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Resistance of cancer cells to chemotherapy is the first cause of cancer-associated

death. Thus, new strategies to deal with the evasion of drug response and to improve

clinical outcomes are needed. Genetic and epigenetic mechanisms associated with

uncontrolled cell growth result in metabolism reprogramming. Cancer cells enhance

anabolic pathways and acquire the ability to use different carbon sources besides

glucose. An oxygen and nutrient-poor tumor microenvironment determines metabolic

interactions among normal cells, cancer cells and the immune system giving rise to

metabolically heterogeneous tumors which will partially respond to metabolic therapy.

Here we go into the best-known cancer metabolic profiles and discuss several studies

that reported tumors sensitization to chemotherapy by modulating metabolic pathways.

Uncovering metabolic dependencies across different chemotherapy treatments could

help to rationalize the use of metabolic modulators to overcome therapy resistance.

Keywords: cancer, metabolic reprogramming, TCA cycle, Warburg effect, metabolic vulnerabilities,

chemoresistance

METABOLIC REPROGRAMMING

The metabolic program between non-proliferating and proliferating cells is different. Non-
proliferating cells rely mostly on catabolic reactions while proliferating cells must balance
catabolic and anabolic reactions required to sustain enhanced cellular growth (1–3). In normally
proliferating cells most ATP from glucose is obtained by glycolisis, tricarboxylic acid cycle
(TCA) and oxidative phosphorylation (OxPhos), while nucleotides, aminoacids, and lipids are
provided by intermediate metabolites of these pathways; such as acetyl-CoA for fatty acids,
glycolytic intermediates for non-essential aminoacids, and ribose for nucleotides. Tumor cells are
characterized by metabolic hallmarks similar to highly proliferating normal cells but, in addition,
they develop a high plasticity to metabolic rewiring to sustain enhanced cellular growth in changing
microenvironmental conditions (4).

Back in the 1920’s, Otto Warburg observed that many tumors depended on glycolysis as the
sole source of ATP; even in the presence of oxygen (aerobic glycolysis) (5). Accordingly, the rate of
glucose entry to cancer cells was found 20-to-30- fold higher than in normal cells (6), and glucose
transporters and key glycolytic enzymes were heavily upregulated (7). Cancer cells under hypoxia
induce pyruvate dehydrogenase kinase (PDK) that inactivates pyruvate dehydrogenase (PDH) (8).
Thus, most glucose-derived pyruvate does not enter the TCA cycle and is converted in lactate by the
action of lactate dehydrogenase (LDH) (9). This is because most tumors produce great quantities
of lactate, which is very striking, since glycolysis produces only 2 ATP molecules for each glucose,
while oxidative phosphorylation between 30 and 32 ATPs.
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Later it became clear that in cancer cells glucose is consumed
mainly to supply glycolitic intermediates for anabolic pathways.
Glucose-6-phosphate can be oxidized by glucose-6-phosphate
dehydrogenase (G6PD) to produce reduced nicotinamide
adenine dinucleotide phosphate (NADPH) and ribose-5-
phosphate (R5P) through the pentose phosphate pathway
(PPP). NADPH and R5P are required for nucleotide synthesis,
but also to sustain biosynthetic reactions and to maintain the
redox capacity of the cell (1). Moreover, 3-phosphoglycerate
could serve as a precursor for serine and glycine metabolism
through the one-carbon cycle (10). Pyruvate instead that can be
converted into alanine by alanine aminotransferase (ALT) (11).
In turn, these aminoacids can be metabolized for nucleotide
synthesis, DNA methylation, glutathione production and
NADPH generation (12). Interestingly, several PPP enzymes
and 3-phosphoglycerate dehydrogenase (PHGDH) were found
upregulated in some cancer (13–16).

Unlike originally thought, aerobic glycolysis in cancer cells
is not a sign of defective oxidative phosphorylation. Instead,
high rates of glycolysis inhibit mitochondrial respiration,
a phenomenon termed the “Crabtree effect” (17). Indeed,
mitochondria function is essential for cancer cell proliferation
(18). Mitochondrial redox homeostasis is crucial for maintaining
cellular aspartate levels critical for nucleotide synthesis (19).
Indeed, aspartate was shown essential for in vivo tumor
growth (20).

Of great significance, cancer cells require TCA cycle
intermediates for biosynthetic pathways and NADPH

production (21). The TCA cycle generates citrate that can be
exported to the cytosol through the mitochondrial tricarboxylate
carrier (SLC25A1) to be converted into acetyl-CoA and
oxaloacetate by ATP citrate lyase (ACLY). (22). Acetyl-CoA can
either be employed for fatty acid and cholesterol synthesis (to
support membrane biogenesis) or used for protein acetylation
reactions, which regulate nuclear transcription as well as
cytoplasmic processes like autophagy (23). The TCA cycle also
provides metabolic precursors for the synthesis of non-essential
amino acids, such as aspartate and asparagine from oxaloacetate,
or proline, arginine and glutamate from α-ketoglutarate. To cope
with the continuous efflux of intermediates cancer cells replenish
the TCA cycle by increasing or developing the ability to use
various carbon sources; including glutamine, acetate, lactate,
serine, and glycine (24–27). In particular, tumor cells consume
great quantities of aminoacids.

Glutamine is the major contributor of TCA intermediates in
many cancer cell lines (28). Glutamine is transported into the cell
through plasma membrane transporters, like SLC1A5 (ASCT2)
and SLC7A5 (29) and converted into glutamate by glutaminase
(GLS). Then glutamate is transformed into α-ketoglutarate, by
either glutamate dehydrogenase (GDH) or transaminases; and α-
ketoglutarate enters the TCA cycle to maintain the production
of citrate. Glutamine can also be directly converted into citrate
by reductive carboxylation. The reductive carboxylation of α-
ketoglutarate by the inverse reaction of isocitrate dehydrogenase
(IDH) generates citrate (30). Glutamine reductive carboxylation
is particularly important in tumor cells under hypoxic conditions
or when mitochondrial respiration is impaired (31). Moreover,

GLS and GDH are upregulated in a wide variety of tumors and
its inhibition has been shown to diminish tumorigenesis (32, 33).

Another contributor of TCA intermediates is lactate. Some
cancer cells can use lactate produced by aerobic glycolysis as
a source of energy. More than 50% of the total TCA cycle
intermediates in breast cancer cells under glucose deprivation
derived from lactate (34). Moreover, overexpression of lactate
transporters (MCTs) is a common finding in some cancers (35).

Enhanced glycolisis and glutamine metabolism in cancer cells
support the increase of de novo fatty acids synthesis (36). Fast-
proliferating cancer cells use fatty acids and cholesterol for
biosynthesis of cell membranes, cell signaling and secondary
messengers (37), as well as for lipid catabolism through fatty
acid β-oxidation (FAO) during nutrient deprivation (38). In
some cancers such us prostate cancer and lymphoma, lipid-
dependent metabolism becomes essential for energy production
(39). In physiological conditions, lipid synthesis is restricted
to specialized tissues, such as the liver and adipose tissues.
Normal cells uptake lipids from the bloodstream, while cancer
cells could obtain lipids and lipoproteins exogenously or by
de novo synthesis (38). A wide variety of tumors have increased
expression of crucial lipogenic enzymes such us ACLY, acetyl-
CoA-carboxylase (ACC), fatty acid synthase (FASN) (38, 40, 41);
as well as present an increase in the transcriptional activities
of the sterol regulatory element-binding proteins (SREBPs) (42,
43). The upregulation of lipogenic enzymes seems required for
tumor progression (40). Interesstingly, some cancer cells harbor
adipocyte characteristics like storing excess lipids in lipid droplets
(LD) (44). LD are intracellular storage organelles of neutral lipids
mainly found in adipose tissue, but observed in several cell types
and tissues (45, 46). LDs are dynamic, and their accumulation
seem to confer survival advantages to cancer cells (47). Drugs
that specifically target LD formation are thought to hold greater
therapeutic potential compared with general lipid biosynthesis
inhibitors (48, 49).

