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Background: Serous cystadenoma (SCA), mucinous cystadenoma (MCN), and

intraductal papillary mucinous neoplasm (IPMN) are three subtypes of pancreatic cystic

neoplasm (PCN). Due to the potential of malignant-transforming, patients with MCN

and IPMN require radical surgery while patients with SCA need periodic surveillance.

However, accurate pre-surgery diagnosis between SCA, MCN, and IPMN remains

challenging in the clinic.

Methods: This study enrolled 164 patients including 76 with SCA, 40 with MCN

and 48 with IPMN. Patients were randomly split into a training cohort (n = 115) and

validation cohort (n= 41). We performed statistical analysis and Boruta method to screen

significantly distinct clinical factors and radiomics features extracted on pre-surgery

contrast-enhanced computed tomography (CECT) images among three subtypes. Three

reliable machine-learning algorithms, support vector machine (SVM), random forest

(RF) and artificial neural network (ANN), were utilized to construct classifiers based on

important radiomics features and clinical parameters. Precision, recall, and F1-score

were calculated to assess the performance of the constructed classifiers.

Results: Nine of 547 radiomics features and eight clinical factors showed

a significant difference among SCA, MCN, and IPMN. Five radiomics features

(Histogram_Entropy, Histogram_Skeweness, LLL_GLSZM_GLV, Histogram_Uniformity,

HHL_Histogram_Kurtosis), and four clinical factors, including serum carbohydrate

antigen 19-9, sex, age, and serum carcinoembryonic antigen, were identified important

by Boruta method. The SVM classifier achieved an overall accuracy of 73.04% in training

cohort and 71.43% in validation cohort, respectively. The RF classifier achieved overall

accuracy of 84.35 and 79.59%, respectively. The constructed ANN model showed an
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overall accuracy of 77.39% in the training dataset and 71.43% in the validation dataset.

All the three classifiers showed high F1 score for differentiation among the three subtypes.

Conclusion: Our study proved the feasibility and translational value of CECT-based

radiomics classifiers for differentiation among SCA, MCN, and IPMN.

Keywords: pancreatic cystic neoplasm, contrast-enhanced computed tomography, radiomics, differentiation

diagnosis, machine learning

INTRODUCTION

Pancreatic cystic neoplasm (PCN) has been estimated to be
present in 2–45% of the general population (1, 2). As computed
tomography (CT) and magnetic resonance imaging (MRI)
become widely used in clinical work, the incidence of PCN has
increased to 3–13% for individuals undergoing cross-sectional
imaging (3–5). Serous cystadenomas (SCA), mucinous cystic
neoplasm (MCN), and intraductal papillary mucinous neoplasm
(IPMN) constitute a majority of the PCN subtypes encountered
in practice (6, 7). SCA is of benign nature and periodical
surveillance is enough (8). MCN, IPMN are with the degree of
malignancy, and thus close surveillance and radical surgery are
recommended (8–10).

The pre-surgery classification of PCN subtypes is crucial
for making personalized treatment strategies. However, it is
still challenging to achieve an accurate differential diagnosis
(9, 11, 12) preoperatively in the clinic. Till now, no nucleic
acid or protein biomarkers in blood are available to precisely
differentiate PCN subtypes in clinical work. DNA markers in
cyst fluid, like GNAS, show potential in identifying mucin-
producing cyst lesions but far from the bench. The differentiating
value of RNA or non-carcinoembryonic antigen (CEA) protein
markers is still lacking sufficient evidence (10, 13). Brugge et al.
claimed cyst fluid CEA level (>192 ng/mL) could differentiate
mucinous from non-mucinous lesions with an accuracy of
79%, while cystic fluid carbohydrate antigen (CA 19-9) (>2,900
U/mL) presented a sensitivity of 68% and specificity of 62%
(13, 14). As for radiology method, radiological examination
(CT/MRI/Magnetic Resonance Cholangiopancreatography) has
limited diagnostic accuracy, even by experienced radiologists.
Endoscopic ultrasound (EUS)-based diagnosis methods like
endoscopic ultrasound (EUS) guided fine needle aspiration
(FNA) should be performed only when diagnosis of CT or MRI
are unclear (10). The limit of current methods will hamper the
making of proper medical decisions, increase the suffering of
the patients and waste of limited medical resources. Thus, a
reliable approach for classifying the subtypes of PCN per-surgery
is urgently needed to facilitate personalized medicine.

Past decades had witnessed the rapid development of the
field of medical image analysis, facilitating the development of
the radiomics method which quantifies the tumor heterogeneity
into high-dimension features (15). The radiomics approach
can help clinicians make individualized decisions based on
the quantitative radiomics features and machine-learning-based
models (16). Chakraborty et al. investigated the CT based
radiomics features as markers for stratifying the high-risk IPMN

patients (17). However, the potential of radiomics methods in
helping accurate diagnose of subtypes of PCN has yet been
fully investigated.

AlthoughMRI is the preferred modality according to the 2018
European evidence-based guideline (10), in developing countries
like China, South America, and Africa, MRI is not always
accessible. Contrast-enhanced CT (CECT) is the main diagnosis
modality for PCN in China. In our center, SCA, MCN, and
IPMN aremost common subtypes. From retrospective analysis of
pre-surgery radiological diagnoses and pathological examination
results, we found diagnosis of SCA andMCNwere either obscure
or wrong. And IPMN was the main misdiagnosed type for both
SCA and MCN. Therefore, in this study, we aimed to investigate
the feasibility of using CECT based radiomics approach for
preoperatively classifying SCA, MCN, and IPMN to facilitate the
personalized treatment for patients with PCN.

