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Purpose:Conventional iterative low-dose CBCT reconstruction techniques are slow and

tend to over-smooth edges through uniform weighting of the image penalty gradient. In

this study, we present a non-iterative analytical low-dose CBCT reconstruction technique

by restoring the noisy low-dose CBCT projection with the non-local total variation

(NLTV) method.

Methods: We modeled the low-dose CBCT reconstruction as recovering high quality,

high-dose CBCT x-ray projections (100 kVp, 1.6 mAs) from low-dose, noisy CBCT x-ray

projections (100 kVp, 0.1 mAs). The restoration of CBCT projections was performed

using the NLTV regularizationmethod. In NLTV, the x-ray image is optimized byminimizing

an energy function that penalizes gray-level difference between pair of pixels between

noisy x-ray projection and denoising x-ray projection. After the noisy projection is restored

by NLTV regularization, the standard FDK method was applied to generate the final

reconstruction output.

Results: Significant noise reduction was achieved comparing to original, noisy inputs

while maintaining the image quality comparable to the high-dose CBCT projections.

The experimental validations show the proposed NLTV algorithm can robustly restore

the noise level of x-ray projection images while significantly improving the overall

image quality. The improvement in normalized mean square error (NMSE) and peak

signal-to-noise ratio (PSNR) measured from the non-local total variation-gradient

projection (NLTV-GPSR) algorithm is noticeable compared to that of uncorrected

low-dose CBCT images. Moreover, the difference of CNRs from the gains from the

proposed algorithm is noticeable and comparable to high-dose CBCT.

Conclusion: The proposed method successfully restores noise degraded, low-dose

CBCT projections to high-dose projection quality. Such an outcome is a considerable

improvement to the reconstruction result compared to the FDK-based method. In

addition, a significant reduction in reconstruction time makes the proposed algorithm

more attractive. This demonstrates the potential use of the proposed algorithm for clinical

practice in radiotherapy.

Keywords: low-dose CBCT, non-local total variation, compressed sensing, image reconstruction, image-guided

radiation therapy (IGRT)
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INTRODUCTION

CBCT has been widely adopted for radiotherapy for tumor
visualization and localization (1, 2). However, CBCT delivers
considerable imaging dose to the patient through ionizing
x-rays. The cumulative imaging dose from repeated CBCT
scans is clinically significant, and the optimization of x-ray
exposure conditions is necessary to meet dose constraints.
Moreover, keeping the low dose in CBCT with as low as
reasonably achievable (ALARA) principles, it is desirable to
reduce imaging dose (3–5). Therefore, minimizing imaging dose
while maintaining adequate image quality for accurate tumor
visualization is highly desirable in the clinical setting.

Imaging dose is proportional to the exposure level (mAs)
from the x-ray tube of the CBCT imaging system. Reducing the
exposure level reduces the fluence to x-rays projected onto the
patient and thus reduces the CBCT imaging dose. However, an
excessive reduction in exposure amplifies the noise level of the
projection image due to the photon starvation effect. Moreover,
when using the conventional Feldkamp, Davis, and Kress (FDK)
algorithm for reconstruction, it is difficult to sustain the image
quality due to the amplification of noise with the high bandpass
filter applied to noisy projection data (6–8).

To solve this problem, iterative reconstruction methods based
on total variation (TV) have been proposed to enhance the
image quality of low-dose CT/CBCT. These methods effectively
reduce the overall noise; however, TV normalization attempts
to isotropically over smooth the image by applying the penalty
gradient to detail across the entire image. In order to improve

such limitations of conventional TV-based algorithms, the Edge-

based TV (EPTV) and adaptive weighted TV (awTV) methods
have been developed. EPTV and awTV calculate isotropic as well
as anisotropic details computed by the exponential-type operator

of the image slope from the intermediate image generated
during iterations (9–11). In these recalibration-based models,
the value of TV penalties is suppressed in the edge component
where the image gradients are high to reduce edge smoothing.
Although improvements were made compared to conventional
TV-based methods, the ability to preserve detail (e.g., edges) in
the conventional TV-based approaches were constrained by the
intermediate image quality during the iterative process, which
depends on the level of noise per projection. As a result, at very
low mAs conditions, the edges are still blurred.