Enhanced glycolisis, glutamine metabolism and fatty acids
synthesis are features shared by many cancer cell lines. However,
the metabolic phenotype of the tumor in vivo is highly
heterogeneous, resulting from the combination of intrinsic
(genetic and epigenetic changes, tissue of origin, state of
differentiation) and extrinsic (oxygen and nutrient availability,
metabolic interactions within the tumor microenvironment)
factors (50).

ROLE OF ONCOGENES AND TUMOR
SUPPRESSOR GENES IN METABOLISM
REPROGRAMMING

One of the intrinsic factors that determine the tumor metabolic
phenotype is the activation of oncogenes or deactivation of
tumor suppressor genes which result in a metabolic rewiring
(51). Tumor metabolism is distinct in tumors harboring different
oncogenic alterations. Oncogenes such as RAS, MYC, or PI3K,
favor glycolysis over oxidative phosphorylation; whereas tumor
suppressors such as p53, PTEN, Von Hippel–Lindau (VHL), or
liver kinase B1 (LKB1) have the opposite effect (52).
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In particular, MYC expression could activate the pentose
phosphate pathway, purine/pyrimidine synthesis and fatty
acid oxidation under chemotherapy and radiotherapy (53).
MYC directly regulates several glycolytic enzymes such
as glucose transporter 1 (GLUT1), hexokinase 2 (HK2),
phosphofructokinase muscle type (PFKM), and enolase 1
(ENO1); as well as lactate dehydrogenase A (LDHA) (54).
Moreover, MYC expression increases glutamine uptake and
glutaminolysis (55, 56) by inducing the expression of glutamine
transporters SLC1A5 and SLC7A5 and by repressing the
transcription of microRNA-23a/b which targets glutaminase 1
(GLS1) (56, 57).

p53 can directly or indirectly influence the expression of genes
involved in glucose, OxPhos and lipid metabolism, among other
pathways (58). p53 inhibits glycolysis dowregulating GLUTs

and the glycolytic enzyme phosphoglycerate mutase (PGAM)
(59, 60). p53 also induce the expression of TIGAR (TP53-
induced glycolysis and apoptosis regulator), which indirectly
inhibits phosphofructose kinase 1 (PFK1) diverting glycolytic
intermediates into the PPP (61). p53 decreases fatty acid
synthesis by also inhibiting the PPP. p53 directly binds and
inhibits G6PD leading to decreased production of NADPH

(14). Moreover, p53 directly repress the expression of SREBP-
1 which regulates the expression of fatty acid synthesis
enzymes (62). On the other hand p53 enhances fatty acid
oxidation. p53 induces two important enzymes involved in
fatty acid oxidation, Lipin 1 and carnitine palmitoyltransferase
(CPT1C) (63, 64). p53 was also reported to transcriptionally
induce malonyl-CoA decarboxylase (MCD), which catalyzes
the conversion of malonyl-CoA to acetyl-CoA, to promote
fatty acid oxidation and prevent lipid accumulation (65). p53
enhances mitochondrial OxPhos by inducing the expression of
the cytochrome c oxidase (COX, complex IV) assembly factor
SCO2 (66) or the expression of AIF; whichmaintains the integrity
of mitochondrial NADH:ubiquinone oxidoreductase (complex
I) (67). In addition, p53 promotes OxPhos by repressing the
transcription of pyruvate dehydrogenase kinase 2 (PDK2), which
inhibits PDH (68). PDK2 repression activates PDH reducing the
conversion of pyruvate to lactate and increasing the conversion
of pyruvate to acetyl-CoA (68).

RAS can influence the glycolytic metabolism through the
PI3K-mTOR pathway, or by upregulating glucose flux through
hexosamine biosynthesis pathway (HBP) or the PPP (53). In
addition, mutant KRAS activated lipogenesis through induction
of FAS (69). In a Kras-driven mutant model of spontaneous
lung tumorigenesis the uptake and utilization of branched-chain
amino acids (BCAAs) such as leucine and valine, were increased,
as well as the expression of the enzymes responsible for their
catabolism (70).

PTEN decreases glycolysis and promotes oxidative
phosphorylation. MEFs from PTEN tg mice present high levels
of peroxisome proliferator-activated receptor g coactivator-1α
(PGC-1α), increase the number of mitochondria, increment
the levels of oxygen consumption and ATP production, and
diminish lactate secretion. Moreover, PTEN decreases the levels
of pyruvate kinase isozyme M2 (PKM2) and 6- phosphofructo-
1-kinase/fructose-2,6-biphosphatase isoform 3 (PFKFB3); and

elicits the inhibition of the pro-tumorigenic glutaminase GLS1

thus contributing to the cancer-protection (71).
Of note, most studies on the role of oncogenes/tumor

suppressor genes in metabolic reprogramming were performed
using cell models with single genetic modifications. It’s hard
to translate this findings to the tumor in vivo which harbors
many genetic defects, and whose metabolic profile will depend
on their combination.

METABOLIC HETEROGENEITY IN
TUMORS

Based on the metabolic strategies prioritized by several solid
cancers Lehuede et al. (72) proposed a classification of cancer-
specific metabolic phenotypes in glycolytic and oxidative tumors.
While lung, liver, colorectal cancers, and leukemias rely mostly
on glycolysis; lymphomas, melanomas, and glioblastomas behave
as oxidative tumors (72). However, there is not a uniform
metabolic phenotype across tumors with a similar genetic defect
in different organs or genetically different tumors in the same
organ (73). A large study of metabolic features in 180 patient-
derived melanoma xenografts excluded a general metabolomic
signature (74).

Cancer cells reside in poor oxygen and nutrition
environments and hence attempt to reprogram the preexisting
tissue metabolism for survival (75). The fact that some regions
of the tumor could have more access to oxygen or various
carbon sources than others (73) explains why tumor cells
are metabolically heterogeneous. Intra-tumoral metabolic
heterogeneity is maintained through coupled metabolic
interactions between distinct cell populations coexisting in the
tumor microenvironment. Stromal and tumor cells can compete
or alternatively form symbiotic relationships where the metabolic
products of a population become a nutrient of another (76).

Tumor cells can promote a “Reverse Warburg effect”
in neighboring Cancer-associated fibroblasts (CAFs) (77).
CAFs are stromal cells which often dominate the tumor
microenvironment. Reactive oxygen species (ROS) produced by
cancer cells activates HIF-1α and NFkB in CAFs inducing the
production and release of energy-rich metabolites as lactate.
Cancer cells could in turn take up lactate to fuel mitochondria
respiration for energy production and anabolic metabolism
(78, 79). This metabolic symbiosis may be controlled by the
differential expression of lactate monocarboxylate transporters
MCT1 and MCT4. Lactate is released from CAFs by MCT4 and
taken up by MCT1 in cancer cells. Indeed, lactate transporters
inhibition reduces lactate uptake, induces a switch to glycolysis,
and blocks metabolic symbiosis and tumor progression (80).
Interestingly, higher levels of MCT1 confer a higher metastatic
potential to melanoma cells as metastasizing cells depend on
MCT1 to manage oxidative stress (81).