MATERIALS AND METHODS

Patients
Patients with pancreatic lesions treated from January 2014
to March 2019 in our center were retrospectively evaluated.
Patients with pathologically proven SCA, MCN, and IPMN
were selected for further analysis. The inclusion criteria were
as following: (i) patients had undergone a CECT scan within 2
weeks before surgery; (ii) patients had postoperative pathological
diagnosis of SCA, MCN or IPMN. The exclusion criteria were:
(i) patients diagnosed with concurrent hepatic-pancreato-biliary
malignancies, such as hepatocellular carcinoma; (ii) patients
whose CT images were affected by strong imaging artifacts,
i.e., artifacts obscuring more than 10% of whole volume of
interest; (iii) patients whose clinical data or CT images were
missing. Collected clinical data includes patient age, gender,
abdominal symptoms (including abdominal pain, diarrhea and
obscure abdominal discomfort), tumor location (head and neck,
body and tail, both), calcification, tumor maximum diameter,
serum platelet count, serum alanine aminotransferase (ALT),
serum aspartate aminotransferase (AST), serum albumin (ALB),
serum fasting blood glucose (FBG), serum tumormarkers [alpha-
fetoprotein (AFP), CEA, CA19-9, and serum ferritin (SF)],
familial history of pancreatic cancer, chronic pancreatitis history,
history of smoking, history of alcoholic consumption, obesity
[based on body mass index (BMI), patients with BMI equal
to or larger than 25 were identified as obesity], and blood
type. The final enrolled patient dataset was randomly split into
independent training group (70%) and validation group (30%),
using a stratified sampling method (18). Ethical approval was
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FIGURE 1 | First, we performed delineation of the region of interest and segmentation, then features belong to different categories (Histogram, GLCM, GLRLM,

GLSZM, NGTDM, and wavelet) were extracted and further analyzed. According to feature selection algorithm, the most important features were selected for model

construction. Then, the performance of constructed model was evaluated in the validation dataset.

obtained from Human Research Ethics Committee (HREC) of
our hospital. The patient informed consent was waived by the
HREC for the retrospective usage of patients’ medical images.

Study Design
The analysis workflow of this study was shown in Figure 1.
After delineation and segmentation of the region of interest,
features belong to different categories [histogram, gray-level
co-occurrence matrix (GLCM), gray-level run-length matrix
(GLRLM), gray-level size zone matrix (GLSZM), neighborhood
gray-tone difference matrix (NGTDM) and wavelet] were
extracted and analyzed. Then the most important features
were selected for model construction using supporting vector
machine (SVM), random forest (RF) and artificial neural network
(ANN) algorithm.

Image Acquisition
The preoperative CECT images of patients were retrieved from
the Picture Archiving and Communication Systems in our

institution. All scans were performed on a 256-Slice CT scanner

(Brilliance iCT, Philips, Cleveland, OH, USA) in our hospital.
The scan voltage was 100 or 120 kV and the scan current was

110–835 mAs, adjustable for different patient conditions. The
CECT images were reconstructed with a standard kernel. The
reconstruction slice thickness was 3–5mm and the pixel spacing
of CT images ranged from 0.5 to 1mm. The scan is performed
after a 60 s delay following intravenous administration of 1.5
ml/kg of iodinated contrast medium (Iohexol Injection, 300mg
I/ml, Ousu, Yangtze River Pharmaceutical Group) and 20ml of
saline at a rate of 3ml/s with an automatic pump injector. Arterial
phase was carried out at 25–35 s after contrast injection and CT
scans of arterial phase were used for subsequent process.

Tumor Segmentation and Quantification
The arterial phase of the CECT scan showed an enhanced pattern
of the tumor region (19) and thus was selected for quantifying
the tumor heterogeneity in this study. The delineation of tumor
regions was performed, on all 3D CT slices, by a board-
certified radiologist using ITK-SNAP [www.itksnap.org (20)].
The radiologist was blind to the clinical information before
performing segmentation. The final tumor regions of patients
were checked and agreed by a senior radiologist. The sample
delineation results of SCA, MCN, and IPMN were shown in
Figure 2. The uncertainty of tumor segmentations contributes to
the variation of radiomics feature extraction which is challenging
for the reproducibility of radiomics study, as reported in previous
studies (21, 22). It is important to screen radiomics features
that are robust against tumor segmentation uncertainty. In
this study, we conducted a random expansion and corrosion
process on the initial tumor region to mimic the uncertainty
of manual tumor segmentation. Each slice of the initial tumor
segmentation was controlled by a random seed to expand,
corrode or keep unchanged. The range of expansion and erosion
was 1–4 pixels, controlled by a random seed. By mimicking
the tumor segmentation uncertainty, another two sets of tumor
regions were generated.

The tumor region on CT images was quantified as quantitative
features, namely radiomics features, for building classifier
purposes. To eliminate the effect of different voxel spaces on
feature extraction, the voxel size of images was resampled
into a normalized, 1∗1∗5 mm3, voxel size and all the tumor
regions were quantified as 64 gray levels (23) to normalize the
inhomogeneity of datasets due to variable tube voltages. The
histogram of the tumor region was quantified as seven features,
which are variance, skewness, kurtosis, mean, energy, entropy,
and uniformity. The textures of the tumor region were quantified
using the GLCM, GLRLM, GLSZM, NGTDM methods. The
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FIGURE 2 | Typical CT imaging (arterial phase) of SCA, MCN, and IPMN were shown in (A,C,E). The region of interest on CT imaging after delineation were shown in

(B,D,F).

wavelet transform was used to decompose the images into
eight images of different scales to enforce the information in
different directions. A total of 547 radiomics features were
extracted from the tumor region in this study. The details of
the feature quantification method can be found in the study
of Vallieres et al. (24). The feature extraction was implanted
on the MATLAB 2017b.

