenesis
can be inhibited without affecting normal blood vessels (59).
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TABLE 1 | List of some FDA-approved anti-angiogenic agents.

Drug name Drug class Targets Indications

Bevacizumab VEGF-A antibody VEGF-A Metastatic CRC

Metastatic RCC

Metastatic Ovarian

cancer

recurrent glioblastoma

Ramucirumab VEGFR2 antibody VEGFR2 Metastatic Gastric or

GEJ

Metastatic CRC

Aflibercept VEGF-Trap VEGF-A VEGF-B Metastatic CRC

Sunitinib Tyrosine Kinase Inhibitor All VEGFRs PNET

FGFR1, cKIT,

PDGFR

Metastatic GIST

Metastatic RCC

Sorafenib Tyrosine Kinase Inhibitor ALL VEGFRs Metastatic RCC

FGFRs, PDGFRs Metastatic HCC

FLT3 Metastatic thyroid

carcinoma

Pazopanib Tyrosine Kinase Inhibitor All VEGFRs Metastatic RCC

FGFR2, cKIT Metastatic soft tissue

sarcoma

PDGFR,FLT3

Axitinib Tyrosine Kinase Inhibitor All VEGFRs Metastatic RCC

PDGFRs, cKIT

Cabozantinib Tyrosine Kinase Inhibitor All VEGFRs, Metastatic medullary

thyroid carcinoma

cKIT, cMET, Ret Metastatic HCC

Lenvatinib Tyrosine Kinase Inhibitor All VEGFRs, Metastatic thyroid

cancer

PDGFRs,FGFR1 Metastatic HCC

CURRENTLY APPROVED
ANTI-ANGIOGENIC THERAPIES

Since sprouting angiogenesis plays an essential role in tumor
growth, invasion, progression, and metastasis, targeting this
processmay potentially halt the growth and spread of cancer (60).
Table 1 lists antiangiogenic agents approved for clinical use and
their targets.

Angiogenesis inhibitors (AIs) are classified into direct and
indirect agents. Direct endogenous inhibitors target vascular ECs
and include endostatin, arrestin, and tumstatin. Unfortunately,
phase II or III clinical trials did not result in significant effects
on patients (14, 61). In the last decade, a number of molecules
have been described, including semaphorins, netrins, slits, and
others (62–64). Netrin-1, Netrin-4, and their receptors can
have a repulsive or attractive signals in angiogenesis, partially
via the regulation of VEGF signaling. There are still some
contradictions reported on the positive and negative role of
Netrin-1 in regulation of angiogenesis, and studies are still on
going to identify its exact role in angiogenesis. Semaphorin-
3A and Semaphorin-3E have negative effects on angiogenesis in
central nervous system (CNS) and non-CNS tissues.

TABLE 2 | List of indirect angiogenesis inhibitors.

Type Drug name(s)

VEGF-targeted therapy Bevacizumab

Sunitib

Sorafenib

FGF-targeted therapy Ponatinib

Pintedanib

Dovitinib

Oncogene-targeted therapy Dasatinib

Tipifarnib

Bortezomib

Matrix degrading and remodeling-targeted therapy DX-2400

PI-88

Tumor-associated stromal cell-targeted therapy Zoledronic acid

Cell adhesion molecules-targeted therapy Cilengitide

Zolociximab

Inflammatory angiogenesis-targeted therapy Ibuprofen

Repertaxin

Celecoxib

Conventional chemotherapeutic agents Cyclophosphamide

Indirect AIs target tumor cells or tumor associated stromal
cells and include several types (14) (Table 2). They prevent the
expression of pro-angiogenic factors or block their activity.

Among the AIs, VEGF inhibitors were extensively studied
and reached phase III clinical trials. They caused a modest
increase in overall survival (OS) (65). Bevacizumab (BVZ), a
humanized anti-VEGF monoclonal antibody, was the first drug
to be approved by the Food and Drug Administration (FDA) for
the treatment of metastatic colon, ovarian, renal, non-squamous
cell lung cancer (NSCLC), and glioblastoma mutliforme (GBM)
(66, 67). It failed to show clinical significance when used as
monotherapy, except in GBM. In contrast, its clinical benefits
were evident in association with other chemotherapeutic agents.
For instance, since the tumor vasculature induced by VEGF is
usually tortuous and dysfunctional, the use of BVZ was thought
to normalize the blood vessel texture. It was also hypothesized
that the combination of BVZ and chemotherapy increases the
delivery of the chemotherapeutic agent to the cancer tissue by
increasing its blood flow (68, 69). However, contrary evidence
was reported by a decrease in cytotoxic drug delivery to tumors
following treatment with AIs (70). Such inconsistency could
be due to differences in blood vessel setups among various
cancer types (71, 72). BVZ combined with chemotherapy was
also studied in the adjuvant setting in colorectal cancer (CRC),
but it failed to prove any clinical significance compared to
chemotherapy alone in two phase III clinical trials (73–75).

Aflibercept is a soluble VEGF decoy receptor that consists
of the extracellular domains of VEGFRs 1 and 2 and the
Fc portion of human IgG1. It was FDA approved for the
treatment of metastatic CRC in combination with 5-fluorouracil,
leucovorin, and irinotecan in 2012 (76). Owing to its structure,
Aflibercept can neutralize both, VEGF and PlGF (77). Compared
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FIGURE 4 | Summary of plausible resistance mechanisms to Anti-angiogenic Agents. Treatment with anti-angiogenic agents results in a reduction in the blood vessel

network. This new hypoxic condition results in the activation of vascular mimicry, altemative pro-angiogenic pathways, recruitment of bone man·ow-derived EC

precursors and myeloid cells, as well as cell survival mechanisms such as autophagy.

to treatment with BVZ, the use of Aflibercept in patient-
derived xenograft models resulted in higher tumor suppressive
activity (78). Unfortunately, neutralizing both, PlGF and VEGF,
had a minimal effect on tumor suppression in vivo (79). In
a phase I clinical trial, relapsing GBM patients treated with
BVZ monotherapy were compared to those treated with the
combination of an anti-PlGF agent and BVZ. Similar results were
obtained with no added benefit in the combination arm (80).

Unlike BVZ and Aflibercept, tyrosine kinase inhibitors, which
are small molecules able to interact with the kinase domain
on the VEGFRs, showed a remarkable clinical benefit when
used as single agents, and with no added value when combined
with chemotherapy. This was reported in the treatment of renal
cell carcinoma (RCC), hepatocellular carcinoma (HCC), thyroid
cancer, gastrointestinal stromal tumor (GIST), and pancreatic
neuroendocrine tumor (PNET) (81).