Cancer-associated adipocytes (CAAs) are adipocytes
infiltrated into the tumor tissue (82). They provide carbon
sources, growth factors, and cytokines affecting tumor growth,
metastasis, and drug responses (83). CAAs frequently release
fibroblast growth factors like (FGFs), leptin, adiponectin, IL-1β,
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FIGURE 1 | Common metabolic features targeted in cancer cells. Cancer cells could present enhanced glycolisis and lactate release, enhanced FA (fatty acids)

synthesis, uptake and oxidation; enhanced OxPhos activity, enhanced glutamine uptake and metabolism, enhanced branched amino acids (BCAAs) uptake and

oxidation, etc. Targeting these pathways could sensitize cancer cells to chemotherapy.

IL-6, TNF-α, CCL2, and CCL5; while cancer cells produce
signaling molecules to trigger adipocyte lipolysis (84). In the
presence of CAAs some cancer cells can acquire exogenous free
fatty acids (FFAs) released by CAAs through the cell surface fatty
acid translocase CD36 and switch their metabolic program from
glycolysis to FAO (38). In vitro, ovarian cancer cells induce white
adipocytes lipolysis, fatty acids uptake and FAO (85).

Tumor metabolism also modulates the activity of tumor-
associated immune populations. Activated T cells and cancer cells
share somemetabolic similarities (86) giving rise to a competition
for nutrients which could impair the immune function (87).
Naive CD4T cells use mitochondrial OxPhos as a primary
energy source, but upon activation they increase the expression
of GLUT1 and shift to aerobic glycolysis (88). Also TAMs
Tumor Associated Macrophages (TAMs) M1 rely on glycolysis
to meet increased energetic demands (89). Moreover, increased
lactate levels due to enhanced tumoral glycolisis can lead
to diminished antitumour immunity. Lactate inhibits FIP200,
leading to defective autophagy and increased apoptosis of naive
T cells (90). Lactate can also suppress NK and dendritic cell
function but does not affect regulatory T (Treg) cell function
(91). Lactate could also induce the conversion of M1 to M2

pro-tumoral macrophages (92). CD8+ T cells and NK cells, are
also sensitive to glutamine, serine, glycine, leucine, isoleucine
and valine aminoacid restriction (93, 94). Moreover, limited
availability of extracellular glutamine shifted the balance from
Th1 to Treg cells (95).

Some cancer cells harbor an “hybrid glycolysis/ OxPhos

phenotype” which allows them to use both glycolysis and the
byproducts from glycolysis byOxPhos for energy production and
biomass synthesis (96). Metabolic plasticity may be specifically
associated with metastasis and therapy-resistance because a
hybrid metabolism could maintain low ROS levels which induce
a moderate stress response and the appearance of mutations
that further stimulate tumorigenesis and metastasis (97). Dual
inhibition of glycolysis (by 2-Deoxy-d-glucose, 2-DG) and
OxPhos (by metformin) has been shown to effectively repress
tumor growth and metastasis across multiple preclinical cancer
models (98). Thus, a combination of glycolytic and OxPhos

inhibitors could effectively eliminate the tumor survival potential
of hybrid cells (99).

Understanding the factors that influence tumor heterogeneity
is fundamental for the development of therapies that could act
modulating tumor metabolism. Up to now tumor heterogeneity
and toxicity issues has limited the success of most clinical trials
targeting metabolic pathways (Figure 1).

TARGETING CANCER METABOLISM TO
OVERCOME DRUG RESISTANCE

Recently, metabolic reprogramming has been shown to play a
role in the response of cancer cells to widely-used first-line
chemotherapeutics (100).
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FIGURE 2 | Schematic representation of metabolic alterations involved in the onset of resistance to platinum agents, anthracyclines, taxanes and hormone therapy.

Chemotherapeutic drugs target a differential feature of cancer
cells that help them to actively proliferate. The main types
of chemotherapy agents used in the clinics are: alkylating
agents and platinants (damage DNA), such as cisplatin (101);
cytotoxic antibiotics (bind DNA to prevent DNA and/or
RNA synthesis); inhibitors of topoisomerase (damage DNA),
such as daunorubicin, doxorubicin, irinotecan and etoposide;
antimetabolites (interfere with intermediary metabolism of
proliferating cells), such as gemcitabine; anti-microtubule agents
(target microtubules and associated proteins required in cell
division), such as paclitaxel and docetaxel (102); hormonal agents
(inhibit hormone synthesis or function as hormone receptor
agonist/antagonist) (103), such as tamoxifen or enzalutamide;
and immunotherapy (target cancer cells that express a specific
antigen or boost the natural ability of T cells to fight cancer), such
as trastuzumab.

Tumor recurrence results from the ability of specific tumor
subpopulations to resist treatment and expand. Resistance
constitutes a lack of response to drug-induced tumor growth
inhibition and it may be inherent to a subpopulation of
cancer cells or can be acquired as a consequence of drug
exposure. Chemoresistance is caused through genetic mutations
in various proteins involved in cellular mechanisms such

as cell cycle, apoptosis and cell adhesion (104). Reported
chemoresistance mechanisms include: altered drug membrane
transport, mutation, increased expression of drug targets,
decreased drug activation, increased drug degradation due
to altered expression of drug-metabolizing enzymes, drug
inactivation due to conjugation with glutathione, altered drug
subcellular redistribution, drug interactions, enhanced DNA
repair, overexpression of anti-apoptotic genes, inactivation of
apoptotic gene products, among others (105).

In the last decades, several studies have demonstrated
that metabolic reprogramming plays an important role in
the onset of chemotherapy resistance (106). Mostly due to
the fact that chemotherapy agents used in the clinics cause
a compensatory metabolic reprogramming in cancer cells
(Figure 2). Thus, implementation of combinatorial therapies
with chemotherapeutic drugs and metabolic modulators
(Table 1) might provide a way to overcome therapy resistance.

TARGETING GLUCOSE METABOLISM

As we already mentioned above, intensive aerobic glycolysis
generates the accumulation of lactate that results in acidosis
and promotes tumor progression and metastasis by inducing
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TABLE 1 | Overview of promising combination therapy of chemotherapeutic agents and metabolic modulators.