Feature Selection and Classifier
Construction
Three sets of radiomics features were extracted for robust
feature selection, using tumor regions delineated by radiologists
and generated using random expansion or corrosion. The
radiomics features with an intraclass correlation coefficient of
higher than 0.75 were selected for model construction (25).
Further, the intercorrelation among radiomics features was
assessed to exclude the highly inter-correlated radiomics features
(correlation coefficient > 0.75, Pearson) from this study. Only
radiomics features and clinical factors that were significantly
different among three subtypes were selected.

Then the Boruta algorithm was used for further feature
selection (26). Boruta algorithm uses a wrapper method based
on the RF classifier for feature selection. A “shadow” attribute
was created for each feature in the feature pool by shuffling
values of the original feature across all patients. Then the shadow
attributes are combined with original features for classification
using an RFmodel. The importance of shadow attribute is used as
a reference for selecting truly important features, as determined
by RF permutation importance measure.

The multi-class classifiers using the SVM, RF, and ANN
models were built based on the final selected features in the
training dataset. For SVM modeling, 4 kinds of the kernel were
tested, which are “Linear,” “Laplacian,” “Gaussian,”and “ANOVA
RBF.” The cost of constraints violation (C-value) ranging from
1 to 10 was tested. For RF modeling, the number of variables
randomly sampled as candidates at each split and total tree

numbers was tested. For ANN modeling, the number of units
in the hidden layer of the network and the parameter for
weight decay were optimized using a grid-search strategy. The
mean errors for SVM, mean out-of-bag (OOB) errors for RF
and accuracy for ANN in 4-fold cross-validation were used to
determine the optimal parameters for constructing the SVM, RF,
and ANN models. Then the developed models were validated on
the independent validation dataset.

For multi-class classification analysis, the precision, recall,
and F1-score are suitable to assess the agreement between true
class and predicted the result (27). As such, in this study, for
characterization of three subtypes of PCNs, the precision, recall
and F1 score of each subtype and overall accuracy were used
to access the prediction performance of the proposed radiomics
SVM and RF models. The precision is used to evaluate the
accuracy for users. For example, the precision for IPMN is
defined as the rate of truly predicted IPMN patients in all the
patients who are predicted as IPMN. The recall is used to evaluate
the accuracy of classifier, i.e., the recall for IPMN is defined
as the rate of truly predicted IPMN patients in all the IPMN
patients. F1 score is an indicator of comprehensively evaluating
the performance of a classifier. The F1 score is defined as:

F1 =
2× Precision× Recall

(Precision+ Recall)

Statistical Analysis
The Kruskal-Wallis test was performed to evaluate the difference
of the radiomics features and continuous clinical factors
among three sub-types. The chi-squared test, corrected chi-
square test, and Fisher test were performed to find significant
different categorical clinical factors among three subtypes, where
appropriate. All the statistical analyses and classifier construction
were performed with R 3.4.1 (www.R-project.org, 2016). The
Boruta feature selection was based on the package “Boruta”
in R. The R package “kernlab,” “RandomForest,” and “nnet”
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TABLE 1 | Patient clinical factors in training and validation cohort.

Clinical factors Training Validation p-value

Tumor type 0.9914

SCA 53 23

MCN 28 12

IPMN 34 14

Age

median [range]

57 [20–79] 57 [26–79] 0.3844

Maximum Diameter

median [range]

3.5 [0.6–14.8] 3.3 [0.5–11] 0.4936

Serum platelet

median [range]

199 [46–443] 202 [87–397] 0.8871

Serum ALB

median [range]

44.4 [22.9–54.9] 45 [32.9–52.8] 0.7261

Serum ALT

median [range]

16 [5–452] 14 [6–134] 0.2255

Serum AST

median [range]

19 [10–280] 19 [11–68] 0.4175

Serum FBG

median [range]

5.12 [2.65–15.03] 4.85 [3.98–7.07] 0.1699

Serum AFP

median [range]

2.3 [0.2 −2374.9] 2.3 [0.7–5.2] 0.2905

Serum CEA

median [range]

1.9 [0.6–682.8] 1.8 [0.6–19.1] 0.3389

Serum CA 19–9

median [range]

9.6 [1–8170.2] 9.8 [1–128.8] 0.9799

Serum SF

median [range]

132.4

[4.7–23290.9]

124 [3.8–1547.2] 0.7807

Sex 0.5605

Male 35 12

Female 80 37

Location 0.1927

Head and neck 45 21

Body and tail 62 28

Other 8 0

Number of tumors 0.3821

Single 104 47

Multiple 11 2

Calcification 1

Without 109 46

With 6 3

Chronic Pancreatitis

History

1

Without 114 49

With 1 0

Abdominal symptom 0.4125

Without 66 24

With 49 25

Pancreatic neoplasm

family history

1

Without 115 49

History of smoking 0.6427

Without 101 41

With 14 8

(Continued)

TABLE 1 | Continued

Clinical factors Training Validation p-value

History of alcoholic

consumption

0.4710

Without 94 43

With 21 6

Blood type 0.6167

A 34 14

B 22 6

AB 9 6

O 50 23

Obesity 0.5724

Without 93 37

With 22 12

were implanted in the construction of the SVM, RF and ANN
model, respectively.