MECHANISMS OF RESISTANCE TO
ANTI-ANGIOGENIC THERAPIES AND
WAYS TO OVERCOME THEM

Although anti-angiogenesis therapies may prolong progression-
free survival (PFS), they have limited impact on overall survival
(OS) and do not constitute a permanent cure in RCC, CRC, or
breast cancer (73, 75, 82, 83). This limited clinical significance
might be due to different innate and acquired molecular

resistance mechanisms with no clear genetic explanations
(65). Hypoxia plays an important role in tumor resistance to
chemotherapeutic agents favoring more aggressive metastatic
disease and hence worse prognosis. HIF-1 plays a critical role
in resistance to anti-angiogenic therapy and is the main survival
factor used by cancer cells to adapt to oxygen deprivation
(84, 85). In this section, an overview on different mechanisms
of resistance to anti-angiogenic therapies in the clinical and
preclinical settings will be discussed (Figure 4) and the ways
to overcome them will be provided (Table 3). Some of these
mechanisms are likely influenced by hypoxia. These include the
production of alternative proangiogenic factors, the recruitment
of BM-derived cells, the vasculogenic mimicry, as well as the
increased tumor cell invasiveness and metastatic behavior.

Hypoxia Caused by Anti-angiogenic
Therapies
Treatment with anti-angiogenic agents results in vascular
regression and intra-tumoral hypoxia. Several studies have made
use of pimonidazole injections, to demonstrate an increase in
hypoxic regions in primary tumors following anti-angiogenic
treatment (86, 89, 115). Further analysis showed a concomitant
increase in HIF-1a expression during treatment.

HIF-1a and hypoxia are known drivers of EMT, a process
that promotes tumor metastasis. Upregulation of EMT-related
genes, such as Twist and Snail, have been noted following
anti-angiogenic treatment. This is in addition to the loss of
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TABLE 3 | List of mechanisms of resistance to anti-angiogenic therapies and ways to target them along with the outcomes associated with each approach.

Mechanisms of resistance to

anti-angiogenic therapies

Targeting resistance mechanisms Outcome(s) Reference(s)

I. Increased tumor invasiveness and metastasis

• Crizotinib: a dual c-Met and ALK inhibitor • Reversal of sunitinib-induced invasion (86–88)

• Reversal of expression of EMT markers in different models

• Adenoviral Sema3A expression • Impressive increase in median survival and a reduction in

metastasis and hypoxia

(89)

• Normalization of tumor vasculature

• Gemcitabine and Topotecan • Reversal of sunitnib-induced metastasis and a reduction

primary tumor growth

(90)

• Topotecan: inhibition of HIF-1a accumulation –> preventing

hypoxia-driven invasiveness

(91)

II. Redundancy in angiogenic signaling pathways

1. Angiopoietin • VEGF and Ang2 Blockade • Preclinical studies: suppression of revascularization and

tumor progression of cancers resistant to anti-VEGF

therapy

(92–95)

2. Bombina variegate

peptide 8 (Bv8)

• PKRA7 (Bv8 antagonist) • Suppression of tumor formation in vivo by inhibiting

angiogenesis in GBM and infiltration of MDSCs in

pancreatic cancer

(96)

3. Fibroblast growth

factor (FGF)

• PD173074 (FGFR inhibitor) + BVZ • Xenografted mouse models with HNSCC: complete

regression of tumor

(97)

• FGF-trap (soluble FGF receptor) + VEGFR2

inhibitor

• Late stage pancreatic islet tumors: complete regression of

tumor

(98)

• Dovitinib or Nintedanib • Clinical setting: no benefit in patients with recurrence

following anti-VEGF therapy

(99, 100)

4. Platelet-derived

growth factor

• Sunitinib (VEGFR + PDGFR) • FDA approval in 2006 for the treatment of metastatic RCC (101)

• BVZ + Imatinib (anti-PDGF agent) • Toxic and not effective against RCC (102–104)

5. Transforming

growth factor-β

• Galunisertib (TGFβRI Inhibitor) + Sorafenib +

Ramucirumab

• Currently under evaluation in HCC

• PF-03446962 (Anti-TGFβ monoclonal antibody)

+ Regorafenib

• Currently under evaluation in CRC

6. Matrix metalloproteinases • MMP inhibitors • Phase I clinical trial: Some clinical efficacy in patients with

advanced and refractory solid tumors

(105)

III. Recruitment of bone marrow-derived cells

1. Myeloid cells • SDF1 neutralizing antibody • Transgenic mouse model of breast cancer: inhibition of

MDSC infiltration and angiogenesis

(106).

• Gemcitabine + Anti-Bv8 monoclonal antibody • Mice with adenocarcinoma: inhibition of tumor regrowth,

angiogenesis, and metastasis

(107)

• Carlumab (Anti-CCL2 monoclonal antibody) • Phase I clinical trial: patients with solid tumors with a

temporary antitumor activity

(108)

• Combined ANG2 and VEGFR2 blockade • Decreased infiltration of TIE2 expressing monocytes and

suppression of revascularization and tumor progression

(92)

IV. Recruitment of local stromal cells

1. Pericytes • Imatinib + SU11248 + Cyclophosphamide +

or - an anti-VEGFR agent

• Preclinical study on transgenic mice with cancer: significant

improvement in anti-tumor responses

(109)

1. Cancer-associated

fibroblasts

• GAL-F2 (Anti-FGF2 monoclonal antibody) • Neuroblastoma mouse xenograft models: sustained

anti-angiogenic effects

(110)

• Brivanib (Dual VEGFR/FGFR inhibitor) • Patients with recurrent and persistent endometrial cancer:

extension of their progression-free survival

(111)

V. V Adoption of different neovascularization modalities

1. Vasculogenic mimicry • Anti-CD44 agent • Ongoing clinical study: Pending NCT01358903

VI. Hypoxia caused by anti-angiogenic therapies

1. Hepatocyte growth

factor/tyrosine protein

kinase met pathway

• Onartuzumab (c-MET inhibitor) + BVZ • Patients with advanced NSCLC: No clinical benefit (112)

2. β1 integrin expression • β1 integrin blockade • Preclinical studies: benefit in BVZ-resistant and

non-resistant GBM tumors in xenograft models

(113, 114)
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the epithelial marker, E-cadherin, and the induction of the
mesenchymal marker, vimentin (86, 116). Hypoxic environments
also induce upregulation of VEGF expression through the
upstream transcription factor HIF-1a (117). These factors cause
tumors to acquire more angiogenic and invasive capacities, thus
promoting metastasis (118).

Effect of Hypoxia on the Hepatocyte Growth

Factor/Tyrosine Protein Kinase Met Pathway
The increase in tumor invasiveness and metastasis in response
to AI-induced hypoxia from anti-angiogenic therapies can be
explained by the over-expression of the tyrosine protein kinase, c-
MET. For instance, in vitro studies revealed a direct positive effect
of hypoxia on c-MET and phospho-c-Met expression (87). Other
studies confirmed that this promotion of c-MET transcription
that follows hypoxic conditions occurs via the direct regulation
of HIF-1 (119).

The HGF/c-MET pathway is one of the most investigated
signaling pathways in tumors resistant to anti-VEGF therapy.
Binding of HGF to c-MET activatesMAPK/ERK cascades, STAT3
pathway, PI3K/Akt axis, and/or NF-κB inhibitor-α kinase (IKK)-
NF-κB complex (119–121). This usually promotes tumor growth
and invasiveness.