Chemotherapeutic

agents

Targets Therapeutic strategy Type of cancer References

Cisplatin - Increased expression and enzymatic activity

of G6PD

Combination of 6-AN and CDDP Ovarian cancer (107)

- Increased glutamine consumption and

increased expression of the glutamine

transporter ASCT2 and of GLS

Combination of BPTES and CDDP Ovarian cancer (108)

- Increased PGC-1α levels Silencing PGC-1α Small cell lung carcinoma (109)

- Increased expression of FASN Combination between Orlistat and CDDP Lung carcinoma (110)

Doxorubicin - Increased expression of 6-

phosphogluconate dehydrogenase (G6GD)

G6GD knockdown or Physcion treatment Anaplastic thyroid cancer (111)

- Increased glycolysis 3-bromopyruvate treatment Neuroblastoma (112)

Daunorubicin - Increased GLUT1 expression Combination between phloretin and

daunorubicin

Leukemia cancer (113)

Paclitaxel - Increased expression and activity of LDHA Downregulation of LDHA or Oxamate

treatment

Breast cancer (114)

- Increased glycolisis Combination of 2-DG and paclitaxel Human osteosarcoma

and non-small cell lung

cancer

(115)

Docetaxel - High fatty acid synthase (FASN) activity Developing ErbB2-induced breast

cancer

(116)

- Shift from glycolysis toward OXPHOS Combination of docetaxel and OXPHOS

inhibitors

Prostate cancer (117)

- mtDNA depletion Developing Prostate cancer (118)

- Increased mitochondrial mass Developing Breast cancer (119, 120)

Tamoxifen - Increased level of neutral lipids, in particular,

cholesterol esters and triglycerides

Developing Breast cancer (121)

- Increased expression of Peroxisome

Proliferator-Activated Receptor Gamma

(PPARgamma)

Developing

Enzalutamide - Increased expression of HMGCR Combination of simvastatin and

enzalutamide

Prostate cancer (122)

immunosuppression, vascularization, aggressive proliferation,
migration, invasion and therapy resistance (123, 124). It has
been demonstrated that enhanced glucose uptake and improved
aerobic glycolysis are capable to induce the intrinsic or
acquired resistance to chemotherapy in several tumor cells
such as breast (125), or ovarian (107). Several key glycolytic
enzymes and glucose transporters inhibitors are currently in
preclinical or clinical development to counteract resistance to
chemotherapeutic drugs (100, 107, 126–129).

Some reports proposed that aerobic glycolysis is an important
pathway for colorectal cancer (CRC) development. In fact,
the overexpression of the immune checkpoint protein B7-
H3 in CRC cells enhanced glucose consumption and lactate
release by HK2 expression, while B7-H3 knockdown had the
opposite effect. Moreover, it is known that the depletion of
HK2 expression or HK2 inhibition blocked aerobic glycolysis
and CRC chemo-resistance (130). Recent studies reported that
human colorectal adenocarcinoma doxorubicin-resistant cells
(LoVo DOX) presents over expression of GLUT1. Thus, the
treatment with silybin (a modulator of GLUTs) resulted synergic
with the chemotherapeutic agents and it was able to overcome
doxorubicin resistance (131).

Several key glycolytic enzymes, comprising HK2, PFK, and
PKM2, are highly expressed in ovarian cancer cells and were
implicated in anti-apoptotic and cell survival processes which
correlate with chemo-resistance. These enzymes are controlled
by oncogenes (e.g., Akt, mTOR) and tumor suppressors (e.g.,
p53) that may drive deregulated metabolism and ovarian cancer
development (132). A few publications reported that ovarian
cell lines with high glycolysis rate also presented high OxPhos

activity, showing that most ovarian tumor cell lines prefer a
highly glycolytic metabolic phenotype (133). Several inhibitors
of glycolysis, such as 2-DG, 3-bromopyruvate (3-BrPA) or
lonidamide (LND), have been studied in recent years. The
combined treatment between metformin and 2-DG decreased
the cellular growth of ovarian cancer cells (134). Moreover, 2-
DG was able to sensitize cisplatin (CDDP)-resistant and radio-
resistant cervical CaSki cell lines (135). 3-BrPA (pyruvate analog)
is an inhibitor of HK2 and an alkylating agent. LND is another
inhibitor ofHK2, that enhancedCDDP activity in ovarian cancer
cells (136). LND in combination with the chemotherapeutic
agents, CDDP, and paclitaxel, presented a good activity and
tolerability (137). The PPP is another pathway involved in
ovarian drug resistance. It was demonstrated that ovarian
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CDDP-resistant cells (C13) showed increased glucose uptake, the
up-regulation of the glucose transporter GLUT1 and increased
expression and activity of G6PD, in comparison to CDDP-
sensitive clones (2008). A combination of 6-nicotinamide (6-
AN) (the G6PD inhibitor) and CDDP leads to a resensitization
of CDDP-resistant cells (107). Moreover, since another ovarian
cisplatin-resistant cancer cell line, IGROV PT, presented a higher
expression of G6PD, the same combination has been loaded in
liposomes and tested. The results showed a resensitization of
resistant cells to cisplatin (138).

The increment in glycolysis is a common characteristic
of drug-resistant breast cancer cells independent of the
chemotherapeutic treatment, but this augmented activity is
regulated in different ways in several resistant breast tumors.
It has been demonstrated that triple-negative breast cancer
(TNBC) and HER2 positive breast cancer possess higher rate of
glycolytic activity than estrogen receptor-positive (ER+) breast
cancer cells (139–141). In TNBC, it was shown that EGF
pathways are activator of the first step in glycolysis (142) and
that MYC modulates this metabolic phenotype by inhibiting
the expression of the thioredoxin-interacting protein (143).
The different expression of GLUT isoforms in breast cancer
correlates with tumor cell differentiation, pathological grade, and
prognosis. Invasive breast cancer, HER-2 positive, and TNBC,
mostly present with a higher glycolysis rate due to the highest
expression of GLUT (139). The most invasive breast cancer type,
TNBC, has the highest GLUT-1 expression (139). Moreover,
overexpression of ErbB2 increased the expression of LDHA;
promoting glycolysis and breast tumor growth (144). Increased
glycolytic rate and a higher sensitivity toward inhibition of
glycolysis were demonstrated in lapatinib-resistant BT474 breast
cancer cells by a multi-omics approach (125). Curiously, the
increase glycolytic activity in BT474 cells was not resulting
from an overexpression of glycolytic enzymes, but merely
from modifications in the phosphorylation state of glycolytic
enzymes, demonstrating that post-translational changes alone
canmodulate glycolysis. In trastuzumab-resistant ErbB2-positive
breast cancer cells, the improved glycolytic rate is regulated
by heat shock factor 1 and LDHA and inhibition of glycolysis
with 2-DG and the LDH inhibitor oxamate by-pass trastuzumab
resistance (145). Finally, in paclitaxel-resistant breast cancer cells,
synergistic effects on inducing apoptosis were shown in LDHA

downregulated cells or with oxamate (a pyruvate analog that
inhibits the conversion of pyruvate to lactate) association (146).
LDHA expression and activity are higher in taxol-resistant breast
cancer cells. Downregulation of LDHA or oxamate treatment
resensitizes taxol-resistant cells to taxol (146).

Differently to other tumor cell types that showed a higher
rate of glucose consumption early in the modification process,
prostate cancer (PCa) cells shift to the Warburg effect only in
the metastatic stage, excluding the possibility to use advanced
diagnostic procedures like standard FDG-PET scan for the
detection of cancer in the early stages (147, 148). Glucose
transporters have not been contemplated in PCa evolution
because glucosemetabolism in the prostate gland is different than
in other organs. However, the relevance of GLUTs transporters
has been lately proposed since the importance of increasing

nutrients uptake, comprising glucose is clearly confirmed in
PCa. In PCa androgens induce glucose uptake, upregulation of
GLUT transporters and increased the AMPK pathway (149, 150).
Glycolysis varies between androgen-sensitive and insensitive cells
and it has been demonstrated that more aggressive tumors
showed a higher glucose dependence (151). Indeed, prostate
cancer cells switch to aerobic glycolysis only in the metastatic
stage (147, 148). Even if the metabolic mechanism that supports
prostate cancer metastasis has not been elucidated, in androgen-
sensitive cells LNCaP and VCaP, androgen signaling induces
both glycolysis and OxPhos (152). An augmented activity of
key glycolytic enzymes by androgens has been established. HK2

phosphorylation is prompt by androgens via PKA signaling,
while PFKFB2 is induced by direct binding of androgen receptor
(AR) to PFKFB2 promoter. Activation of PFKFB2 produces a
constitutive activation of 6-phosphofructo-2-kinase 2 (PFK2),
which is entailed in the second irreversible reaction of the
glycolytic pathway (150).