RESULTS

Patient Characteristics
From January 2014 to March 2019, 91 patients were
pathologically diagnosed with SCA. Of 91 SCA patients, 15
patients were excluded (one with concurrent malignancy,
one patient was sent to our center for emergency exploratory
laparotomy, 10 patients’ preoperative CT images were missing,
three patients’ clinical data were missing). Forty-eight patients
were pathologically diagnosed with MCN. Of 48 MCN patients,
eight patients were excluded (two with concurrent malignancies,
four patients’ preoperative CT images were missing, two patients’
clinical data were incomplete). When we retrospectively analyzed
the radiological diagnosis of all 139 patients, the preoperative
radiological diagnosis was quite unsatisfying, with only 13.4
and 10.4% were consistent with pathological diagnosis for SCA
and MCN, respectively. The most common misdiagnosis for
both SCA and MCN was IPMN, indicating difficulty in imaging
diagnosis between these three subtypes. Therefore, we randomly
enrolled 50 IPMN patients who received surgery in our center
between January 2014 and March 2019 based on post-surgery
pathology diagnosis, two IPMN patients were excluded for
incomplete clinical data. Finally, 164 patients were enrolled
(SCA, n = 76; MCN, n = 40; IPMN, n = 48). The patient
recruitment process and inclusion/exclusion criteria were shown
in Figure S1.

The training cohort included 53 SCA patients, 28 MCN
patients, and 34 IPMN patients. The validation cohort included
23 SCA patients, 12 MCN patients, and 14 IPMN patients. The
patient characteristics in the two cohorts were summarized in
Table 1. The two datasets showed consistent distribution in all
the clinical characteristics.

Feature Selection
A total of 402 radiomics features were robust against the
segmentation uncertainties. Among the robust features, 55
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FIGURE 3 | The feature importance in the Boruta feature selection process. The green box showed the features which are confirmed important, the yellow box

showed the tentative attributes and the green box showed the unimportant features. Five important radiomics features include Histogram_Entropy, Histogram_

Skewness, LLL_GLSZM_GLV, Histogram_Uniformity, HHL_Histogram_Kurtosis. Four important clinical parameters include serum CA 19-9, sex, age, and serum CEA.

TABLE 2 | Diagnosis performance of the constructed SVM model in the training and validation dataset.

Training dataset Validation dataset

TP IPMN MCN SCA Pre Rec F1 IPMN MCN SCA Pre Rec F1

IPMN 27 3 5 0.7714 0.7941 0.7826 11 0 4 0.7333 0.7857 0.7586

MCN 2 16 7 0.6400 0.5714 0.6038 0 7 2 0.7778 0.5833 0.6667

SCA 5 9 41 0.7455 0.7736 0.7593 3 5 17 0.6800 0.7391 0.7083

Total 34 28 53 OA 0.7304 14 12 23 OA 0.7143

T, True type; P, Predicted type; Pre, Precision; Rec, Recall; OA, Overall accuracy.

features with an inter-correlation coefficient of <0.75 were
preliminarily selected in the training dataset. Nine radiomics
features showed significant differences among the SCA, MCN,
and IPMN. Nine radiomics features and eleven significant
clinical factors (age, ALT, AST, FBG, CEA, CA 19-9, sex,
location, blood type, cigarette history, alcoholic history) were
further selected utilizing Boruta feature selection method. In the
end, five radiomics features and four clinical parameters were
confirmed important. The rank plot of feature importance was
shown in Figure 3. The radiomics feature, Histogram_Entropy,
showed the highest importance. The clinical factor, serumCA 19-
9, was the second most important feature. The other 4 radiomics
features were the Histogram_Skeweness, LLL_GLSZM_GLV,
Histogram_Uniformity and HHL_Histogram_Kurtosis. The
detailed formula of the five selected radiomics features
was shown in Table S1. The other three clinical factors
included sex, age, and serum CEA. The radiomics features
showed comparable value with clinical factors in these
selected features.

Model Construction and Evaluation
The SVM, RF, and ANN models were constructed based on
the nine important features. An SVM model with a Gaussian
kernel and C-value of 2 showed the least mean error and was
selected for classification of SCA, MCN, and IPMN. The detailed
parameter optimization process in construction of SVM model
was shown in Table S2. The constructed SVM model showed an
accuracy of 73.04% in the training dataset as shown in Table 2.
The precision for diagnosis of SCA, MCN, and IPMN was 74.55,
64.00, and 77.14%, respectively. In the validation dataset, the
SVM model achieved an overall accuracy of 71.43%, consistent
with its performance in the training cohort. The precision for
each type was 68.00% for SCA, 77.78% for MCN and 73.33%
for IPMN.

The error plot in selecting the tree numbers in the RF model
construction was shown in Figure 4. When the tree number is
more than 3,000, the errors became stable in building RF models.
When two variables were randomly sampled as candidates at
each split in RF, the mean OOB error was least (Table S3. Thus,
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the RF model with 3,000 trees and two candidate variables was
established for tumor diagnosis. In the training dataset, the RF
model showed 84.35% overall accuracy in the classification of
SCA, MCN, and IPMN. In the validation dataset, the RF model
had a precision of 72.41% for SCA, 90.00% for MCN, 90.00% for
IPMN (Table 3).