VEGF exerts a negative feedback on c-MET activation in a
GBM mouse model, resulting in the direct suppression of tumor
invasion (122). For instance, compared to GBM patients who
were not treated with BVZ, those treated with BVZ had more
recurrence rates and their tumors had an upregulation in c-MET
expression (123). This increased invasiveness of GBM after BVZ
treatment was recently linked to inhibitory actions of VEGF and
to the increase in c-Met and phospho-c-Met expression upon
treatment (122).

MET activation in response to hypoxia can occur in
endothelial cells, as well as in tumor cells or other cells of the
tumor microenvironment. In fact, in one study (124) this had
very diverse functional impacts.

Blocking c-MET to Overcome Resistance to

Anti-vascular Endothelial Growth Factor Treatment
To overcome the c-MET protein overexpression that occurs with
the neutralization of VEGF by BVZ, the addition of a c-MET
inhibitor would be helpful. In the phase III METEOR trial, the
administration of the inhibitor of tyrosine kinases including
MET, Cabozantinib, after previous vascular endothelial growth
factor receptor-targeted therapy in patients with advanced RCC
resulted in improved survival (125).

Effect of Hypoxia on β1 Integrin Expression
It is thought that the hypoxic microenvironment generated
during anti-angiogenic therapy induces HIF-1α expression,
thus stimulating β1 integrin expression. β1 integrin is the
member that is mostly implicated in cancer treatment resistance,
especially that its expression has been upregulated in clinical
specimens of BVZ-resistant GBM tumors (126–128). The
expression levels of integrins are correlated with disease
progression and poor survival of patients (129, 130). Upon

interacting with c-MET, integrins ultimately enhance tumor cell
invasiveness (113, 131, 132).

Blocking β1 Integrin to Overcome Resistance to

Anti-vascular Endothelial Growth Factor Treatment
Several preclinical studies have demonstrated benefit from β1
integrin blockade in BVZ-resistant and non-resistant GBM
tumors in xenograft models (113, 114).

Increased Tumor Invasiveness and
Metastasis
Despite their overall inhibition of tumor growth, therapeutic
AIs were associated with increased local invasiveness and distant
metastasis. These phenomena seem to be major contributors to
resistance against anti-angiogenesis therapies. They were first
described by Ebos et al. and Paez-Ribes et al. in different
preclinical models (115, 133).

Angiogenesis blockade enhances tumor invasiveness. For
instance, RCC cells demonstrated an accelerated growth capacity
and an invasive profile following treatment with BVZ (134).
Similarly, GBM cells in mouse models developed enhanced
invasiveness following VEGF inhibition (115).

Treatment with AIs also promotes tumor metastatic potential.
Treatment with sunitinib has been shown to result in vascular
changes that include decreased adherens junction protein
expression, reduced basement membrane and pericyte coverage,
and increased leakiness (89, 91, 135, 136). These phenotypic
changes were observed in both, tumor vessels and normal
organ vessels, so they tend to facilitate local intravasation
and extravasation of tumor cells, resulting in metastatic
colonization (136).

Factors Promoting or Affecting Tumor Invasiveness

and Metastasis
Increased metastasis and enhanced invasiveness in response
to anti-angiogenesis therapy are variable and depend on the
treatment type, dose, and schedule. Singh et al. observed that
sunitinib and anti-VEGF antibody monotherapy had different
effects on mouse tumor models. While treatment with sunitinib
enhanced the aggressiveness of tumor cells, using an anti-VEGF
antibody did not (91). This was supported by Chung et al.
who compared the efficacy of different RTK inhibitors and
antibody therapies in murine models (135). While pretreatment
with imatinib, sunitinib, or sorafenib enhanced lung metastasis
following the injection of 66c14 cells, using an anti-VEGFR2
antibody inhibited the formation of lung nodules (135).
Altogether, these results prove that the increased metastasis and
enhanced invasiveness that result from use of AIs are largely
dependent on treatment type.

Dosing and scheduling of administration of AIs can
also induce resistance. Indeed, treatment with short-term
and high-dosage sunitinib (120 mg/kg per day) before and
after intravenous breast tumor cell inoculation into severe
combined immune-deficient mice had the most deleterious
effects (133). The high-dose of sunitinib increased tumor growth
and enhanced metastasis to the liver and lung, resulting in
reduced survival. Although similar results were observed using
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sorafenib, contradictory results were reported with sunitinib in
different studies (115, 133). In fact, treatment with high-dose
sunitinib before intravenous inoculation of tumor cells increased
metastatic potential of lung cancer cells but not of RCC cells. In
contrast, treatment with low-dosage sunitinib (30 and 60 mg/kg
per day) did not stimulate metastasis (136).

It was documented that hypoxia and EMT also contribute
to the increased invasiveness and metastasis of tumors, and c-
Met, Twist, and HIF-1a are the key molecular players (11, 116).
In contrast, semaphorin 3A (Sema3A), an endogenous anti-
angiogenic molecule, is frequently lost in tumors, resulting in
increased invasiveness and metastasis (137).

Overcoming Resistance by Targeting Increased

Tumor Invasiveness and Metastasis
Different inhibitors of c-Met were tested in preclinical studies
and demonstrated promising effects. Crizotinib, a dual c-
Met and ALK inhibitor, was effective in reverting sunitinib-
induced invasion and metastasis in different models (86–88).
Interestingly, this resulted in a reduction in the expression
of EMT markers such as Vimentin, Snail, and N-cadherin
downstream of c-Met (86, 87). By blocking c-Met and silencing
Twist, the master regulator of EMT (138), metastasis was
almost fully abrogated in both wild-type and pericyte-depleted
tumors (86).

Sunitinib-treated transgenic mice tumors that were subjected
to adenoviral Sema3A expression witnessed an impressive
increase of 10 weeks in median survival and a reduction
in metastasis and hypoxia (89). Normalization of the tumor
vasculature was evident, and the expression of EMT markers,
including c-Met, were reduced.

Rovida et al. investigated the use of conventional
chemotherapeutics to counteract sunitinib-induced metastasis.
Gemcitabine and topotecan, but not paclitaxel, cisplatin, and
doxorubicin, were effective in reverting sunitinib-induced
metastasis and in reducing primary tumor growth (90).
Mechanistically, topotecan was shown to inhibit HIF-1a
accumulation, thereby preventing hypoxia-driven invasiveness.
Gemcitabine was moderately effective in combination with
anti-VEGF antibody therapy in an established pancreatic
ductal adenocarcinoma model but had no effect in a preventive
setting (91).

Redundancy in Angiogenic Signaling
Pathways
Initially, the primary focus in angiogenesis blockade was to target
VEGF, which is the best known angio-stimulatory protein family
responsible for EC activation and functional vessel formation and
stabilization. Cancers that are highly dependent on the induction
of angiogenesis by VEGF, were the best responders to anti-
VEGF agents. These include CRC, RCC, and neuroendocrine
tumors (139).

Cancers relying on angiogenic factors other than VEGF are
less susceptible to anti-VEGF agents and include malignant
melanoma, pancreatic cancer, breast cancer, and prostate
cancer (98). The presence of several anti-VEGF resistant
cancers suggests alternative angiogenic pathways. These

involve Ang-1, EGF, FGF, granulocyte colony-stimulating
factor (G-CSF), hepatocyte growth factor (HGF), insulin-
like growth factor, PDGF, PGF, stromal cell-derived factor-1
(SDF-1), and TGF (140). Except for P1GF, which binds
VEGF receptors, most angiogenic factors signal through
specific transmembrane receptors, which are expressed
on ECs (141). This variety of growth factors culminates
in a plethora of pathways that tumor cells can exploit to
induce angiogenesis.