Combining different glycolytic inhibitors with
chemotherapeutic agents could be a strategy to overcome
drug resistance. To increase the anti-tumor activity 2-DG was
used in vitro and in vivo in combination with inhibitors of
lysosomal permeabilization (153). Moreover, the combined
treatment between 2-DG and fenofibrate (PPARα agonist)
caused a synergic effect in cancer cell growth (154). The
combination of 2-DG and paclitaxel in mouse xenografts models
of human osteosarcoma and non-small cell lung cancer resulted
in a significant reduction in tumor growth (155). 3-BrPa use
in vivo conditions resulted in anti-tumor activity after a single
injection in a rabbit VX2 hepatoma model (156). Moreover,
cells treated with 3-BrPa enhanced doxorubicin-resistant cells
response to the drug (112). Dichloroacetate (DCA), a PDK1

inhibitor, was frequently used in combination with different
chemotherapeutics agents (157). The combined treatment of
DCA with paclitaxel was able to sensitize NSCLC resistant
cells (158). Moreover, the combined treatment of DCA and
CDDP was able to decrease tumor growth in advanced bladder
cancer (159). The silencing of PKM2 in lung cancer cells
enhanced the efficacy of docetaxel (160). Another group reported
that PDK3 knockdown inhibited hypoxia-induced glycolysis
and increased the susceptibility of cancer cells to paclitaxel
(161). Cao et al. demonstrated that leukemia daunorubicin-
resistant cells show increased expression of GLUT1 and that the
combined treatment between daunorubicin and phloretin, an
inhibitor of glucose transporter sensitizes K562/Dox cells (113).
Doxorubicin-resistant cell lines from anaplastic thyroid cancer
presented a high expression of G6GD (an enzyme of PPP).
G6GD knockdown or the anthraquinone physcion decreased
G6GD activity and resensitized doxorubicin-resistant cells (111).

TARGETING GLUTAMINE METABOLISM

Tumor cells increase glutamine metabolism to preserve the citric
acid cycle, especially given the loss of the entry from pyruvate,
in order to adapt to the modifications in the glycolytic pathway
(162). Also, glutamine metabolism contributes to cancer cell
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chemoresistance. Recent studies demonstrated that the use of
small molecules, of which several are in clinical trials, to inhibit
key enzymes in glutaminolysis pathways is effective in slowing
the proliferation of cancer cells (163–168).

Bis-2-(5-phenylacetamido-1,3,4-thiadiazol-2-yl)ethyl sulfide
(BPTES) was recognized to be the first allosteric inhibitor of
GLS1 (169). It has demonstrated to reduce the proliferation
in several cancer cell types in vitro and in xenograft models.
Unfortunately, its poormetabolic stability and low solubility have
discouraged its clinical development (169). For this reason, new
inhibitors have been developed, such as CB-839 that is a more
potent inhibitor of GLS1 than BPTES (170). CB-839 reduced
proliferation of mouse HCC cells at very low concentration, while
BPTES, at the same concentration, had no activity (171).CB-839
is ongoing in phase 1 clinical trial for the treatment of various
cancer types [Study of the Glutaminase Inhibitor CB-839 in
Solid Tumors https://clinicaltrials.gov/ct2/show/NCT02071862].
Glutamine analogs, such as azaserine, acivicin, and 6-diazo-5-
oxo-L-norleucine (DON), are one strategy to disrupt glutamine
metabolic pathways They form covalent bonds with Ser286 in the
active site of GLS1 (166). These compounds have demonstrated
to block the proliferation of a variety of cancers and have shown
their efficacy in some clinical trials (163). Unfortunately, themain
problem related to the clinical use of azaserine, acivicin, and
DON is their lower selectivities toward GLS1, since they inhibit
other glutamine-dependent enzymes. Then, compound 968 was
identified as an allosteric inhibitor of GLS1; and was shown to
have cytotoxic effects in lymphoma, breast cancer, glioblastoma,
and lung cancer (172–176).

It has been demonstrated that high expression of GLS

can promote glutamine-independent growth and resistance to
therapies that limit glutamine metabolism (177, 178). Thus, other
pharmacological approaches to target glutamine metabolism
include the use of glutamine synthetase or GLUD (Glutamate
dehydrogenase) inhibitors (179).

Analysis in vitro demonstrated that a high glutamine flux
protected MCF7 cells from tamoxifen-induced apoptosis (180).
Indeed, a higher content of glutamate was correlated with breast
cancer outcomes in patients (181). Metabolomic analysis of 270
breast tumor samples and 97 normal breast samples showed that
breast tumor cells had a higher glutamate-to-glutamine ratio than
normal cells (182). Another study showed that highly invasive
and drug-resistant breast cancer cells presented increased
glutamine metabolism, increased glutamate-to-glutamine ratio,
and a higher glutaminase expression compared to non-invasive
breast cancer cells (172). Moreover, deprivation of glutamine
or BPTES treatment in combination with CDDP or etoposide
enhanced chemotherapy cytotoxicity on breast cancer HCC1937
cells (183). Anti-proliferative effects of 1,4-di(5-amino-1,3,4-
thiadiazol-2-yl)butane compound, GLS1 inhibitor, on human
breast tumor lines are similar to BPTES or CB-839 (184). Co-
treatment of CB-839 and everolimus interrupts the growth of
these endocrine-resistant xenografts (185).

GLS1 and GLS2 inhibitors or BPTES co-administered with
doxorubicin demonstrated a synergistic activity decreasing
proliferation of the human pancreas adenocarcinoma ascites

metastasis (AsPC-1) cells (186). Disruption of glutamine
metabolic pathways improved the efficacy of gemcitabine
treatment (nucleoside analog that works by blocking DNA
replication) in pancreatic cancer (187).

Some studies have revealed that some invasive ovarian tumor
cells improve the use of glutamine to fuel TCA cycle (188).
Yuan et al. demonstrated that compound 968 is able to block
cell proliferation and sensitize paclitaxel in ovarian cancer (189).
Moreover, it has been demonstrated that ovarian cancer CDDP-
resistant cells present increased glutamine consumption and
increased expression of the glutamine transporter ASCT2 and
GLS. Thus, the combined treatment of BPTES and CDDP

resensitized CDDP-resistant cells (108). Another molecule is
epigallocatechin gallate (EGCG), which is a GLUD inhibitor
GLUD. This compound combined with CDDP had a synergic
effect on A2780(cisR) ovarian cancer cells becoming a strategy to
overcome cisplatin resistance (190).

mTOR inhibitors-resistant glioblastoma cells have a
compensatory increase in glutamine metabolism, suggesting
that combined inhibition of GLS1 and mTOR could potentially
overcome resistance (191).

TARGETING LIPID METABOLISM

Lipidmetabolism is another important player in the development
of chemoresistance. The interest in therapeutic strategies directed
to block lipid synthesis, lipid uptake, intracellular lipolysis/lipid
utilization, and lipid storage is growing (192).

Among the enzyme that regulates lipid metabolism, FASN
is an important one and it correlates with poor prognosis in
various types of cancer and also interferes with drug efficacy
(193). Moreover, FASN overexpression induces resistance to
antitumoral drugs such as adriamycin andmitoxantrone in breast
cancer cells (194), gemcitabine-resistant pancreatic cells (195),
cisplatin-resistant ovarian cancer cells (110), and radiotherapy
resistant head and neck squamous cell carcinomas (196).

