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Background: Neoadjuvant chemotherapy (NAC) has been of recent interest as an

alternative to upfront surgery followed by adjuvant chemotherapy in patients with

pancreatic ductal adenocarcinoma (PDAC). However, a subset of patients does not

respond to NAC and may have been better managed by upfront surgery. Hence, there is

an unmet need for accurate biomarkers for predicting NAC response in PDAC. We aimed

to identify upregulated proteins in tumor tissue from poor- and good-NAC responders.

Methods: Tumor and adjacent pancreas tissue samples were obtained following

surgical resection from NAC-treated PDAC patients. SWATH-MS proteomic analysis was

performed to identify and quantify proteins in tissue samples. Statistical analysis was

performed to identify biomarkers for NAC response. Pathway analysis was performed to

characterize affected canonical pathways in good- and poor-NAC responders.

Results: A total of 3,156 proteins were identified, with 19 being were significantly

upregulated in poor-responders compared to good-responders (log2 ratio> 2, p< 0.05).

Those with the greatest ability to predict poor-NAC response were GRP78, CADM1,

PGES2, and RUXF. Notably, canonical pathways that were significantly upregulated in

good-responders included acute phase signaling and macrophage activation, indicating

a heightened immune response in these patients.

Conclusion: A novel biomarker signature for poor-NAC response in PDAC

was identified.
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INTRODUCTION

Pancreatic ductal adenocarcinoma (PDAC) has the lowest
survival rate of all major cancers (∼6% at 5 years post-diagnosis)
and is projected to become the second most common cause
of cancer related death by 2030 (1, 2). Intrinsic chemotherapy-
resistance is one of the major clinical problems associated with
PDAC, resulting in the failure of currently available therapeutic
options (3). Adjuvant chemotherapy in patients with resected
PDAC has been shown to extend survival over surgery alone, and
more recently, more intensive regimens such as FOLFIRONOX
have been shown to be even more effective (4). However, not
all patients are capable of commencing let alone completing
chemotherapy after surgery for PDAC. As such, there has been
an increasing trend toward neoadjuvant chemotherapy (NAC),
i.e., pre-operative chemotherapy, in order to effectively deliver
systemic chemotherapy since improvements in nodal status and
resection margin status have been observed (5, 6). However,
a subset of patients can be classified as “poor responders” to
NAC, failing to demonstrate tumor response with subsequent
early disease recurrence and shortened overall survival time
(7). While genetic classification of PDAC may help identify
a high risk squamous or basal subtype (8), the high costs of
these methodologies have prohibited the general clinical use
of genetic analysis of individual PDAC patients to help guide
therapy. Therefore, there is a need for discovering more readily
applicable tissue and/or blood-based secreted biomarkers that
can predict a NAC response, which may be detected by more
cost-effective tests.

Recently, there has been a surge in interest in the “-omics”
approach to biomarker discovery in cancer research. Such
approaches allow identification of a myriad of genes, transcripts,
proteins and metabolites unique to cancer. They are therefore
an invaluable first-step in the process of biomarker identification
and validation. SWATH-MS (Sequential Window Acquisition
of all Theoretical fragment ion spectra—Mass Spectroscopy)
is a high throughput quantitative mass spectrometry method
for proteome analysis (9). This technology allows permanent
recording of all peptide fragment ions in biological samples,
which imparts the advantages of a high throughput shotgun
approach, with the consistency and data reproducibility of
selective reaction monitoring (SRM) proteomics (10). Here, we
report on the use of SWATH-MS as a discovery proteomics
approach to identify differences in proteomic profile of good- and
poor-NAC responders in PDAC.