Results from preclinical models and clinical trials suggest that
inhibition of a specific growth factor can induce the expression
of others (140, 141). In a study by Willett et al. in which rectal
cancer patients were treated with BVZ, significantly increased
plasma levels of PlGF were noted 12 days following the start
of treatment (142). In a phase II study by Kopetz et al. in
which metastatic CRC patients were treated with a combination
of FOLFIRI and BVZ, the levels of several angiogenic factors
including PlGF and HGF were found to increase before disease
progression (54). Similarly, the levels of FGF2 and PlGF increased
in GBM patients following treatment with cediranib, a pan-
VEGF receptor tyrosine kinase inhibitor (71, 143). Similarly,
treatment of transgenic mouse models of pancreatic tumors
with an anti-VEGFR2 antibody for a prolonged period of
time, associated with an increase in the expression of the pro-
angiogenic growth factors, Ang-1, Ephrin-A1, Ephrin-A2, and
FGF1, FGF2a, resulting in transient tumor growth delay and
modest survival benefit (98, 144).

Redundancy in angiogenic signaling and potential in
malignant tissues is nowadays more studied. In addition, the
therapeutic effect of targeting a single angiogenic growth factor
or its receptor became limited due to intrinsic resistance.
This resistance arose either from redundancy in activated
pathways or alternative growth factor signaling pathways.
Thus, targeting multiple growth factors simultaneously or
sequentially would be a successful approach to overcome
such resistance. In the following subsection, we discuss
potential angiogenic factors that might play a role in the
escape from anti-VEGF treatment. We also shed light
on results of studies evaluating the effects of targeting
one or more of these factors on overcoming resistance to
anti-VEGF therapies.

Angiopoietin

Role of angiopoietin in the escape from anti-vascular

endothelial growth factor treatment
Ang-Tie signaling system is a vascular-specific RTK pathway that
regulates vascular permeability and blood vessel development
and remodeling through Ang-1 and Ang-2. Ang-1 binds to the
Tie2 receptor on the M2 subpopulation of monocytes, HSCs,
and ECs of blood and lymphatic vessels. This activates the
Ang-Tie pathway and results in the maturation or stabilization
of blood vessels (145). In contrast, Ang-2 blocks this pathway
resulting in the remodeling or initiation of vascular sprouts
following exposure to VEGF (146). Upregulation of Ang-
2 expression was described in many types of cancers and
presumable contributes to resistance against anti-VEGF therapy
(147–151). For example, in CRC patients, elevated serum
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Ang-2 levels were associated with a poor response to BVZ
treatment (152).

Targeting angiopoietin to overcome resistance to

anti-vascular endothelial growth factor treatment
Blockade of both, VEGF and Ang2, in preclinical studies
suppressed revascularization and tumor progression of cancers
resistant to anti-VEGF therapy (92–95). However, results of
ongoing clinical trials evaluating the efficacy of the humanized
bi-specific monoclonal antibody against VEGF-A and Ang-2,
vanucizumab, are still pending (153, 154).

Bombina Variegate Peptide 8 (Bv8)

Role of bombina variegate peptide 8 in the escape from

anti-vascular endothelial growth factor treatment
Tumor-infiltrating T helper type 17 (Th17) cells produce
interleukin-17 (IL-17), initiating a paracrine network to confer
resistance to anti-VEGF therapy (38). IL-17 induces G-CSF
secretion by tumor cells through nuclear factor κB (NF-κB)
and ERK signaling (155). The increase in G-CSF induces
the expression of Bv8, also known as prokineticin-2, in the
bone marrow. Bv8 is a pro-angiogenic growth factor that was
initially purified from the skin secretion of a yellow-bellied
toad. It binds to the G-protein coupled prokineticin receptor
(PROKR) and activates the downstream MAPK/ERK pathway
(156, 157). As such, Bv8 promotes differentiation of myeloid-
derived (suppressor) stem (remove word stem) cells (MDSCs)
and induces their mobilization to the peripheral blood and
infiltration into the tumor microenvironment. This culminates
in the promotion of angiogenesis and results in the escape from
anti-VEGF therapy (158–161).

Targeting bombina variegate peptide 8 to overcome resistance

to anti- vascular endothelial growth factor treatment
Treatment with the Bv8 antagonist, PKRA7, suppressed tumor
formation in vivo by inhibiting angiogenesis in GBM and
infiltration of MDSCs in pancreatic cancer (96). Neutralization
of Bv8 and upstream G-CSF using monoclonal antibodies also
resulted in tumor suppression (162). Results of ongoing clinical
trials evaluating combination regimens using Bv8 inhibitors with
or without other anti-angiogenic reagents are still pending.

Fibroblast Growth Factor (FGF)

Role of fibroblast growth factor in the escape from

anti-vascular endothelial growth factor treatment
The FGF family consists of 22 members. Four of these are
intracellular cofactors of voltage-gated sodium channels, while
the remaining 18 members are secretory proteins that bind
to RTK–FGF receptors (FGFRs) (163). FGFR is expressed
on tumor cells and several types of stromal cells, including
cancer-associated fibroblasts (CAFs), ECs, and tumor-infiltrating
myeloid cells (164).

Binding of FGF to RTK–FGFR activates the downstream
pathways such as MAPK/ERK, PI3K/Akt, STAT, and
diacylglycerol (DAG)/protein kinase C (PKC) (165–168).
One of the roles of this signaling pathway is cancer development
and progression through the amelioration of angiogenesis

(164, 169). Indeed, upregulation of FGF2 expression correlated
with resistance to anti-VEGF agents in several tumors
resistant, especially those exposed to hypoxic environments
(54, 71, 98, 170).

Targeting fibroblast growth factor to overcome resistance to

anti- vascular endothelial growth factor treatment
Simultaneous blockade of VEGF and FGF signaling pathways was
very beneficial in many preclinical models of cancer (98, 171–
173). Combining the FGFR inhibitor, PD173074, with BVZ in
xenografted mouse models with head and neck squamous cell
carcinoma (HNSCC) completely abolished tumor growth (97).
FGF blockade using the soluble FGF receptor, FGF-trap, was
combined with an VEGFR2 inhibitor, and yielded comparable
results in late stage pancreatic islet tumors (98). Unfortunately, in
the clinical setting, patients with recurrence following anti-VEGF
therapy did not benefit from the dual blockade of VEGFR and
FGFR by dovitinib or nintedanib (99, 100).

Platelet-Derived Growth Factor

Role of platelet-derived growth factor in the escape from

anti-vascular endothelial growth factor treatment
The PDGF family consists of four homodimers and one
heterodimer. Binding of the PDGF dimers to tyrosine kinase
PDGF receptor (PDGFR) results in the activation of downstream
signal transduction pathways, such as PI3K and PLCγ (174).
This plays an important role in mesenchymal cell growth
and motility during embryonic development and tissue repair
(175). When PDGF signaling is over-active in the tumor
microenvironment, angiogenesis and tumor growth are
promoted (176). Upregulation of PDGF-C expression was
observed in vivo in CAFs infiltrating into tumors resistant to
anti-VEGF therapy (101).