Inhibitor compounds targeting lipogenic enzymes (such as
FASN, ACLY, and ACC) have been studied and their anticancer
activity has been demonstrated in several preclinical models
(197–199). Besides the promising data, serious side effects
of these compounds have led to their clinical development
exclusion. Various FASN inhibitors, such as Cerulenin, C75,
orlistat, C93, C247, and GSK837149A, have been identified (200).
The inhibition of FASN demonstrated to represent an excellent
target, when used in in vitro, in xenograft and genetically induced
mouse model analysis (200). Inhibitors of FASN induced cancer
cells death directly or sensitized them to chemotherapic drugs,
such as 5-fluorouracil and trastuzumab (201–204).

It has been reported, by genomic profiling, that CPT1 and
fatty acid input into an oxidative pathway are decreased in four
aggressive cancer cells, including melanoma, breast, ovarian,
and prostate malignancies, respect to their non-aggressive
counterparts (205). Recent studies reported a negative correlation
between FASN inhibition and the consequent effect on body
weight and food intake. In fact, a worsen eating that leads to
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weight loss was observed in mice treated with cerulenin and C75
and the cause seemed to be related to the CPT-1 inhibition in the
hypothalamus (206–208).

The SPHK1 sphingosine Kinase 1 isozyme has been largely
studied and its several functions in tumor development have been
demonstrated, while the SPHK2 has not been as well-studied
(209–213). Several studies in vitro and in vivo (only preclinical)
demonstrated that ABC294640, the SPHK2-specific inhibitor,
is able to inhibit proliferation of cancer cells or tumors more
effectively or similarly than agents targeting SPHK1, in several
tumor models, including ovarian (214), multiple myeloma (215),
lung (216), kidney (217), breast (218), prostate (219), and
pancreatic cancers (220).

Liver X receptor (LXR) is a crucial transcriptional regulator
of cholesterol homeostasis and SR9243 is an LXR inverse agonist.
SR9243 is able to kill selectively cancer cells because it inhibits the
Warburg effect and lipogenesis and so the inhibition leads to the
formation of an environment not favorable to cancer cells (221).

Recently, several studies have shown that dysregulated
sphingolipid metabolism is a key contributor to the progression
and resistance of ovarian cancer. By RNA-seq, Dobbin and
colleagues revealed transcriptional variants between matched
pairs of carboplatin and paclitaxel-treated vs. control patient-
derived xenograft (PDX) models of ovarian cancer. In particular,
they identified that S1P signaling is modified pathways following
chemotherapy treatment (222). Sphingolipid metabolizing
enzymes strictly related in modulating the ceramide-
sphingosine-S1P rheostat play a key role in cell proliferation
and have been directly correlated with drug resistance in
ovarian cancer (223, 224). Specifically, increased expression
of ceramide transport protein (CERT), SPHK1, SPHK2, and
glucosylceramide synthase (GCS) have been correlated with
resistance to paclitaxel, doxorubicin, and N-(4-hydroxylphenyl)
retinamide (fenretinide) chemotherapies and cytotoxicity
(225–230). The sphingolipid-mediated sphingosine-1-phosphate
(S1P) pathway may represent a promising new pharmacological
target to counteract the chemoresistance in ovarian cancer cells.
Few therapeutic compounds specifically target S1P pathway
proteins, but this pathway can modify the response of several
chemotherapeutic treatments, including docetaxel, doxorubicin,
and cyclophosphamide (231–234). Several approaches have been
studied for modulating sphingolipid metabolism, and some of
them consist in the use of combined treatment between ceramide
analogs and chemotherapeutic agents (235–237). Treatments
that showed activity in resistance ovarian cancer models include
the use of synthetic ceramide analogs, inhibitors of SPHK,
neutralization of secreted S1P, and S1PR antagonists. For
example, the combined treatment of C6-ceramide with paclitaxel
showed a synergic effect in suppressing cell proliferation and
migration of CAOV3 ovarian cancer cells (238, 239). Moreover,
drug delivery systems seem to be useful. In fact, a resensitization
to paclitaxel of taxane-resistant SKOV3.TR ovarian cancer
cells have been shown with the combination of paclitaxel with
C6-ceramide-encapsulated in poly(ethylene oxide)-modified
poly(epsilon-caprolactone) (PEO-PCL) nanoparticles (235).
Kelly M. and colleagues demonstrated that the combined
treatment of tamoxifen with the Sphingosine kinase 1 (SK1)

inhibitor FTY720 blocks proliferation of both ERα-positive
and ERα-negative drug-resistant cell lines and an ERα-positive
PDX model of ovarian tumor (240). The multiple mechanisms
of action of tamoxifen and its relatively high therapeutic
index provide a strong rationale for combining tamoxifen
with FTY720, as a strategy for treating ovarian tumors and
circumventing drug resistance (226, 241–243).

It has been demonstrated that tamoxifen-resistant breast cells,
T-47D, present an increased level of neutral lipids, in particular,
cholesterol esters and triglycerides, and increased expression of
Peroxisome Proliferator-Activated Receptor Gamma (PPARγ)
(121). CDDP-resistant human ovarian cancer cell lines shift
their metabolism toward a lipogenic phenotype and accumulate
lipid droplets (244). Moreover, CDDP-resistant lung cells have
an increased expression of FASN and that inhibiting FASN

could decrease the metastatic potential of CDDP-resistant cells
(245). It has been demonstrated that a combination of orlistat,
an inhibitor of FASN and cisplatin, in vivo, causes a delay in
tumor growth (110). A high fatty acid synthase (FASN) activity
is also involved in ErbB2-induced breast cancer chemoresistance
to docetaxel (116). It has been demonstrated that prostate-
resistant cells, C4-2R and MR49F (enzalutamide-resistant cells)
respect to C4-2 and LNCaP have increased expression of 3-
hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR).
They showed that the combined treatment between simvastatin
and enzalutamide sensitizes resistant cells in vitro. Moreover,
tests in vivo in xenografts mice demonstrate a decrease in tumor
cell proliferation (122).

Inhibitors of CPT1, such as etomoxir or ranolazine, have
demonstrated promising results in different types of tumors. In
fact, the combined treatment of etomoxir and orlistat is able to
inhibit cell proliferation in LnCaP and VCaP prostate cancer cells
(246). Moreover, the treatment of human leukemia cells with
etomoxir or ranolazine can induce apoptosis cell death (115).

TARGETING MITOCHONDRIA
METABOLISM

During cancer cells’ adaptation to an hypoxic microenvironment,
mitochondria have been demonstrated to be fundamental
during solid tumor metastasis and in chemoresistance (247–
249). Targeting mitochondrial-dependent metabolism to
overcome drug resistance is an area of intense research. The
increase of antioxidant pathways that help cancer cells to
neutralize mitochondrial ROS is a common strategy adopted
by some tumors to become drug-resistant (250). Moreover,
mitochondria could promote therapy resistance by reducing
the mitochondrial permeability transition (MPT) and inducing
apoptosis resistance (251).