MATERIALS AND METHODS

Participants and Tissue Collection
Patients who presented with histologically confirmed PDAC
at a tertiary centre [Royal North Shore Hospital (RNSH) and
North Shore Private Hospital (NSP), Sydney, Australia] were
included in the study between 04/03/2016 and 18/07/2017. All
patients selected were treated with NAC before surgical resection,
following individual discussion by our multidisciplinary team.
The NAC regimen was at the discretion of the oncologist.
Tumor tissue and adjacent normal pancreas were obtained

from patients during the surgical intervention. Pathologically
confirmed tumor and adjacent normal pancreas tissue were cut
into 2 mm3 portions and stored in cryotubes in a −80◦C freezer
for later analysis.

The NAC response was determined based on the residual
tumor viability, as described previously (7). Briefly, at the
time of initial surgical pathology reporting, the residual tumor
viability was assessed by the reporting pathologist. All histological
slides were reviewed to estimate the viable residual tumor as a
percentage of the estimated original tumor volume. A case with
no response to NAC was recorded as 100% viable and a case with
complete regression after treatment was recorded 0% viable.

Ethics Approval and Consent to Participate
This study was approved by the RNSH and NSP institutional
ethics committees under references HREC/16/HAWKE/105 and
NSPHEC 2016-007, respectively. Informed written consent
was obtained from all participants and/or their designated
surrogate. North Sydney Local Health District (NSLHD)
reference: RESP/16/76.

Proteomic Sample Preparation and
SWATH-MS Analysis
Protein Digestion and LC-MS/MS Analysis
All tissue samples were lysed in 100mM triethylammonium
bicarbonate (TEAB) and 1% sodium deoxycholate buffer using a
probe sonicator. Protein concentrations were estimated using the
bicinchoninic acid protein assay (Thermo Scientific, Waltham,
MA). The cysteine residues were reduced in the presence of
10mM dithiothreitol (DTT, Bio-Rad, Hercules, CA) at 60◦C and
alkylated with 10mM iodoacetamide (IAA, Bio-Rad) at room
temperature in the dark. Trypsin (sequencing grade; Promega,
Madison, WI) was added in a 1:50 ratio and proteins were
enzymatically degraded overnight at 37◦C. By adding 1µL formic
acid (FA; Thermo Scientific) the digestion was quenched and
the sodium deoxycholate (SDC) precipitated and removed by
centrifugation (14,000 rpm) for 5min. Samples were lyophilized
and reconstituted in 2% acetonitrile (ACN; Sigma Aldrich,
St. Louise, MO) and 0.1% FA.

Liquid Chromatography-Tandem Mass Spectrometry (LC-
MS/MS) analysis for tissue samples were performed on an
Ekspert NanoLC 400 with cHiPLC system (SCIEX, Framingham,
MA) coupled to a TripleTOF 6600 mass spectrometer (SCIEX).
A 200µm × 0.5mm nano cHiPLC trap column and 15 cm ×

200µm nano cHiPLC columns (ChromXPTM C18-CL 3µm 120
Å) were used with 140min ACN gradients.

Digested samples were pooled, by combining a small
fraction of each tissue sample from the tumor and adjacent
normal pancreas, and subjected them to basic reverse phase
chromatography high performance liquid chromatography
(HPLC), using an extended C18 column 2.1mm × 150mm,
3.5µm (Agilent, Santa Clara, CA), on an Agilent 1200 series
HPLC. One hundred microgram of peptides per pool were pre-
cleaned with Sep-Pak C18 and then injected at a flow rate
of 0.3 mL/min at room temperature onto the column. The
peptides were separated over a 1 h gradient from using Buffer
A of 5mM ammonia at approximately pH 10.4 and Buffer B of
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90% ACN/5mM ammonia, and eluting peptides were collected
in fractions of 1min. Concatenated pooling of the fractions
was performed.

For data dependent MS/MS acquisition to build a spectral
library of the basic reverse phase fractionated samples, the
20 most intense m/z values exceeding a threshold >250 cps
on the TripleTOF 6600 with charge stages between 2+ and
4+ were selected for analysis from a full MS survey scan
and excluded from analysis for 20 s to minimize redundant
precursor sampling.