Targeting platelet-derived growth factor to overcome

resistance to anti- vascular endothelial growth factor

treatment
Sunitinib has many targets, including VEGFR and PDGFR.
Following its FDA approval in 2006 for the treatment of
metastatic RCC, it was assumed that combining PDGF andVEGF
blockades might offer an additional therapeutic benefit (101).
Several studies were initiated to evaluate the safety and efficacy
of this combination (177). Unfortunately, combining BVZ with
imatinib, which inhibits PDGF-R in addition to other tyrosine
kinases such as Abl and Kit, was toxic and not effective treatment
against RCC (102–104).

Transforming Growth Factor-β

Role of transforming growth factor-β in the escape from

anti-vascular endothelial growth factor treatment
The TGF-β/Activin and bone morphogenetic protein (BMP) are
the two main branches of the TGF-β superfamily. When TGF-
β binds its type II receptors, it activates type I receptors and
results in the phosphorylation of the receptor-regulated Smads
(R-Smads) corresponding to each branch. R-Smads then complex
with the common partner Smad4 (Co-Smad4) and work as
transcription factors (178).
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TGF-β signaling regulates cellular growth, differentiation,
and apoptosis (179). Although signaling has tumor suppressive
effects during the early stage, it switches toward malignant
conversion and tumor progression at later stages (180, 181).
It activates the production of extracellular matrix (ECM) by
fibroblasts and stimulates tube formation by ECs, thus inducing
angiogenesis (182–184).

Tumor tissues express higher levels of TGF-β and these
levels can be correlated with patient survival (185–187).
Upregulation of TGF-β expression was also observed in
glioma models resistant to anti-VEGF therapy (188). This
suggests a role of TGF-β in the acquired resistance to anti-
angiogenic therapy.

Targeting transforming growth factor-β to overcome

resistance to anti- vascular endothelial growth factor

treatment
Several preclinical studies revealed the anti-angiogenic benefits
when inhibiting TGFβ in CRC, HCC, and GBM xenografts (189–
191). This offers the rationale to combine TGFβ inhibitors with
anti-VEGF agents (192). In that sense, combining galunisertib,
a small molecule inhibitor of TGFβRI, with sorafenib and
ramucirumab in HCC is currently under evaluation (189,
193). Similarly, the combination of an anti-TGFβ monoclonal
antibody, PF-03446962, with regorafenib in CRC is also under
investigation (194).

Matrix Metalloproteinases

Role of matrix metalloproteinases in the escape from

anti-vascular endothelial growth factor treatment
MMPs play an important role in angiogenesis and in different
stages of cancer (195, 196). They are divided into six categories
(Table 4) (197). MMP can promote or inhibit angiogenesis. For
instance, the secreted MMP-9 plays an important role in the
angiogenic switch process and in releasing VEGF from the ECM
(1, 198). The membrane type MMP-1 induces degradation and
remodeling of matrix during vascular injury and is responsible
for invasion and migration of ECs and formation of capillaries
(199–201). On the other hand, MMPs such as MMP-3, 7,
12, 13, and 20, inhibit angiogenesis through endostatin and
angiostatin production. Endostatin that blocks the activation of
pro-MMP-9 and inhibits capillary formation of Deryugina and
Quigley (202).

Targeting matrix metalloproteinases to overcome resistance

to anti- vascular endothelial growth factor treatment
Targeting MMPs released by bone marrow derived cells
(BMDCs) prevents the release of sequestered growth factors in
the ECM, and can help overcoming resistance to anti-angiogenic
therapy (203). Despite the fact that doing so has proven some
clinical efficacy in patients with advanced and refractory solid
tumors in a phase I clinical trial (105), most MMP inhibitors
failed to offer any clinical benefit (204). Few agents are still
being developed and evaluated. Results from an ongoing phase
II clinical trial evaluating one MMP inhibitor in patients with
Kaposi’s sarcoma are still pending (205).

Recruitment of Bone Marrow-Derived Cells
Long-term administration of AIs up-regulates HIF-1α and
induces hypoxia in the tumor microenvironment by over-
pruning blood vessels (206). Hypoxic conditions due to anti-
angiogenic therapy result in the expansion and recruitment
of myeloid cells and CAFs into the tumor environment. The
presence of these BMDCs in the tumor microenvironment leads
to a weakened antitumor response and an immunosuppressive
tumor microenvironment (207). This promotes angiogenesis,
tumor growth, EMT transition, and metastasis (208, 209). As a
result, it has become evident that myeloid cells and CAFs play a
major role in the induction of resistance to anti-angiogenic drugs.

Myeloid Cells

Recruitment of myeloid cells
Myeloid derived suppressor cells (MDSCs), also known as Gr1+
CD11b+myeloid cells, consist of neutrophils, macrophages, and
dendritic cells (DCs). An excessive production of MDSCs was
described in cancer patients and tumor-bearing mice (210–213).
This was linked to the immunosuppressive and tumor promoting
capacities (214, 215). In a study by Shojaei et al., resistant
tumors to anti-VEGF treatment had increased mobilization and
infiltration ofMDSCs into their microenvironments as compared
with treatment-sensitive tumors (216).

Neutrophils are considered predictive biomarkers for
patients treated with BVZ (217–222). Increased recruitment
of neutrophils during anti-VEGF therapy promotes tumor
progression and treatment resistance (216). This is mediated
by the expression of the calcium-binding protein that regulates
cell growth, survival, and motility, S100A4. As such, blocking
granulocytes and S100A4 may be beneficial in diminishing
anti-angiogenic therapy resistance (223).

TABLE 4 | Categories of Matrix Metalloproteinase-1 and their corresponding

members.

Categories Member(s)

Collagenases Matrix Metalloproteinase-1

Matrix Metalloproteinase-8

Matrix Metalloproteinase-13

Gelatinases Gelatinase-A (Matrix Metalloproteinase-2)

Gelatinase-B (Matrix Metalloproteinase-9)

Stromelysins Matrix Metalloproteinase-3

Matrix Metalloproteinase-10

Matrix Metalloproteinase-11

Matrilysins Matrix Metalloproteinase-7

Matrix Metalloproteinase-26

Membrane-type matrix

metalloproteinases

Matrix Metalloproteinase-14

Matrix Metalloproteinase-15

Matrix Metalloproteinase-16

Matrix Metalloproteinase-17

Matrix Metalloproteinase-24

Non-classified matrix

metalloproteinases
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Monocytes and macrophages are possibly implicated in
resistance to anti-angiogenic therapy as well. Recruitment of
these cells to the tumor microenvironment is mediated by
different cytokines, including VEGF, chemokine C-C motif
ligand 2 (CCL2), and macrophage colony stimulating factor
(MCSF) (224, 225). Tumor associated macrophages actively
participate in vascular sprouting by functioning as bridging cells
between two different tip cells (226–228). They also secrete
MMPs, promotingangiogenesis (198, 226, 229, 230). In addition,
they can release pro-angiogenic growth factors including TGF-b,
VEGF, EGF, and the chemokines, CCL2 and CXCL8 (226, 227,
231–233).