Mitochondria also appear responsible for the accumulation
of oncometabolites such as fumarate, succinate, and 2-
hydroxyglutarate (2-HG). Indeed, Succinate dehydrogenase
complex iron-sulfur subunit B (SDHB), fumarate hydratase
(FH), isocitrate dehydrogenase [NADP(+)] 1, cytosolic (IDH1),
isocitrate dehydrogenase [NADP(+)] 2 and mitochondrial
(IDH2) may be affected by germline or somatic mutations in
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a variety of human tumors (252). Fumarate, succinate and 2-

HG accumulation is sufficient to drive malignant transformation
and thus behave like bona fide oncometabolite (253). These
oncometabolites share the capacity to inhibit α-ketoglutarate-
dependent enzymes that control gene expression at the epigenetic
level, such as Jumonji domain (JMJ) histone lysine demethylases
(254) as well as ten-eleven translocation (TET) dioxygenases
(255), resulting in the expression of a potentially oncogenic
transcriptional program associated with a block in terminal
differentiation (256).

Dysregulation of mitophagy (removing of abnormal
mitochondria) contributes to neoplastic progression and
drug resistance in various tumors (257). Enhanced mitophagy
can protect cancer cells during chemotherapy and radiotherapy
preventing apoptosis (258). On the other hand, excessive
mitochondrial clearance may induce metabolic disorders and
cell death (259). Therefore, mitophagy likely plays a dual role in
cancer drug resistance (260). Mitophagy inhibition enhances the
sensitivity of breast cancer cells to classical paclitaxel (114).

mtDNA has an essential role on tumorigenesis and
chemoresistance. mtDNA pathogenic point mutations and
changes in copy number, were shown to induce cancer
progression (261) and have been associated with cancer
development to a more malignant phenotype with poor
prognosis in vivo (262–264). However, most mtDNA mutations
are neutral missense mutations present in homoplasmy (265),
suggesting that severe mutations are negatively selected. Indeed,
mtDNA mutations per se are not able to induce carcinogenesis
(266) but some mtDNA polymorphisms correlated with tumor
development (267–270).

In particular, mutations in mitochondria encoded Complex
I (CI) subunits could affect tumor progression depending
on their mutational load and its detrimental activity (271).
Based on these observations, Gasparre et al. introduced
the concept of oncojanus: severe CI assembly mutations
can promote tumorigenesis below a threshold level; but
above that level they behave as antitumorigenic due to CI
assembly defects. On the other side, non-disassembling mild
mtDNA CI mutations could stimulate tumor proliferation and
metastases. The oncojanus function of CI subunits was described
for both mitochondrial and nuclear encoded CI subunits
(272, 273). CI disruption inhibits OxPhos, promote NADH
accumulation, inhibition of α-ketoglutarate dehydrogenase
and increase the α-Ketoglutarate (KG)/succinate ratio. The
α-Ketoglutarate (KG)/succinate imbalance activates prolyl-
hydroxylases (PDH) enzymes responsible for the hydroxylation
and degradation of HIF-1α even in hypoxic conditions (271, 274).
Of note, genetical and pharmacological targeting of CI activity
in osteosarcoma and colorectal cancer cell models successfully
converted a carcinoma into a benign low-proliferating and non-
invasive oncocytic tumor (273).

Moreover, the oncojanus effect was also observed in ovarian
cancer after chemotherapy (275). A missense mtDNA point
mutation in theMTND4 subunit of CI appeared after carboplatin
treatment and generated a mild energetic defect allowing
paclitaxel chemoresistance. When mutated MTND4 arrived to
a certain threshold CI activity was impaired turning cancer
cells into an oncocytic phenotype. Later it was demonstrated

that the accumulation of deleterious mtDNA mutations induced
by carboplatin in ovarian cancer cell lines conferred paclitaxel
resistance through the reduction of filamentous tubulin (276).
The treatment of A549 non-small cell lung cancer cells with
CDDP induced an homoplasmic shift of a non-synonymous
mutation in the CI protein MTND2 resulting in chemoresistance
to cisplatin; which was correlated with the upregulation of
the nuclear PGC-1α and PGC-1β and increased mitochondrial
biogenesis (277).

mtDNA depletion in cancer cells under drug treatment
promotes invasion and metastasis, induces expression of
epithelial-to-mesenchymal (EMT) proteins (278) and activates
pro-survival and antiapoptotic pathways (279, 280). Although
the detailed molecular mechanism remains to be determined,
several studies have demonstrated that reduced mtDNA content
promotes activation of a mitochondria-to-nucleus signaling
leading to increased expression of anti-apoptotic genes, including
Bcl-2, and activation of pro-survival enzymes, such as Akt
(280), that likely play a role in conferring resistance to
apoptosis induced by drug treatment. mtDNA depletion in
androgen-dependent LNCaP prostate cancer cells resulted in
the loss of androgen dependence and increased resistance to
paclitaxel (118, 119).

Horizontal transfer of mtDNA to cancer cells with a low
respiratory function was correlated with recovery of respiration
and increased tumor-initiating efficacy (281). mtDNA exchange
through intercellular bridges or exosomes (extracellular vesicles
implicated in cell-cell communication and transmission of
disease states) could induce drug resistance by promoting a
cancer stem cell (CSC) phenotype (282) Interestingly, exosomes
containing mtDNA and mitochondrial proteins involved in
mitochondrial fusion and biogenesis were found in the serum
of prostate cancer patients as well as in the tumor itself (283).
MSCs also protected AML leukemia cells from chemotherapeutic
cytotoxicity by transferring them functional mitochondria.
These effects occur together with mitochondrial fragmentation
controlled by ERK-mediated Drp1 phosphorylation. Thus,
disruption of leukemia cells/stromal interactions and targeting
mitochondrial dynamics may provide a novel strategy that could
be combined with conventional chemotherapeutic agents for
leukemia treatment (284). It was demonstrated that the co-
culture of leukemia cells with mesenchymal stem cells (MSCs)
increased the expression of uncoupling protein 2 (UCP2)
in leukemia cells; uncoupling oxidative phosphorylation and
decreasing ROS production (285, 286). Recent studies have
demonstrated the protective role of mitochondrial metabolism
on cancer cells exposed to chemotherapy cytotoxicity. In
acute myeloid leukemia (AML) adenosine 5′-monophosphate
(AMP)-activated protein kinase (AMPK) signaling promoted
glucose uptake and a shift to glycolysis decreasing intracellular
ROS (287).

Phenformin is a biguanide similar to metformin that targets
complex I of mitochondria. It was identified to be more
potent in decreasing cell growth in non-small cell lung cancer,
but unfortunately drug-resistance emerged (288). It has been
hypothezed that the development of resistance is dependent on
functional LKB1-AMPK signaling, which improves a switch in
their metabolism to bypass inhibitory effects of phenformin.
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Since the serious side effects of the drug, it was withdrawned from
the market. Besides this, new studies on phenformin have been
conducted (288).

PGC-1α is a transcription co-activator that regulates
mitochondria biogenesis and it is involved in energy metabolism.
It has been reported that CDDP treatment increases PGC-1α

levels in a small cell lung carcinoma cell line and PGC-

1α silencing sensitizes cells to this drug (109). Increased
mitochondrial mass confers stem-like properties to breast
cancer cell lines MDA-MB-231 and MCF7 and enables their
resistance to paclitaxel (117). PGC-1α induction may also cause
chemoresistance by activating a metabolic shift to bypass ATP
request, as shown for cells treated with inhibitors of BRAF (289).
This is also confirmed for 5-FU resistance, which increased
PGC-1α expression and so modified cellular cancer metabolism
to modulate the energetic stress induced by treatment (290–292).