In data independent acquisition, a 100 variable window
method was used over a range of 400–1,250 m/z with window
sizes based on precursor densities in the LC-MS/MS acquisition.
Collision energies were calculated for 2+ precursors with m/z
values of lowest m/z in window+ 10% of the window width. The
data were acquired over an 80min ACN gradient.

Protein Identification and Quantification
Spectral libraries for SWATH-MS quantitation were generated
with ProteinPilotTM software 5.0 using the ParagonTM algorithm

FIGURE 1 | Characteristics of patient with good and poor NAC response. (A) Details of patient age, sex, tumor stage, grade, margin status, number of lymph nodes

involved, neoadjuvant chemotherapy (NAC) received (FL, Florfirinox; GA, Gemcitabine/Abraxane; #Patient initially received FL followed by GA) and residual tumor cell

viability. (B) Kaplan-Meier survival curve for good- and poor-NAC responders. *p < 0.05.
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(SCIEX) in the thorough ID mode including biological
modifications and chemical modifications. MS/MS data
were searched against the human UniProt database (release
February 2016, 20,198 entries) with carbamidomethyl as a fixed
modification for cysteine residues. An Unused Score cut-off
was set to 0.05 and the false discovery rate (FDR) analysis
was enabled.

Generated Paragon group files were imported into
PeakViewTM software 2.1 using the SWATH MicroApp 2.0
(release 25/08/2014) to generate a sample specific spectral library
which was matched against SWATH-MS data. After retention
time calibration with endogenous peptides, data were processed
using following processing settings; 100 maximal peptides per
protein, maximal 6 transitions per peptide, peptide confidence
threshold of 99%, transition false discovery rate < 1%, 5min
extraction window and fragment extraction tolerance of 75 ppm.

Data Analysis
Survival data was compared using Kaplan-Meier curve analysis.
The statistical differences in the survival curve were analyzed
by the Log-rank test. Proteomic data was initially analyzed by
the principal component analysis (PCA) to observe inherent
groupings within the data set. Further, proteins which were
markedly up- or down-regulated (log2 ≥ 2 or ≤ −2) were
compared using multiple t-test analysis (p < 0.05; q < 0.1;
false discovery rate was determined with Q = 1%). The
predictive model for selected proteins was validated by the
Area Under the Receiver Operating Characteristic (AUROC)
curve. All analysis was performed using either GraphPad Prism
(GraphPad Software, San Diego, California) or JMP (SAS
Institute, Cary, North Carolina) statistical software. Pathway
analysis was performed using Ingenuity Pathway Analysis (IPA;
Qiagen Bioinformatics, Redwood City, CA) (11). The proteins
which were markedly (log2 ≥ 2 or ≤ −2) and significantly (p
< 0.05; q < 0.1) differentially expressed were inputted into IPA.

Protein secretion prediction was performed using Proteinside
software (12).

RESULTS

Population Demographics and Survival
Data
A total of 18 PDAC patients (7 males, 11 females) were recruited
for this study. All PDAC patients underwent neoadjuvant
chemotherapy (NAC) before surgical resection. Patient
characteristics (age, sex, tumor stage, NAC received, residual
tumor viability) are described in Figure 1A.

The patients were divided on the basis of their response to
NAC, which was determined by the residual tumor viability in
the specimen. Based on the previously described classification
methods (13), the tumors with ≤30% viable tumor cells (i.e.,
HTRG grade 0, CAP grade 0; HTRG grade 1, CAP grade 1; and
HTRG grade 2, CAP grade 2: complete to moderate response)
were graded “good-responders,” while tumors with >30% viable
tumor cells (HTRG grade 2, CAP grade 3; poor response)
were graded as “poor-responders.” The good-responders had
significantly (p < 0.05) longer overall survival compared to
poor-responders (Figure 1B).