In different murine tumor models, anti-VEGF therapy
reduced macrophage infiltration (217, 234–236). However, this
was not the case with the tyrosine kinase with immunoglobulin-
like and EGF-like domains 2 (TIE2)-expressing macrophages
that constitute a specific subset of macrophages. These are
usually recruited by HIF1a and tumor-secreted chemokines
such as ANG2 in the setting of anti-angiogenic therapy (237–
240). They tend to associate with tumor vessels and release
proangiogenic growth factors including VEGF (237, 241).
As such, macrophages contribute to the resistance against
anti-angiogenic therapy. Preclinical studies on models of
mammary carcinoma and insulinoma evaluated the effect of
inhibiting ANG2 on TIE2-expressing macrophage infiltration
and angiogenesis. Although this approach did not block the
recruitment of these macrophages, it hindered the upregulation
of their TIE2 receptor. This reduced the production of
pro-angiogenic growth factors and the association of TIE2
macrophages with blood vessels (242–244). As a result, MDSCs
represent promising targets for therapy. Since G-CSF expression
stimulated by tumor infiltrating T helper type 17 cells results in
MDSC recruitment into the tumormicroenvironment, inhibition
of Th17 cell function might sensitize tumors to anti-VEGF
therapies (155, 207).

Targeting myeloid cells to overcome resistance to anti-

vascular endothelial growth factor treatment
Since SDF1 is the major BMDC recruiting factor, targeting its
signaling pathway could potentially decrease BMDC infiltration
and overcome resistance to anti-angiogenic therapy. In a
transgenic mouse model of breast cancer, treatment with an
SDF1 neutralizing antibody inhibited MDSC infiltration and
angiogenesis (106). Since Bv8 leads to the recruitment of
MDSCs into the tumor tissue after VEGF blockade, its inhibition
can possibly improve the effect of anti-angiogenic therapy.
A recent study showed that the combination of gemcitabine
and an anti-Bv8 monoclonal antibody treatment in mice with
adenocarcinoma inhibited tumor regrowth, angiogenesis, and
metastasis (107). In addition, anti-Bv8 antibodies blockedMDSC
recruitment and tumor angiogenesis in an RIP1-Tag2 insulinoma
model of pancreatic cancer (245).

Blocking the recruitment of monocytes and macrophages
can be another therapeutic opportunity to overcome resistance
to anti-angiogenic therapy. In a phase I clinical trial, patients
with solid tumors were treated with the human anti-CCL2
monoclonal antibody, carlumab, which targets the monocyte

chemotactic protein-1 (MCP1). In addition to causing a drop
in free CCL2 levels and a reduction in the level of tumor-
infiltrating macrophages, this therapy resulted in a temporary
antitumor activity (108). Treatment of RIP1-Tag2 pancreatic
neuroendocrine tumors with combined ANG2 and VEGFR2
blockers decreased infiltration of TIE2 expressing monocytes
and suppressed revascularization and tumor progression (92).
Since macrophages express colony stimulating factor-1 receptor,
its targeting is currently being evaluated by several phase I
clinical trials (NCT01346358; NCT01004861; NCT01596751).
This is supported by results from earlier studies showing a
reduced macrophage infiltration into tumor tissue and clinical
objective responses following treatment of diffuse-type giant cell
tumor patients with the anti-colony-stimulating factor-1 receptor
antibody, RG7155 (246).

Macrophage Migration Inhibitory Factor (MIF) suppresses
the anti-inflammatory activity of macrophages. TAMs, mainly
M2-polarized macrophages, stimulate angiogenesis thus
promoting tumor cell migration and progression (247). VEGF
increases MIF production in a VEGFR-dependent manner.
Compared to tissue specimens of BVZ-sensitive GBM patients,
BVZ-resistant ones had a decreased MIF expression and an
increased TAM infiltration (248). As such, blocking the VEGF
pathway using BVZ can deplete MIF expression. This explains
the enhanced recruitment of TAM and M2 in BVZ-resistant
GBM tumors. Data is lacking when it comes to evaluating the
application of this target in the clinical setting.

Endothelial Progenitor Cells

Recruitment of endothelial progenitor cells
Anti-angiogenic therapy causes hypoxia which results in the
activation of HIF1a in tumor cells (249). This causes tumor
cells to secrete SDF1 and VEGF,main chemotactic factors for
EPCs (209, 215, 250, 251). Upon stimulation of the C-X-C
chemokine receptor-7 (CXCR7) by SDF1, EPCs secrete pro-
angiogenic cytokines and promote angiogenesis (252, 253). For
instance, in multiple myeloma, this occurs through regulating
the trafficking of angiogenic mononuclear cells into areas of
tumor growth (254). EPCs can also promote angiogenesis by
differentiating into ECs and subsequently incorporating into
newly forming blood vessels.

Recruitment of Local Stromal Cells
Pericytes

Recruitment of pericytes
Pericytes, also known as Rouget cells, are cells that interact with
ECs. They regulate endothelial proliferation and differentiation
and modulate vessel diameter and permeability, thus stabilizing
the newly formed endothelial tubes (255, 256). In a study
by Abramsson et al., paracrine co-signaling via PDGF-B and
PDGFR-b played a major role in pericyte recruitment to
ECs (257).

Several studies revealed enhanced pericyte recruitment to and
coverage of the microvasculature in the tumor after treatment
with AIs. Reduction in tumor vascularity following anti-VEGF
therapy is accompanied by a tightly pericyte covered vessels
(258). For instance, after treatment with sunitinib and the
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chemotherapy drug, temozolomide, a preclinical malignant
glioma model revealed an increased number of vessels covered
with pericytes (259). In addition, esophageal and ovarian cancer
xenografts showed increased pericyte coverage around vessels
following treatment with BVZ (260).

Tumor vessels that are heavily covered by pericytes have
a reduced sensitivity for anti-angiogenic therapies (261) As
such, the increase in pericyte infiltration was suggested to
be a mechanism of resistance to anti-VEGF and anti-VEGFR
therapies. By suppressing EC proliferation and by providing
survival signals that contribute to the maintenance of ECs,
pericytes mediate vascular maturation and stability hence
allowing tumor cells to proliferate during the course of an anti-
angiogenic therapy (262–264). As a result of protecting ECs
from anti-angiogenic agents, pericytes were implicated in clinical
resistance to VEGFR inhibitors (249).

While there is a broad consensus on the fact that pericyte-
covered vessels are less sensitive to AI, several recent studies have
highlighted that tumor vessels typically lack pericyte coverage
due to their immaturity and rapid growth phase while normal
quiescent vessels are well covered (265–267). This could identify
a selective therapeutic window to target abnormal tumor blood
vessels, rather than suggesting to target pericyte coverage.