The number of hidden units was selected from 10 to 15 and the
weight decay was chosen from 2, 1, 0.5, 0.25, 0.125, and 0.0625
in the cross-validation process of ANN structure optimization.
The accuracy of ANN in optimizing the number of hidden units
and weight decay was shown in Figure 5A. When the hidden
units are 14 and the weight decay is 1, the mean accuracy in
the cross-validation reached the highest and the corresponding
ANN structure was shown in Figure 5B. The constructed ANN
showed an overall accuracy of 77.39% in the training dataset and
71.43% in the validation dataset (Table 4). The precision of SCA
in the validation dataset was 77.78%. For MCN and IPMN, the
precisions were 66.67 and 68.42%, respectively.

The RF model showed the highest overall accuracy in both
the training and validation dataset, showing the advantage of RF
models in the differential diagnosis of SCA, MCN, and IPMN.

FIGURE 4 | The error plot corresponding different tree numbers in the

construction of the RF model. The red line showed the error of “SCA” class;

the green line showed the error of “MCN” class; the blue line showed the error

of “IPMN” class; the black line showed the OOB error. When tree number is

more than 3,000, the errors become stable and thus 3,000 was chosen as the

optimal tree number.

As for F1-score, the RF model showed higher F1-score for SCA
and MCN, but lower F1-score for IPMN than SVM and ANN
model. ANN model showed the highest F1-score for IPMN in
the validation dataset. The performance of the three developed
models in this study demonstrated the feasibility of models
constructed with radiomics and clinical features in the diagnosis
of SCA, MCN, and IPMN.

DISCUSSION

In this study, we investigated the potential of the radiomics
method for classification of three subtypes of pancreatic cystic
neoplasm, i.e., SCA, MCN, and IPMN. All the radiomics features
used in the final models developed in this study were robust
against tumor segmentation uncertainty. Five radiomics features
and four clinical factors were identified important and used for
classifier construction.

Three reliable machine learning methods, SVM, RF and
ANN methods, were utilized to construct diagnostic classifiers.
The built SVM model showed an overall accuracy of 73.04%
for training and 71.43% for validation. The RF model showed
an overall accuracy of 84.35 and 79.59% in two independent
datasets. As for ANN, the overall accuracy in two independent
datasets was 77.39 and 71.43%, respectively. All three classifiers
present good performance in distinguishing SCA from MCN
and IPMN. The result showed that the CECT based radiomics
method could classify three subtypes of PCN and may help make
personalized treatment decisions preoperatively.

Now the clinical management of patients with pancreatic
cystic neoplasm is mainly based on clinical presentation and
radiological examinations. EUS-based methods are not routinely
performed in every medical center. From the retrospective
comparison between preoperative radiology diagnosis and
postoperative pathology diagnosis in our center, the pre-surgery
accurate diagnosis rate is very low (13.4% for SCA and 10.4% for
MCN). Even in Massachusetts General Hospitals, a world-class
medical center, over 20% of the cyst lesions resected for concerns
about their malignant potential were entirely benign based on
histopathologic examination (28). This clinical dilemma reflects
the urgent need for an effective and efficient differential method
of PCN.

Pancreatic cystic neoplasm is heterogeneous, while the
radiologists’ diagnosis or cyst fluid examination just reflects a
relatively small part of the whole tumor. In this study, the
classifiers were constructed by combining radiomics features

TABLE 3 | Diagnosis performance of the constructed RF model in the training and validation dataset.

Training dataset Validation dataset

TP IPMN MCN SCA Pre Rec F1 IPMN MCN SCA Pre Rec F1

IPMN 30 4 1 0.8571 0.8824 0.8696 9 0 1 0.9000 0.6429 0.7500

MCN 1 18 3 0.8182 0.6429 0.7200 0 9 1 0.9000 0.7500 0.8182

SCA 3 6 49 0.8448 0.9245 0.8829 5 3 21 0.7241 0.9130 0.8077

Total 34 28 53 OA 0.8435 14 12 23 OA 0.7959

T, True type; P, Predicted type; Pre, Precision; Rec, Recall; OA, Overall accuracy.

Frontiers in Oncology | www.frontiersin.org 7 February 2020 | Volume 10 | Article 248

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Shen et al. Pancreatic Cystic Neoplasm Subtypes Differentiation

FIGURE 5 | (A) the ANN parameters optimization process: when the hidden units were 14 and the weighted decay was 1, the accuracy reached highest and thus the

ANN model was constructed with 14 hidden units and the weighted decay value of 1. (B) the final constructed ANN model in this study.

TABLE 4 | Diagnosis performance of the constructed ANN model in the training and validation dataset.

Training dataset Validation dataset

TP IPMN MCN SCA Pre Rec F1 IPMN MCN SCA Pre Rec F1

IPMN 31 4 7 0.7381 0.9118 0.8158 13 1 5 0.6842 0.9286 0.7879

MCN 1 15 3 0.7895 0.5357 0.6383 0 8 4 0.6667 0.6667 0.6667

SCA 2 9 43 0.7963 0.8113 0.8037 1 3 14 0.7778 0.6087 0.6829

Total 34 28 53 OA 0.7739 14 12 23 OA 0.7143

T, True type; P, Predicted type; Pre, Precision; Rec, Recall; OA: Overall accuracy.

with clinical factors (serum CA 19-9, sex, age, serum CEA)
and showed promising differential performance. The result was
consistent with previous studies. Giuseppe et al. found that
age was one of the significant predictors of SCA growth (29).
Leung KK et.al found elevated cystic CEA was associated with
potentially malignant/malignant cysts (30). Also, Bassi et al.
found that positive CEA and/or co-presence of more than
two positive serum markers (CEA, CA 19-9, or CA 125) were
indicative of presence of mucinous cystic tumors, i.e., MCN
and IPMN (31). Our results proved that clinical factors like
serum tumor markers together with radiomics features could
help differential diagnosis among SCA, MCN, and IPMN.