Principal Component Analysis: Distinct
Tissue Samples
Using SWATH-MS analysis, a total of 3,156 proteins were
identified in both tumor tissue and adjacent normal pancreas.
Principal component analysis (PCA) was performed on the
proteomic data obtained by SWATH-MS analysis of tumor
tissue and adjacent normal pancreas. PCA is an unsupervised
class recognition approach, to observe inherent groupings (14).
Tissues were observed to be clustered according to their class
grouping (i.e., tumor tissue or adjacent normal pancreas) for
all patients together (Figure 2A), good-responders (Figure 2B),

FIGURE 2 | Multivariate proteomic analysis. Principal Component Analysis (PCA) score plot between first two principal components derived from the proteomic profile

of tumor tissue (red) and adjacent healthy pancreas (green) in: (A) all PDAC patients; (B) good-NAC responders; and (C) poor-NAC responders.
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TABLE 1 | Over-expressed and under-expressed proteins in good-responders.

Good-responders

Protein name Uniprot accession Log2 ratio P-value q-value

OVER-EXPRESSED

Rho guanine nucleotide exchange factor 18 ARHGI_HUMAN 4.915 0.004 0.011

CDP-diacylglycerol–glycerol-3-phosphate 3-phosphatidyltransferase PGS1_HUMAN 4.222 0.003 0.010

Prolargin PRELP_HUMAN 4.115 0.009 0.017

Versican core protein CSPG2_HUMAN 4.109 0.003 0.010

Alpha-1-antitrypsin A1AT_HUMAN 3.935 0.007 0.015

Apolipoprotein A-I APOA1_HUMAN 3.735 0.003 0.010

Hemopexin HEMO_HUMAN 3.590 0.006 0.014

Collagen alpha-1(III) chain CO3A1_HUMAN 3.588 0.012 0.019

Inter-alpha-trypsin inhibitor heavy chain H1 ITIH1_HUMAN 3.538 0.005 0.012

Fibulin-1 FBLN1_HUMAN 3.457 0.007 0.015

UNDER-EXPRESSED

Pancreatic alpha-amylase AMYP_HUMAN −6.333 4.19E-05 3.14E-03

Chymotrypsin-like elastase family member 3A CEL3A_HUMAN −6.245 4.48E-05 3.14E-03

Carboxypeptidase B CBPB1_HUMAN −5.428 5.75E-05 3.14E-03

Trypsin-1 TRY1_HUMAN −5.346 1.26E-03 8.63E-03

Pancreatic lipase-related protein 2 LIPR2_HUMAN −4.847 3.67E-04 6.36E-03

Bile salt-activated lipase CEL_HUMAN −4.775 2.50E-03 9.68E-03

Protein disulfide-isomerase A2 PDIA2_HUMAN −4.757 2.52E-03 9.68E-03

Carboxypeptidase A1 CBPA1_HUMAN −4.748 1.18E-02 1.85E-02

Carboxypeptidase A2 CBPA2_HUMAN −4.395 1.25E-03 8.63E-03

Chymotrypsin-C CTRC_HUMAN −4.249 3.48E-03 1.03E-02

or poor-responders (Figure 2C). These results indicate that a
clearly distinct tumor and adjacent normal tissue specimens were
obtained from the patients.

Differentially Regulated Proteins
There were 236 differentially expressed (log2 > 2; p < 0.05)
proteins in the tumor tissue in good-responders compared to
their adjacent normal pancreas (Supplementary Table 1). Of
these, 134 proteins were over-expressed and 102 proteins were
under-expressed in the tumor tissue. In poor-responders, only 67
proteins were differentially expressed (23 over-expressed and 44
under-expressed; Supplementary Table 2).

The top 10 over- and under-expressed proteins for both
good- and poor-responders based on fold-change are reported
in Tables 1, 2. The over-expressed proteins in good- and poor-
responders showed distinct functional activity. In contrast, the
majority of proteins which were under-expressed in both good-
and poor-responders, shared similar functional (proteases or
peptidase) activity with 7 out of top 10 proteins being the same.