Another challenge of TV-based CBCT reconstruction is long
reconstruction times (3–8, 12). During the iterative process of
solving the TV-based least squares problem, multiple forward,
and backward projections of large datasets must be calculated
in each iterative process. This computation process is widely
known to be computationally heavy and long to process. To
make a CBCT reconstruction process practical for its clinical
use, reconstruction must be completed within a few minutes
(clinically feasible timeframe).

In this study, we propose a non-iterative analytical image
reconstruction algorithm based on the recovery of noisy CBCT
projections. A new edge-preserving denoising method called the
non-local total variation model is applied to restore the signal
to noise ratio (SNR) of noisy, low-dose CBCT projections to a

quality that is comparable to high dose CBCT projection images.
A comprehensive evaluation of our approach applied to images
from a numerical phantom, as well as a physical phantom,
is presented.

METHOD AND MATERIALS

Recently, non-local total variation (NLTV) has drawn much
attention to the image denoising problem. Based on the
advantages of non-local means (NLM), Gilboa and Osher
introduced a non-local variational model to improve texture
further (13).

Given an x-ray projection domain P (P can be sub-domain of
R
2), consider a noisy CBCT projection image I as a mapping of

P → R, where I is obtained from a perfectly denoised unknown
image u. In this form, the proposed mathematical formulation
of NLTV based denoising on the CBCT projection data can be
written as

argmin
u∈�

λJNLTV (u)+ ‖u− I‖2 (1)

where � is either R
P (in a discrete level) or the space of the

functions of bounded variation and JNLTV (u) is defined by

∫

P

√

∫

B
(u(p)− u(p+ q))2v(p)dqdp (2)

where B is a search window, and the weights v are defined as

v(p) = exp(−

∑B/2
k=−B/2

G(k) ·
∣

∣u(p+ k)− u(p− k)
∣

∣

2

2h20
) (3)

Here, G is a Gaussian kernel with patch size B and filtering
parameter h0. Unlike conventional uniform TV, it assigns non-
uniform weights to the global search area such that the smaller
the difference for the pair of image intensities, the greater weight
is imposed. In this work, the patch of the Gaussian kernel is
defined to be 10 × 10 with unit variance. The search area for
NLTV to seek a similar block is set to be 300 × 300 with unit
variance, and the filtering parameter was set to be between 1 and
6 times of the image background. The similarity is evaluated by a
given threshold α where the criterion by which two blocks can be
considered similar is defined as

∥

∥ui − uj
∥

∥

2
≤ α (4)

If the similarity is greater than the threshold, it is considered
dissimilar and ignored, and only the similar blocks are used in the
NLTV calculation. To reduce the number of blocks considered
in the searching and accelerate the speed of computation, a
discriminator method is used. The basic idea is that considering
the two estimated blocks are similar, they should have similar
average intensities (pixel values) and standard deviations. In this
manner, the series of block means and standard deviations can
be computed in advance. If the blocks are considered similar, the
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FIGURE 1 | Work flow design of proposed NLTV filtering process. NLTV comprises of four steps: discriminator, block searching, NLTV calculation and optimization.

distance will be calculated. Otherwise, if the blocks are considered
dissimilar, then the distance will be set to∞.

d(ui, uj) =

{

‖ui−uj‖
2

B2
if mean(ui − uj) ≤ λ1 ∩ var(ui − uj) ≤ λ2

∞ Otherwise
(5)

In this manner, the maps of local means and standard deviations
are computed in advance, and repetitive calculation of the search
window can be prevented. Figure 1 shows the workflow of the
NLTV denoising workflow at a given projection.