In keeping with that, accumulating evidence supports the
idea that—in addition to pruning non-covered vessels- cancer
therapies should aim at promoting the establishment of a normal
vasculature in tumors in order to favor wide distribution of
standard chemotherapeutics and innovative drugs into the tumor
mass and improve radiotherapy efficacy. This process is known
as “vascular normalization” that many adopt as the future of
anti-angiogenic therapy. By therapeutically improving, rather
than reducing, the stability and function of tumor blood vessels,
these may be exploited for delivery of therapeutics including
endogenous anti-cancer immune cells. This would also improve
perfusion, reduce hypoxia, and thereby reducemetastasis. Tumor
vessel normalization for cancer therapy has been achieved by the
application of molecules directly targeting endothelial cells, such
as semaphorins (268, 269).

Although ANG1 is a growth factor that provides ECs
with survival signals, its introduction in CRC tumor cells
displays an anti-angiogenic therapy in one study (270). Although
this approach was accompanied by a major increase in
tumor microvessel pericyte coverage, it resulted in smaller
tumors with less vasculature, suggesting a decreased sensitivity
for angiogenesis (270). In a more recent study, tumor-
bearing mice were treated with antibodies against ANG2A,
and a similar observation was noted (261). Combining the
chemotherapeutic agent, topotecan, with pazopanib significantly
inhibited tumor growth, despite an increase in the number
of vessels that were infiltrated by pericytes (271). Similar
results were observed in a preclinical malignant glioma model
following treatment with the combination of temozolomide and
sunitinib (272).

Targeting pericytes to overcome resistance to anti- vascular

endothelial growth factor treatment
Targeting blood vessel maturation by inhibiting pericyte coverage
of the tumor vasculature was suggested as a promising strategy,

to break the resistance to anti-angiogenic therapies and improve
their efficacy. ECs secrete PDGF-B that mediates migration and
proliferation of pericytes expressing PDGFR-b (273). Since SDF1,
and the heparin-binding EGF-like growth factor also play amajor
role in pericyte behavior (274), blocking the PDGF pathway
alone might not be sufficient to prevent pericyte coverage
of vasculature.

Although several studies showed that targeting pericytes and
ECs leads to impaired tumor growth and improved efficacy
to anti-angiogenic agents, data negating the potentiation of
treatment outcome with dual blockade exists (275). For instance,
in a study by Nisancioglu et al., treatment of lung cancer
in pericyte-deficient PDGF-B (ret/ret) mice with the anti–
VEGFA antibody, G6-31, did not have any additional anti-tumor
benefit (276).

Other pathways like sphingosine-1-phosphate (S1P)/edg-1,
TGF-b1/Alk5, or MMPs should be considered while trying
to overcome resistance associated with pericyte coverage
(277). As a result, anti-pericyte agents should always be
combined with other therapies, including chemotherapeutic
agents. For instance, in a preclinical study by Pietras et al.,
transgenic mouse models of cancer were treated with a
combination of the two anti-PDGFR agents, imatinib and
SU11248, cyclophosphamide, and/or an anti-VEGFR agent (109).
Compared tomonotherapies, combination therapies significantly
improved anti-tumor responses. Of note, the combination of
all three approaches resulted in complete responses. Also,
treatment of neuroblastoma mouse xenograft models with a
combination of metronomic topotecan and pazopanib resulted
in a sustained anti-angiogenic effect. but induced resistance
mediated by elevated glycolysis (109).

Cancer-Associated Fibroblasts

Recruitment of cancer-associated fibroblasts
CAFs are activated by growth factors released from tumor and
inflammatory cells, including TGFb, PDGF, and FGF (169, 278,
279). CAFs also secrete several pro-angiogenic growth factors,
including EGF, HGF, and FGF. For instance, VEGF-producing
CAFs maintain tumor angiogenesis in VEGF-deficient tumor
cells (280).

When CAFs were isolated from a mixture of EL4 tumors
resistant to anti-VEGF agents and TIB6 tumors sensitive to anti-
VEGF agents, they were able to promote tumor cell proliferation
and growth even when VEGF was blocked. When CAFs were
isolated from TIB6 tumors sensitive to anti-VEGF agents, no
tumor growth was observed (215). This supports the role of CAFs
in the acquired resistance to anti-angiogenic therapy. Further
analysis revealed an upregulation in the expression of pro-
angiogenic genes in CAFs derived from therapy-resistant tumors,
and these included PDGF-C and Ang-like protein 2. As a result,
it is assumed that a PDGF-C neutralizing antibody could be used
in the treatment of tumors refractory to anti-VEGF agents (215).

CAFs can promote tumor growth and angiogenesis through
the release of certain growth factors and proteases. For instance,
CAFs secrete the chemokine SDF1 which directly stimulates
tumor cells and recruits EPCs and other BMDCs into the
tumor tissue (250, 251). They also produce proteases, including
MMPs that stimulate the release of matrix-bound pro-angiogenic
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growth factors, thus promoting angiogenesis and resistance to
anti-angiogenic agents (281–283).

Targeting cancer-associated fibroblasts to overcome

resistance to anti- vascular endothelial growth factor

treatment
Targeting CAFs might play a role in overcoming resistance to
anti-angiogenic therapy. Treatment of nude mice human HCC
xenografts with the anti-FGF2 monoclonal antibody, GAL-F2,
inhibited tumor growth and angiogenesis by blocking the effect
of the proangiogenic FGF in CAFs. Also, the addition of an anti-
VEGF antibody or the tyrosine kinase inhibitor, sorafenib, led to
an additive treatment effect (110). Similarly, treatment of patients
with recurrent and persistent endometrial cancer with the dual
VEGFR/FGFR inhibitor, brivanib, extended their progression-
free survival (PFS) by blocking the effect of the proangiogenic
VEGF in CAFs. (111). Neutralization of PDGF-C suppressed
CAF-mediated tumor progression.

Adoption of Different Neovascularization
Modalities
Besides acquiring resistance to angiogenesis inhibition through
growth factor redundancy and recruitment of different cells,
tumor cells may also escape the effect of AIs by adopting different
neovascularization modalities (284–286). These include vascular
co-option and vasculogenic mimicry.

Vessel Co-option

Role of vessel co-option in the escape from anti-vascular

endothelial growth factor treatment
Vessel co-option refers to the process by which cancer cells
incorporate into and grow along pre-existing vessels rather
than inducing new vasculature (287). This strategy provides
oxygen and nutrients for efficient tumor outgrowth. It was
first described in brain tumors arising from well-vascularized
brain parenchyma (288). For instance, vessel co-option was
also observed in gliomas and other cancer types including lung
cancers (289). It was shown to sustain the growth of cerebral
metastases frommelanomas, liver metastases from breast cancers
and NSCLCs, and lung metastases from different primaries (290,
291). Interestingly, vessel co-option is independent of the classic
angiogenic switch and doesn’t require any angiogenic growth
factors. As such, vessel co-opting tumors are usually not sensitive
to anti-angiogenic agents. For example, patients with CRC and
liver metastases demonstrated a poor response to BVZ therapy
due to vessel co-option.