Comparative Pathway Analysis
Next, based on the identified differentially regulated proteins
in both good- and poor-NAC responders, pathway analysis
was performed using Ingenuity Pathway Analysis. A number
of canonical pathways were observed to be differentially
regulated in good- and poor-NAC responders (Figure 3A and
Supplementary Table 3). Notably, immune response pathways,

such as acute phase signaling and macrophage mediated
nitric oxide and reactive oxygen species production, were
upregulated in good responders but remained unaffected in
poor-responders. Similarly, analysis of predicted disease and
functions based on differential protein expression using IPA,
supported an immunogenic phenotype in good-responders,
while poor-responders showed only mild inflammatory response
and phagocyte migration (Figure 3B).

Biomarker Analysis
There were 19 proteins which were markedly (log2 > 2)
and significantly (p < 0.05) over-expressed in tumor from
the poor-responders compared to good-responders (Table 3).
The ability to these proteins to predict chemo-resistance to
NAC was determined by area under the receiver operator
characteristic (AUROC) curve. Four biomarkers, namely GRP78,
CADM1, PGES2, and RUXF, demonstrated very high predictive
performance with AUROC≥ 0.92.

Notably, four proteins, i.e., TMED2, AGR2, JTB, and CADM1,
were predicted as secreted proteins, with SignalP score of 0.908,
0.856, 0.759, and 0.699, respectively.

DISCUSSION

Neoadjuvant chemotherapy (NAC) is being increasingly given
to PDAC patients with borderline/locally advanced disease and
is also being evaluated in upfront operable patients. Previous
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TABLE 2 | Over-expressed and under-expressed proteins in poor-responders.

Poor-responders

Protein name Uniprot accession Log2 ratio P-value q-value

OVER-EXPRESSED

Periostin POSTN_HUMAN 2.789 6.94E-06 1.45E-05

Filamin-A FLNA_HUMAN 2.700 3.44E-05 5.12E-05

Ras-related C3 botulinum toxin substrate 2 RAC2_HUMAN 2.613 2.80E-07 9.38E-07

Proteasome subunit beta type-10 PSB10_HUMAN 2.555 3.31E-05 5.04E-05

Collagen alpha-1(XII) chain COCA1_HUMAN 2.482 2.64E-07 9.31E-07

Versican core protein CSPG2_HUMAN 2.436 6.80E-07 1.98E-06

Collagen alpha-2(V) chain CO5A2_HUMAN 2.388 3.71E-04 4.60E-04

CDP-diacylglycerol–glycerol-3-phosphate 3-phosphatidyltransferase PGS1_HUMAN 2.373 4.31E-04 5.25E-04