Treatment choices are sharply different for SCA, MCN,
and IPMN. As SCA is a benign entity, periodic surveillance
is recommended. MCN had the potential to progress to
malignancy. According to current guidelines (10), patients with
MCN larger than 4 cm or symptoms should undergo surgery.
Ideally, IPMNs with high-grade dysplasia or with invasive
adenocarcinoma should undergo resection. But it is still difficult
to differentiate low-grade dysplasia in clinical work. Over 20%
of the cysts were entirely benign based on histopathologic
examination and over 75% of resected IPMNs could have been
safely observed (32). With the radiomics approach developed in
this study for differentiating SCA, MCN, and IPMN, we might
avoid the 20% wrong clinical decision.

There are some limitations to our study. Firstly, as a
retrospective study based on single-center data, the sample size of
each subtype is relatively small. We take some measures to avoid
bias. The training and validation datasets were randomly split
(ratio= 7:3) to test the robustness of the results. Multifold cross-
validation was carried out in constructing the machine learning
classifiers to avoid the over-fitting. However, the bias may still
exist due to small sample size. Secondly, there is inevitable
subjectivity in the process of manual tumor segmentation. To
minimize this bias caused by segmentation uncertainty, all
segmentation results were checked and approved by a senior
radiologist to ensure the segmentation accuracy. The random
expansion and corrosion was also performed to select robust
radiomics features. To further improve the performance of CECT
based radiomics method, a multicenter-based prospective study
with a large study population is needed.

CONCLUSIONS

In conclusion, our study provided preliminary evidence that
CECT-based radiomics analysis was feasible and reliable to
differentiate SCA, MCN, and IPMN, which is convenient, non-
invasive, and repeatable. On the basis of multicenter validation,
the present findings may be applicable to clinical routine.

Frontiers in Oncology | www.frontiersin.org 8 February 2020 | Volume 10 | Article 248

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Shen et al. Pancreatic Cystic Neoplasm Subtypes Differentiation

DATA AVAILABILITY STATEMENT

All datasets generated for this study are included in the
article/Supplementary Material.

ETHICS STATEMENT

Consent for publication of patients’ clinical information
(including clinical symptoms, biochemistry examination, and
radiology imaging) was obtained from the Human Research
Ethics Committee (HREC) of First AffiliatedHospital of Zhejiang
University School of Medicine. The written informed consent
was obtained from the patient (or in the case of children, their
parent or legal guardian).

AUTHOR CONTRIBUTIONS

XS, TN, and XX conceived the project. FY and PY analyzed the
data and wrote the paper. MY, JZ, JW, DL, and ZL collected the
data. All authors edited the manuscript.

FUNDING

This work was supported by the National Science
and Technology Major Project of China [Grant No:
2017ZX10203205]; National Science and Technology
Project of China [Grant No: 2017YFC0108704]; National
Key R&D Program of China [Grant No: 2018YFE0114800],
Natural Science Foundation of China [Grant Nos. 81871351,
81801824, 81827804, and 81950410632]; Zhejiang Provincial
Natural Science Foundation of China [LR16F010001,
Y16H180003, and LY17E050008]. All funding supported data
collection, analysis, and interpretation of data and in writing
the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fonc.
2020.00248/full#supplementary-material

REFERENCES

1. Ip IK,Mortele KJ, Prevedello LM, Khorasani R. Focal cystic pancreatic lesions:

assessing variation in radiologists’ management recommendations. Radiology.

(2011) 259:136–41. doi: 10.1148/radiol.10100970

2. Chang YR, Park JK, Jang JY, Kwon W, Yoon JH, Kim SW. Incidental

pancreatic cystic neoplasms in an asymptomatic healthy population of 21,745

individuals large-scale, single-center cohort study. Medicine. (2016) 95:e5535.

doi: 10.1097/MD.0000000000005535

3. Laffan TA, Horton KM, Klein AP, Berlanstein B, Siegelman SS, Kawamoto S,

et al. Prevalence of unsuspected pancreatic cysts on MDCT. Am J Roentgenol.

(2008) 191:802–7. doi: 10.2214/AJR.07.3340

4. Lee KS, Sekhar A, Rofsky NM, Pedrosa I. Prevalence of incidental pancreatic

cysts in the adult population on mr imaging. Am J Gastroenterol. (2010)

105:2079–84. doi: 10.1038/ajg.2010.122

5. Shen XY, Lu D, Xu X, Wang JG, Wu J, Yan S, et al. A novel distinguishing

system for the diagnosis of malignant pancreatic cystic neoplasm. Eur J Radiol.