An interesting question is whether this process represents an
intrinsic resistance mechanism to anti-angiogenic therapies or
whether it occurs in response to treatment. According to results
from several studies, an increase in vessel co-option tends to
follow, rather than precede, the inhibition of angiogenesis (292).
For instance, the use of an anti-VEGF antibody in GBM patients
resulted in an increase in vessel co-option (293, 294). Similarly,
the growth cerebral melanoma metastasis was sustained by vessel
co-option following treatment with the anti-angiogenic agent,
ZD6474 (290). Nevertheless, more data is needed to check

whether this applies to different tumor types and to evaluate its
impact in the clinical setting.

Vasculogenic Mimicry

Role of vasculogenic mimicry in the escape from

anti-vascular endothelial growth factor treatment
Vasculogenic mimicry refers to the process in which vascular-like
structures are formed by tumor cells, after they trans-differentiate
and gain features of ECs such as the expression of the endothelial
markers, VE-cadherin, TIE1, and ephrin A2 (295, 296). Since
no new blood vessels are formed, this phenomenon is different
from vasculogenesis and angiogenesis. Nevertheless, the fact that
blood can still be transported through the vascular-like networks
and tumors can still be well-oxygenated, vasculogenic mimicry
strongly associated with poor patient survival. This process was
described in different tumor types, including gliomas, malignant
melanomas, sarcomas, and breast cancers (284, 297–300).

Since tumor cells trans-differentiate into endothelial-like cells
as part of vasculogenic mimicry, it might be assumed that the
process can be inhibited by anti-angiogenic agents. However,
tumor cells that make use of this phenomenon were not found
to develop sensitivity to anti-angiogenic therapies in early studies
(301). Instead, they were shown to upregulate this process
following treatment with BVZ or induction of hypoxia by several
preclinical studies (302, 302, 303). As such, vasculogenic mimicry
might serve as an escape mechanism from anti-angiogenic
therapies. The idea of combining AIs with chemotherapeutic
agents has been suggested but more data is needed to evaluate
its impact in the clinical setting.

Targeting vasculogenic mimicry to overcome resistance to

anti- vascular endothelial growth factor treatment
Following the emergence of vasculogenic mimicry as an
alternative vascular-like network in tumors, researchers have
realized the importance of combining angiogenesis inhibition
with an anti-tumor cell strategy. This is particularly challenging
because the transition of tumor cells into a more stem cell–like
phenotype is linked to reduced responsiveness to chemotherapy
and radiotherapy.

In an attempt to better understand the regulators of
vasculogenic mimicry, several studies tried to recognize the
molecular players of this process. Direct targeting of these
molecules, including VEGF, is thought to serve as a promising
therapeutic approach (302, 303). Other regulators of mimicry
were also involved in the plasticity and stem cell-like phenotype
of tumor cells. An example is the overexpression of the marker
of brain development, NODAL (304–307). In addition, the
overexpression of CD44 on vasculogenic tumor cells led to the
initiation of the ongoing clinical study (NCT01358903). This
trial evaluates the effect of an anti-CD44 agent on the process of
vasculogenic mimicry during the treatment of solid tumors.

CONCLUSION AND FUTURE OUTLOOK

The concept of targeting tumor angiogenesis is an important
advancement in cancer therapy and has resulted in the
development of therapeutic agents such as BVZ, sunitinib, and
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sorafenib. Benefits of using anti-angiogenesis therapies seem to
be limited due to several reasons.

Despite the resulting stabilization of disease and increased
PFS, treatment with anti-angiogenic agents may give rise to
more resistant tumors with higher patient relapse rates. This
lack of clinical benefit could be associated with preexisting
resistance or with rapid adaptation to anti-angiogeneic agents.
It is clear that multiple mechanisms of resistance against
AIs exist, including upregulation of alternative angiogenic
factors by tumor cells, involvement of stromal cells, and co-
option/mimicry. The fact that the process of angiogenesis is
complicated and involves a network of mechanisms suggests
that the tumor microenvironment could mediate resistance to
AIs (308). In addition, the vascular regression that is caused
by AIs could elevate intra-tumoral hypoxia, which in turn,
ameliorates resistance to radiotherapy, chemotherapy, and AIs.
Also, the regression in tumor vasculature and the reduction in
blood flow that result from AIs would impede the delivery of
chemotherapeutic agents into tumors. All these complications of
AI use would allow for tumor metastasis and would hence serve
as practical limitations to drug development (309).

With the progress in several scientific and medical fields and
with the growing surge in knowledge about angiogenesis and
its resistance mechanisms, new pharmacological strategies ought
to be developed in the near future. For instance, new ways
of targeting tumor vessels should be designed. This could be
made possible by developing novel therapeutics that can either
optimize the function of tumor vessels to allow adequate tumor
response to cancer therapy or directly target tumor vessels (310).

In addition, in the light of the wide gap between our
improving knowledge in the mechanobiology of MSCs and our
satisfactory understanding of their clinical implications, novel
approaches should be suggested to fill the gap. This could be
made possible by engineering MSCs to selectively deliver anti-
angiogenic molecules (309).

In addition, the use of combination strategies as a means
to target multiple pathways involved in angiogenesis has been
suggested to be a promising approach in overcoming resistance
to AIs. To date, these either include a combination of multiple
anti-angiogenic agents or a combination of anti-angiogenic drugs
and other treatment regimens.

This process of selecting the most effective combination
regimen is challenging because it requires extensive profiling
of angiogenesis signaling pathways and involves a careful
patient selection. Not only do combination regimens require
regular dose adjustments to enhance efficacy and reduce
toxicity, but also they require intermittent monitoring of

treatment efficacy through biomarkers. Although combinations
of different anti-angiogenic agents might increase treatment
benefit, the presence of many alternative pathways can
still result in acquired resistance. They can also induce
excessive hypoxia that leads to additional resistance. Hence,
the initiation of clinical trials to evaluate the efficacy and
safety of such new combination strategies seems to be of
utmost importance. In addition, the development of genetically
engineered animal models whose tumor microenvironment can
mimic that of humans could be of so much help in the
development of reliable treatment approaches. This, in addition
to clinical trials, would enable scientists and clinicians to
make use of precision medicine for coming up with effective
combinations of AIs and other therapies that would hopefully
prevent the early acquisition of resistance or even impede its
occurrence (141).

It is likely that the future therapy will make use of
genomic, transcriptomic, and proteomic techniques as part
of diagnostic profiling. Different therapeutic combinations
can then be personalized and matched to current stages of
tumor progression. Since tumors have rapid genetic drifts
and might rapidly develop resistance to treatment, diagnostic
profiling would have to be repeated during the course of
treatment (141).

Nanotechnology enables researchers to develop novel nano-
therapeutics, but this requires more knowledge about metabolic
behaviors of tumor cells and possible physiological barriers or
material properties that would improve or impede the efficiency
of nano-therapeutics, respectively (311). It can therefore be
foreseen that the future of AI-based therapies is heavily
dependent on the efforts of basic scientists who can provide a
clearer image regarding the response of cancer cells to the agents
and on the ability of clinicians to make use of this knowledge to
benefit patients (312).

These issues highlight themajor challenges for future research.
We look forward to the results of ongoing and future clinical
trials discussed in this review paper in hopes that outcomes
can be improved for all patients with cancers that are resistant
to angiogenesis.
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