After NLTV is computed, the final step is to solve the
optimization problem defined by Equation (1). Here, the gradient
projection for sparse reconstruction (GPSR) was implemented
that searches the global minimum of convex function with the
projected gradient at each iteration. It is started by computing
the gradient of the energy function consisting of the data fidelity
and the NLTV penalty terms, followed by projecting in the
direction of the gradient. Next, a back-tracking line-search is
conducted by evaluating the energy function with a decreasing
step-size αn until the Armijo condition is satisfied (14). The
latest commercialized algorithm is fast since it works with the
iterations ten times only; however, there is no convergence
guarantee. It means that because it takes too long to perform
the forward and backward projection so that it is performed ten

times only, taking into account the appropriate throughput time,
and stopping the iteration. On the other hand, our algorithm
processes directly from the projection data, so it does not need
forward and backward projection, so it is more efficient. This not
only guarantees a monotonic decrease in the objective function
but also satisfies a sufficient decrease criterion for convergence to
the optimal solution. Figure 2 illustrates the GPSR optimization
process at each iteration.

After the noisy low-dose projections are restored using the
GPSR-NLTVmethod, an analytical reconstruction technique was
used to generate results. In this study, we used the standard FDK
algorithm due to its simplicity and efficiency. Briefly, the axial
voxel information at position (x,y,z), denoted by f(x,y,z), can be
calculated from the following equation:

f(x,y,z) =
1

N0

∫ 360

θ=0

∫ ∞

−∞

d
√

d2 + p2 + ξ 2
R(β , p, ξ )h(

d · t

d − s
− p)dpdβ

(6)

where N0 refers to the total number of projections, β , d, p, and ξ

refer to the angle of each projection, source-to detector distance,
detector axis perpendicular, and parallel to the axis of rotation,
respectively, R(·) refers to restored CBCT projections, and h(·)
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refers to the convolutional high pass filter. Figure 3 shows the
corresponding reconstruction geometry.

We used two phantoms in this study: a cylindrical Catphan
600 phantom and a physical anthropomorphic head phantom.
The projections were acquired using the x-ray Volumetric
Imaging system (XVITM) integrated with an Elekta Versa HD
Unit (Elekta Oncology Systems Ltd, Crawley, UK). The number
of CBCT projections for a full 360◦ rotation scan was 670. The
physical dimensions of each acquired x-ray projections were
410 × 410 mm2, containing 1,024 × 1,024 pixels. For each
phantom, the x-ray tube current was configured at 0.1mA (low-
dose) and 1.6mA (high-dose) during CBCT data acquisitions. In
both phantom simulations, the tube voltage was configured at 100
kVp, and the period of the x-ray pulse in each projection scan

FIGURE 2 | Illustration of the computational process required at each iteration

for the GPSR-NLTV algorithm.

FIGURE 3 | Reconstruction geometry of CBCT.

was set at 10ms. The projection data were acquired in full-fan
mode with a bowtie filter. The source-to-isocenter distance was
1,000mm, and the source-to-detector distance was 1,500 mm.

RESULTS

The images of the Catphan 600 phantom reconstructed using
noisy, low-dose projections, high-dose projections, and the
proposed method are shown in Figure 4. Figure 4A displays the
CBCT images reconstructed with a conventional FDK method
with a ramp high pass filter using the low-dose projection
data. In the figure, it is evident that severe noise and artifacts
are noticeable. Figure 4C shows the proposed low-dose CBCT
reconstruction using NLTV-GPSR from the low-dose projection
data. It is noticed that the noise, as well as the artifacts, are
significantly reduced, and quality comparable to that of the
CBCT reconstructed from high-dose projections is achieved. To
further compare the performance of our proposed NLTV-GPSR
algorithm, a magnified view of ROIs of the contrast of Catphan
600 phantom is shown in Figure 5. It is clear that the proposed
NLTV-GPSR algorithm achieves better performance compared
to the original low-dose CBCT images in terms of both artifact
removal and preserves more sharper edges. Figure 6 draws
horizontal profiles through the center of the reconstructed CBCT
in Figure 4. It is shown that the proposed NLTV-GPSR algorithm
achieves a closer profile compared with the high-dose reference,
especially on the edge of the contrast region. This profile analysis
further reveals the higher low-contrast detectability and detail-
preserving performance of the proposed NLTV-GPSR algorithm
compared to conventional approaches.