(2013) 82:e648–54. doi: 10.1016/j.ejrad.2013.06.028

6. Lennon AM, Wolfgang C. Cystic neoplasms of the pancreas. J Gastrointest

Surg. (2013) 17:645–53. doi: 10.1007/s11605-012-2072-6

7. Yamao K, Yanagisawa A, Takahashi K, Kimura W, Doi R, Fukushima N,

et al. Clinicopathological features and prognosis of mucinous cystic neoplasm

with ovarian-type stroma a Multi-Institutional Study Of The Japan Pancreas

society. Pancreas. (2011) 40:67–71. doi: 10.1097/MPA.0b013e3181f749d3

8. Tanaka M, Fernandez-del Castillo C, Adsay V, Chari S, Falconi M, Jang

JY, et al. International consensus guidelines 2012 for the management

of IPMN and MCN of the pancreas. Pancreatology. (2012) 12:183–97.

doi: 10.1016/j.pan.2012.04.004

9. Vege SS, Ziring B, Jain R, Moayyedi P, Clinical Guidelines C. American

gastroenterological association institute guideline on the diagnosis and

management of asymptomatic neoplastic pancreatic cysts. Gastroenterology.

(2015) 148:819–22. doi: 10.1053/j.gastro.2015.02.029

10. Del Chiaro M, Besselink MG, Scholten L, Bruno MJ, Cahen DL, Gress TM,

et al. European evidence-based guidelines on pancreatic cystic neoplasms.

Gut. (2018) 67:789–804. doi: 10.1136/gutjnl-2018-316027

11. Del Chiaro M, Segersvard R, Mucelli RP, Rangelova E, Kartalis N, Ansorge C,

et al. Comparison of preoperative conference-based diagnosis with histology

of cystic tumors of the pancreas. Ann Surg Oncol. (2014) 21:1539–44.

doi: 10.1245/s10434-013-3465-9

12. Khashab MA, Shin EJ, Amateau S, Canto MI, Hruban RH, Fishman EK,

et al. Tumor size and location correlate with behavior of pancreatic serous

cystic neoplasms. Am J Gastroenterol. (2011) 106:1521–6. doi: 10.1038/ajg.

2011.117

13. Brugge WR, Lewandrowski K, Lee-Lewandrowski E, Centeno BA, Szydlo

T, Regan S, et al. Diagnosis of pancreatic cystic neoplasms: a report of

the cooperative pancreatic cyst study. Gastroenterology. (2004) 126:1330–6.

doi: 10.1053/j.gastro.2004.02.013

14. Anand N, Sampath K, Wu BU. Cyst features and risk of malignancy in

intraductal papillary mucinous neoplasms of the pancreas: a meta-analysis.

Clin Gastroenterol Hepatol. (2013) 11:913–21. doi: 10.1016/j.cgh.2013.02.010

15. Lambin P, Leijenaar RTH, Deist TM, Peerlings J, de Jong EEC, van

Timmeren J, et al. Radiomics: the bridge between medical imaging

and personalized medicine. Nat Rev Clin Oncol. (2017) 14:749–62.

doi: 10.1038/nrclinonc.2017.141

16. Trebeschi S, Drago SG, Birkbak NJ, Kurilova I, Calin AM, Pizzi AD, et al.

Predicting response to cancer immunotherapy using noninvasive radiomic

biomarkers. Ann Oncol. (2019) 30:998–1004. doi: 10.1093/annonc/mdz108

17. Chakraborty J, Midya A, Gazit L, AttiyehM, Langdon-Embry L, Allen PJ, et al.

CT radiomics to predict high-risk intraductal papillary mucinous neoplasms

of the pancreas. Med Phys. (2018) 45:5019–29. doi: 10.1002/mp.13159

18. Christman MC, Pontius JS. Bootstrap confidence intervals for

adaptive cluster sampling. Biometrics. (2000) 56:503–10. doi: 10.1111/

j.0006-341X.2000.00503.x

19. Wu SX, Zheng JJ, Li Y, Yu H, Shi SY, Xie WB, et al. A Radiomics Nomogram

for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer.

Clin Cancer Res. (2017) 23:6904–11. doi: 10.1158/1078-0432.CCR-17-1510

20. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, et al.

User-guided 3D active contour segmentation of anatomical structures:

significantly improved efficiency and reliability. Neuroimage. (2006) 31:1116–

28. doi: 10.1016/j.neuroimage.2006.01.015

21. Rizzo S, Botta F, Raimondi S, Origgi D, Fanciullo C, Morganti AG, et al.

Radiomics: the facts and the challenges of image analysis. Eur Radiol Exp.

(2018) 2:36. doi: 10.1186/s41747-018-0068-z

22. Qiu QT, Duan JH, Gong GZ, Lu YK, Li DW, Lu J, et al. Reproducibility

of radiomic features with GrowCut and GraphCut semiautomatic tumor

segmentation in hepatocellular carcinoma. Transl Cancer Res. (2017) 6:940–

48. doi: 10.21037/tcr.2017.09.47

23. Larue R, van Timmeren JE, de Jong EEC, Feliciani G, Leijenaar RTH,

Schreurs WMJ, et al. Influence of gray level discretization on radiomic

feature stability for different CT scanners, tube currents and slice

thicknesses: a comprehensive phantom study. Acta Oncol. (2017) 56:1544–53.