Apolipoprotein A-I APOA1_HUMAN 2.354 7.56E-04 8.30E-04

Syntenin-1 SDCB1_HUMAN 2.345 6.97E-05 9.16E-05

UNDER-EXPRESSED

Trypsin-3 TRY3_HUMAN −5.124 1.41E-08 1.58E-07

Chymotrypsinogen B2 CTRB2_HUMAN −5.067 4.56E-05 6.49E-05

Pancreatic alpha-amylase AMYP_HUMAN −4.988 3.63E-08 2.70E-07

Chymotrypsin-like elastase family member 3A CEL3A_HUMAN −4.933 2.35E-09 5.57E-08

Protein disulfide-isomerase A2 PDIA2_HUMAN −4.859 2.19E-08 1.84E-07

Trypsin-1 TRY1_HUMAN −4.471 2.18E-09 5.57E-08

Carboxypeptidase A1 CBPA1_HUMAN −4.463 4.03E-06 8.72E-06

Chymotrypsin-C CTRC_HUMAN −4.390 2.99E-09 5.57E-08

Serine protease inhibitor Kazal-type 1 ISK1_HUMAN −4.212 4.16E-09 5.57E-08

Carboxypeptidase B CBPB1_HUMAN −4.187 1.89E-07 7.44E-07

studies have shown that patients who respond to NAC have
an overall survival benefit compared to non-responders (7).
There are currently no validated biomarkers readily available
for predicting NAC response in these patients. This study
identified a panel of potential biomarkers which correlate with
resistance to NAC in PDAC patients. The top four biomarkers
for NAC resistance, namely, GRP78, CADM1, PGES2, and RUXF
demonstrated very high predictive ability for chemo-resistance
with AUROC > 0.92. Notably, GRP78 has been previously
demonstrated to play an important role in mediating chemo-
resistance in PDAC (15–17). Moreover, RUXF and PGES2 are
known to be involved in chemo-resistance in ovarian and
colorectal cancer, respectively (18, 19). On the other hand,
CADM1 is shown to be a good prognostic marker in other
cancers (20, 21).

Four proteins (i.e., TMED2, AGR2, JTB, and CADM1) among
the over-expressed proteins in poor-responders (Table 3) were
predicted to be secreted extracellularly. This is important, as
detection of these proteins in plasma/serum from the PDAC
patients could be used to develop a simple blood-based test for
determining NAC response in PDAC patients. Of note, TMED2,
AGR2, and JTB are known to be associated with poor prognosis
in other cancers (22–24) and thus, could be explored as novel
biomarkers for predicting chemo-resistance in PDAC. Future
studies, assessing the levels of these biomarkers in serum or
plasma from the NAC-treated PDAC patients, will be required
to confirm the clinical utility of these biomarkers as an indicator
of chemo-resistance in PDAC.

This study also compared tumor tissue with adjacent
normal pancreas in both good- and poor- NAC responders.
A distinct proteomic profile of over-expressed proteins in
tumors was observed in good- and poor-NAC responders
compared to the adjacent normal pancreas. Rho guanine
nucleotide exchange factor 18 (Uniprot: ARHGI_Human) was
the most over-expressed protein in good-responders. This
latter protein is known to be up-regulated in response
to reactive oxygen species (25), which are known to be
increased in tumor tissue treated with chemotherapy (26).
Periostin (Uniprot: POSTN) was identified as the highest
over-expressed protein in poor-NAC responders. Periostin is
an extracellular matrix protein, which is known to play an
important role in cancer progression (27). Notably, periostin
expression has also been shown to be associated with chemo-
resistance in pancreatic and other cancers (28–30). Previous
studies have also demonstrated periostin as a poor prognostic
biomarker in PDAC and other cancers (31–34). In PDAC,
periostin is produced by pancreatic stellate cells and it is
shown to establish a microenvironment that is supportive
for cancer growth and progression (31, 35). Identification
of periostin as a highly over-expressed protein in poor-NAC
responders in this study further supports its important role in
PDAC chemo-resistance.

The majority of proteins under-expressed in both good-
and poor-NAC responders were pancreas specific peptidases
or proteases (e.g., CEL3A, CBPB1, CBPA1, CBPA2, etc.).
Notably, several previous studies also have shown that pancreatic
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FIGURE 3 | Comparative pathways and associated disease/functions between good- and poor-NAC Responders. Ingenuity pathway analysis was performed to

identify (A) canonical pathways; and (B) associated disease/function affected in the tumor tissue of good- and poor-NAC responding PDAC patients, compared to

adjacent normal pancreas.

proteases or peptidases are downregulated in PDAC tumor
compared adjacent normal pancreas (33, 36, 37).

Assessment of pathway analysis revealed that the SPINK1
pathway was upregulated in both good- and poor-NAC
responders, with the latter havingmore pronounced involvement
of this pathway. SPINK1 is a serine protease inhibitor which
has an anti-trypsin activity and is known to play an important
role in protecting the normal pancreatic tissue from inadvertent
activation of trypsin (38). Moreover, SPINK1 is also shown to
play a role in cancer cell survival and progression (39–41).
In this study, we observed that levels of SPINK1 (Uniprot:
ISK1_Human) were decreased in tumor tissue compared to
adjacent normal pancreas. This is consistent with previous
studies demonstrating higher levels of SPINK1 in normal
pancreatic tissue compared to tumor (42, 43).