Mathematically, PSNR, and NMSE are defined as:

PSNR = 10 log(
max{µhigh dose}

2

∥

∥

∥
µ − µhigh dose

∥

∥

∥

2
/K

) (7)

NMSE =

∥

∥

∥
µ − µhigh dose

∥

∥

∥

2

∥

∥

∥
µhigh dose

∥

∥

∥

2
(8)

where µ represents the intensity value of the test CBCT image,
µhighdose represents the intensity value of the reference high-dose
CBCT, and K refers to the total number of CBCT voxels. Table 1

FIGURE 4 | The images of the Catphan 600 phantom reconstructed using noisy, low-dose projection (A), high-dose projection (B), and proposed method (C).
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FIGURE 5 | Zoomed images of ROIs of the contrast of Catphan 600 phantom using noisy low-dose projection (A), high-dose projection (B), and proposed

method (C).

lists the measured PSNR and NMSE values of the reconstructed
CBCTs, comparing the original low-dose CBCT (LD-CBCT) and
high-dose CBCT (HD-CBCT) and the proposed method. The
improvement of the proposed NLTV-GPSR algorithm is clear in
comparison with the uncorrected low-dose CBCT images. This
shows that the proposed NLTV-GPSR algorithm can achieve
better noise suppression compared to uncorrected low-dose
CBCT images.

In addition to comparing PSNR and NMSE, the two ROIs
were selected as indicated by the green and blue squares (ROI
1, ROI 2) in Figure 5 and compared the contrast-to-noise ratio
(CNR) at each ROI. The CNR in this study is defined as:

CNR =
|µROI − µBG|
√

σ 2
ROI + σ 2

BG

) (9)

where µROI refer to the average value of the voxels inside the
ROI, µBG refer to the average value of the voxels of the CBCT
background, and σROI, σBG refer to standard deviation of the
voxel values at each ROI and the CBCT background, respectively.
Here, the size of ROIs was set as 20 × 20. Table 2 displays
the measured CNRs of the reconstructed CBCT images using
four different reconstruction methods. The differences of CNRs
from the high-contrast region of ROI 1 confirm the gains from
the proposed algorithm, and the quality is comparable to high-
dose CBCT.

The images of the anthropomorphic head phantom
reconstructed using noisy, low-dose projections, high-dose
projections, and the proposed method are shown in Figure 7.
Specifically, Figure 7A displays reconstructed low-dose CBCT
image from the noisy, low-dose projections, Figure 7B displays
the proposed low-dose CBCT reconstructed using the NLTV-
GPSR algorithm, and Figure 7C displays the reference high-dose
CBCT. It is clear that noise and artifacts are significantly reduced
while the detailed edge profile is preserved when using the
NLTV-GPSR algorithm (Figure 6B). In correspondence with

FIGURE 6 | Horizontal profiles through the center of the reconstructed images

of Catphan 600 phantom.

the Catphan phantom’s result, this confirms that the proposed
NLTV-GPSR can achieve better image quality compared to the
original low-dose CBCT in terms of both edge preservation as
well as the artifact suppression.