doi: 10.1080/0284186X.2017.1351624

Frontiers in Oncology | www.frontiersin.org 9 February 2020 | Volume 10 | Article 248

https://www.frontiersin.org/articles/10.3389/fonc.2020.00248/full#supplementary-material
https://doi.org/10.1148/radiol.10100970
https://doi.org/10.1097/MD.0000000000005535
https://doi.org/10.2214/AJR.07.3340
https://doi.org/10.1038/ajg.2010.122
https://doi.org/10.1016/j.ejrad.2013.06.028
https://doi.org/10.1007/s11605-012-2072-6
https://doi.org/10.1097/MPA.0b013e3181f749d3
https://doi.org/10.1016/j.pan.2012.04.004
https://doi.org/10.1053/j.gastro.2015.02.029
https://doi.org/10.1136/gutjnl-2018-316027
https://doi.org/10.1245/s10434-013-3465-9
https://doi.org/10.1038/ajg.2011.117
https://doi.org/10.1053/j.gastro.2004.02.013
https://doi.org/10.1016/j.cgh.2013.02.010
https://doi.org/10.1038/nrclinonc.2017.141
https://doi.org/10.1093/annonc/mdz108
https://doi.org/10.1002/mp.13159
https://doi.org/10.1111/j.0006-341X.2000.00503.x
https://doi.org/10.1158/1078-0432.CCR-17-1510
https://doi.org/10.1016/j.neuroimage.2006.01.015
https://doi.org/10.1186/s41747-018-0068-z
https://doi.org/10.21037/tcr.2017.09.47
https://doi.org/10.1080/0284186X.2017.1351624
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Shen et al. Pancreatic Cystic Neoplasm Subtypes Differentiation

24. Vallieres M, Freeman CR, Skamene SR, El Naqa I. A radiomics model from

joint FDG-PET andMRI texture features for the prediction of lung metastases

in soft-tissue sarcomas of the extremities. Phys Med Biol. (2015) 60:5471–96.

doi: 10.1088/0031-9155/60/14/5471

25. Qiu QT, Duan JH, Duan ZY, Meng XJ, Ma CS, Zhu J, et al. Reproducibility

and non-redundancy of radiomic features extracted from arterial

phase CT scans in hepatocellular carcinoma patients: impact of tumor

segmentation variability. Quant Imaging Med Surg. (2019) 9:453–64.

doi: 10.21037/qims.2019.03.02

26. Kursa MB, Rudnicki WR. Feature Selection with the Boruta Package. J Stat

Softw. (2010) 36:1–13. doi: 10.18637/jss.v036.i11

27. Viani N, Miller TA, Napolitano C, Priori SG, Savova GK, Bellazzi R, et al.

Supervised methods to extract clinical events from cardiology reports in

Italian. J Biomed Inform. (2019) 95:103219. doi: 10.1016/j.jbi.2019.103219

28. Valsangkar NP, Morales-Oyarvide V, Thayer SP, Ferrone CR, Wargo JA,

Warshaw AL, et al. 851 resected cystic tumors of the pancreas: a 33-year

experience at the Massachusetts General Hospital. Surgery. (2012) 152:S4–12.

doi: 10.1016/j.surg.2012.05.033

29. Malleo G, Bassi C, Rossini R, Manfredi R, Butturini G, Massignani M, et al.

Growth pattern of serous cystic neoplasms of the pancreas: observational

study with long-term magnetic resonance surveillance and recommendations

for treatment. Gut. (2012) 61:746–51. doi: 10.1136/gutjnl-2011-300297

30. Leung KK, Ross WA, Evans D, Fleming J, Lin E, Tamm EP, et al.

Pancreatic cystic neoplasm: the role of cyst morphology, cyst fluid

analysis, and expectant management. Ann Surg Oncol. (2009) 16:2818–24.

doi: 10.1245/s10434-009-0502-9

31. Bassi C, Salvia R, Gumbs AA, Butturini G, Falconi M, Pederzoli P.

The value of standard serum tumor markers in differentiating mucinous

from serous cystic tumors of the pancreas: CEA, Ca 19-9, Ca 125, Ca

15-3. Langenbecks Arch Surg. (2002) 387:281–5. doi: 10.1007/s00423-002-

0324-8

32. Sahora K, Mino-Kenudson M, Brugge W, Thayer SP, Ferrone CR, Sahani D,

et al. Branch duct intraductal papillary mucinous neoplasms does cyst size

change the tip of the scale? A critical analysis of the revised international

consensus guidelines in a large single-institutional series. Ann Surg. (2013)

258:466–75. doi: 10.1097/SLA.0b013e3182a18f48

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Copyright © 2020 Shen, Yang, Yang, Yang, Xu, Zhuo, Wang, Lu, Liu, Zheng, Niu

and Xu. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Oncology | www.frontiersin.org 10 February 2020 | Volume 10 | Article 248

https://doi.org/10.1088/0031-9155/60/14/5471
https://doi.org/10.21037/qims.2019.03.02
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.1016/j.jbi.2019.103219
https://doi.org/10.1016/j.surg.2012.05.033
https://doi.org/10.1136/gutjnl-2011-300297
https://doi.org/10.1245/s10434-009-0502-9
https://doi.org/10.1007/s00423-002-0324-8
https://doi.org/10.1097/SLA.0b013e3182a18f48
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles

	A Contrast-Enhanced Computed Tomography Based Radiomics Approach for Preoperative Differentiation of Pancreatic Cystic Neoplasm Subtypes: A Feasibility Study
	Introduction
	Materials and Methods
	Patients
	Study Design
	Image Acquisition
	Tumor Segmentation and Quantification
	Feature Selection and Classifier Construction
	Statistical Analysis

	Results
	Patient Characteristics
	Feature Selection
	Model Construction and Evaluation

	Discussion
	Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	Funding
	Supplementary Material
	References