The pathway analysis further demonstrated that innate
immune response was highly activated in tumors from the good-
NAC responders, while only moderate immune activity was
observed in poor-NAC responders. It can be postulated that
initial response to NAC in good-responders could have resulted
in a heightened immune infiltration into these tumors, resulting

in an overall increased anti-tumor response. Studies have also
shown similar immune-stimulatory effect of chemotherapy in
other cancers (44, 45), but this is the first study to observe this
effect in PDAC.

The main limitation of this study is a relatively small
cohort size. Future multi-institutional studies with a larger
group of patients will be required to independently validate
the identified proteins and their predictive value. This study
utilized tumor specimens obtained at the time of surgical
resection after chemotherapy treatment. Future studies will
be required to further validate these findings using pre-NAC
endoscopic ultrasound (EUS) core biopsies. Notably, EUS core
biopsy provides sufficient amount of protein (∼1 µg) required
for SWATH-MS analysis, which highlights the future clinical
utility of these biomarkers in selecting patients for NAC prior
to surgery.

CONCLUSION

Overall, this exploratory study has demonstrated the successful
application of SWATH-MS proteomic analysis to pancreatic

Frontiers in Oncology | www.frontiersin.org 7 March 2020 | Volume 10 | Article 237

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sahni et al. Biomarkers for NAC Response in PDAC

TABLE 3 | Biomarkers to predict poor-NAC response.

Protein name Uniprot accession Log2 ratio P-value q-value AUROC

Endoplasmic reticulum chaperone BiP GRP78_HUMAN 2.139 0.009 0.028 0.954

Cell adhesion molecule 1 CADM1_HUMAN 2.424 0.007 0.028 0.923

Prostaglandin E synthase 2 PGES2_HUMAN 2.359 0.001 0.028 0.923

Small nuclear ribonucleoprotein F RUXF_HUMAN 2.144 0.009 0.028 0.923

ATP-binding cassette sub-family D member 3 ABCD3_HUMAN 2.060 0.005 0.028 0.892

START domain-containing protein 10 PCTL_HUMAN 2.261 0.006 0.028 0.876

39S ribosomal protein L37 RM37_HUMAN 2.986 0.012 0.030 0.862

Protein enabled homolog ENAH_HUMAN 2.956 0.003 0.028 0.862

Transmembrane emp24 domain-containing protein 2 TMED2_HUMAN 2.193 0.039 0.061 0.862

Anterior gradient protein 2 homolog AGR2_HUMAN 2.036 0.027 0.045 0.862

Glutamate decarboxylase 2 DCE2_HUMAN 3.225 0.016 0.034 0.846

Acyl-coenzyme A synthetase ACSM3 ACSM3_HUMAN 2.241 0.013 0.030 0.831

Epiplakin EPIPL_HUMAN 2.106 0.026 0.045 0.831

SCY1-like protein 2 SCYL2_HUMAN 3.729 0.004 0.028 0.815

Synaptosomal-associated protein 29 SNP29_HUMAN 2.279 0.013 0.030 0.800

Protein JTB JTB_HUMAN 2.449 0.044 0.062 0.785

MARCKS-related protein MRP_HUMAN 2.206 0.045 0.062 0.785

60S ribosomal protein L38 RL38_HUMAN 2.061 0.047 0.062 0.785

YTH domain-containing family protein 3 YTHD3_HUMAN 2.175 0.022 0.042 0.738

tumor and normal pancreas tissue samples, resulting in the
identification of novel potential biomarkers which may predict
for a chemo-resistant tumor phenotype in PDAC patients treated
with NAC. Further research in a larger patient cohort is required
to validate these findings.
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