DISCUSSION

Implementing a low-dose CBCT reconstruction algorithm into
a clinical setting is still challenging since most of the proposed
solutions to this problem are iterative rather than analytical. All
iterative methods involve at least a single back- and forward-
projection, in addition to correcting noise penalties in the
reconstruction domain. Recent studies have focused on achieving
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faster convergence on the convex optimizer; however, at least 20
iterations are required in order to achieve clinically usable image
quality (15–17). Although a significant amount of computational
time can be reduced by parallelizing the process of forward-
and back-projection operation using a Graphical Processing Unit
(GPU), significant (>80%) amount of the time is still spent
on calculating forward- and back-projection and the time is
significant (>1 s). On the other hand, our proposed approach
involves analytical reconstruction followed by the restoration
of noisy projections that do not involve such heavy matrix
operations. Note that GPU implementation and the parallel
processing of TVNLM is currently an active research area
and was beyond the scope of our study. However, a recent
report has shown that reconstruction times of 30 ms/image are
achievable when the process is parallelized appropriately (18).
In future studies, we will implement TVNLM using a GPU and
test the acceleration factor compared to state-of-art GPU-based
reconstruction frameworks.

One of the main challenges in optimizing the workflow of
the proposed framework is choosing an optimal filter weight λ

(Equation 1). λ needs to be carefully selected by considering
the experimental parameters such as the x-ray current (mA)
or the number of projections, and the characteristics of the
anatomical features of the scanning object. During the search to
find an optimal parameter for λ, we experienced contrast-noise

TABLE 1 | The PSNR and NMSE values of the reconstructed CBCTs comparing

with original low-dose CBCT (LD-CBCT), and high-dose CBCT (HD-CBCT), and

the proposed method (NLTV-GPSR) as reference.

Methods LD-CBCT HD-CBCT NLTV-GPSR

PSNR (dB) 25.28 41.07 39.53

NMSE (1e-3) 16.27 1 1.298

TABLE 2 | Measured CNRs of the reconstructed CBCT comparing with original

low-dose CBCT (LD-CBCT) and high-dose CBCT (HD-CBCT) and the proposed

method (NLTV-GPSR).

Methods LD-CBCT HD-CBCT NLTV-GPSR

CNR (ROI 1) 2.237 3.208 3.187

CNR (ROI 2) 0.332 1.363 1.227

tradeoff. In other words, when the value of λ becomes larger,
more penalties are given to the noise reduction term resulting in
blurrier projections. In constrast, when the value of λ becomes
too small, less penalties are given to the noise reduction term
resulting in noisier projections. During the experiments, we
studied that a higher λ is practical for lower mA conditions to
reduce the noise generated from the photon starvation effect,
whereas a lower λ is desirable for higher mA conditions to avoid
blurring the anatomical detail of the object. In our study, the
empirical choice of λ for reconstructing the numerical phantom
with additive Gaussian noise of 0.2 was 0.2, while λ = 1 was
used to reconstruct projections of the physical phantom with
1.6mA, which well reflects the theoretical expectation. As shown
in Figure 8, as the λ increases when the current is reduced;
therefore, the noise needs to be suppressed by increasing the
regularization weight. Nonetheless, further studies are necessary
to automatically and robustly estimate λ, and we anticipate that
such automation will enhance the performance of our algorithm
to become a clinically practical solution. Beam hardening related

FIGURE 8 | A trade-off relationship between the beam current and

filter weight.

FIGURE 7 | The images of the anthropomorphic head phantom reconstructed using noisy, low-dose projections (A), high-dose projections (B), and the proposed

method (C).
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to Figure 7 is the other pre-processing step, so it was beyond the
scope of this study. However, further work will be performed
to evaluate the clinical significance of this methodology on
developing an optimal reconstruction algorithm adding both
beam hardening and scatter correction.

CONCLUSION

In this study, we propose a fast and efficient low-dose
CBCT reconstruction method by restoring low-dose CBCT
projection data with the non-local total variation method.
Validation studies showed that the proposed method adds great
potential value to enable low-dose CBCT while maintaining
image quality acceptable for on-board target localization and
delineation. With more extensive validation, we anticipate that
our proposed NLTV-GPSR method can be applied to clinical
settings enabling significant dose reduction compared to a
current clinical protocol.
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