Numerous emerging studies demonstrated a correlation
between mitochondrial dynamics and cell survival (293–298).
The co-culture of leukemia cells with MSCs also altered the
mitochondrial dynamics of leukemia cells due to an increase of
the activating phosphorylation of Dynamin-1-like protein (Drp1)
at S616. Drp1 is a GTPase that regulates mitochondrial fission.
Leukemia cells overexpressing wild-type Drp1 or Drp1 S616E
presented fragmented mitochondria, reduced mitochondrial
ROS levels, increased glycolysis, and improved drug resistance
(299–301). Drp1 S616 phosphorylation through the stimulation
of mitochondria fission and glycolysis seemed required to
RAS-induced transformation (302). Moreover, inhibition of
Drp1 activity caused mitochondrial fusion and impeded tumor
growth (303). The cell cycle inhibitor Cytarabine is a normally
chemotherapeutic therapy for leukemias and lymphomas,
with reduced clinical implications due to the development
of resistance (304, 305). Among the probable mechanisms,
Cytarabine treatment improved the increase of a chemoresistant
leukemic stem cell population with high FAO/OxPhos activity.
In light of this, the FAO inhibitor etomoxir blocks oxygen
consumption in acute myeloid leukemia cells and sensitized cells
to cytarabine (306).

Recent evidence suggests that chemoresistant ovarian cancer
has an increase in OxPhos dependence. Improved OxPhos

in ovarian cancer cells increase IL-6 production (307) which
facilitates tumor cell survival and proliferation (308), changing
efficacy to chemotherapy, and reduce progression-free survival of
ovarian cancer patients (309). Ovarian cancer cell migration was
shown to be sustained by pyruvate, involving the mitochondrial
activity during metastasis (310). Other studies have revealed
that some invasive ovarian tumor cells improve the use
of glutamine to fuel the TCA cycle (188). CD44+CD117+
ovarian tumor stem cells derived from epithelial ovarian cancer
patients exhibited both high glucose uptake and a high OxPhos

phenotype, which was correlated with their amplified capacity
to live under a glucose-free context (311). On the other hand,
CD44+MyD88+ cancer stem cells had a mainly glycolytic
phenotype and suggested that therapy with glycolytic inhibitors
could be favorable to increase patient’s survival (312). Mouse
ovarian cancer-initiating cells (putative cancer stem cells) harbor
a highly flexible metabolic phenotype, whereby they could use
either glycolysis or OxPhos under stress (313). It was proposed

that most ovarian tumor cells may use either glycolysis or
OXPHOS and that such plasticity increased their “cellular
fitness” (310, 314, 315). The shift from glycolysis to OxPhos has
also been showed upon MYC/KRAS or MYC/ERBB2 removal
in breast cancer cells (316, 317), and also in glioma cells
because of the acquired resistance to phosphoinositide-3-kinase
(PI3K) (318). Moreover, PI3K resistance in breast cancer cells
is related to the shift from glucose to lactate (34). Inhibitors
of mitochondrial respiration become therapeutic strategies in
ovarian cancer cells because of their dependence on OxPhos.
In fact, cancer-selective inhibition of the electron transport
chain (ETC) could kill ovarian cancer cells directly without
affecting normal cells. The complex I inhibitor BAY 87-2243
has been studied in a Phase 1 study (NCT01297530) but
results were not showed (Clinicaltrials.gov). Several strategies
targeting mitochondria CIII complex, such as the thiol modifier
β-phenylethylisothiocyanates (PEITC), have been developed.
In particular, PEITC can enhance the ROS level, decreasing
OxPhos and, consequently, causing prostate cancer cell death by
apoptosis (319). Moreover, the same compound combined with
metformin demonstrated cytotoxicity in human ovarian cancer
cells (320). Also, treatment with ABT-737, the inhibitor of Bcl-
2 proteins (321) and the FAO inhibitor perhexiline also was
capable of sensitized CDDP-resistant ovarian cancer cells (322)
by modulating mitochondrial metabolism. The main drugs to
target mitochondria or disrupt OxPhos are antibiotic or anti-
parasitic agents. Among these, azithromycin and doxycycline
target mitochondrial protein synthesis, while salinomycin targets
mitochondrial K+/H+ exchange (323). Azithromycin, combined
with CDDP and paclitaxel, is able to reduce side effects and to
enhance patients’ survival (324). Doxycycline is able to inhibit
cellular growth of ovarian cells SKOV3 and SKOV3/DPP and to
sensitize resistant cells to CDDP (325). Salinomycin is another
antibiotic able to inhibit cell growth, especially on cancer cells
compared to normal epithelial cells (326).

Resistance to 5-FU has been associated to aumgmented
mitochondrial mass and activity, increase ETC enzymes
expression and higher level of oxygen consumption (290, 327).
So, due to theirOxPhos-dependency, resistant cells were showed
to be sensitive to Complex I inhibition by metformin (327).
OxPhos involvement to 5-FU resistance was correlated to
the development of stemness-related phenotype, stricly linking
CSCs to mitochondrial metabolism as described previously
(328, 329). According, the activation of mitochondrial FAO

is able to promote stemness in gastric cancer cells and
consequently there is chemoresistance to 5-FU induced by
tumor-associatedmesenchymal stem cells. In fact, treatment with
the FAO inhibitor etomoxir was capable to partially reduce FU
resistance (330).

BRAFV600E is a mutation found in stage IIIc or stage IV
melanoma. Chapman and co-workers demonstrated that its
inhibition with vemurafenib leads to the shift to OxPhos and
the switch is useful to treat resistant melanoma cells (331).
Elesclomol sodium (STA-4783) is a compound targeting ROS

in tumor cells. Its mechanism is strictly related to inhibition of
electron transport flux and so increase ROS generation causing
oxidative stress in both malignant and healthy cells. However,
as cancer cells have already higher ROS production, this drug
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will be capable to cause cytotoxicity selectively in malignant cells,
resulting in activation of apoptosis in melanoma cancer cells
(332). STA-4783 alone and in association with paclitaxel revealed
promising results in phase I/II clinical studies in patients with
refractory solid tumors (333, 334), but unfortunately serious side
effects lead to stop phase III study in melanoma patients (335).

Lee and coworkers demonstrated that an enhanced
mitochondrial oxidative phosphorylation characterizes
irinotecan-resistant NSCLC cells. They tested a combined
treatment between gossypol (a molecule that inhibits aldehyde
dehydrogenase) and phenformin (a molecule that inhibits
mitochondrial complex I), concluding that the combination
leads to sensitization of irinotecan-resistant NSCLC cells (336).
Another drug targeting mitochondria is apogossypol, which
is semisynthetic. It has been demonstrated to be cytotoxic in
murine B cells (337). Metformin, a drug usually used for the
treatment of type 2 diabetes, has demonstrated anti-cancer
properties. In fact, the combined treatment of metformin and
paclitaxel showed anticancer activity in vivo and was able
to arrest the cell cycle in vitro in human breast MCF-7 and
human lung A459 cancer cells (338). PC3 prostate cancer
cells docetaxel-resistant shift their metabolism from glycolysis
toward OXPHOS and this is linked to EMT phenotype. The
combination of chemotherapy and OXPHOS inhibitors limited
docetaxel-associated drug resistance and progression toward
metastasis (120).

In short, targeting glycolysis, PPP, OxPhos, and fatty acid
synthesis and oxidation could enhance chemotherapy and
radiation responsiveness and overcome therapy resistance.
Importantly, therapy-resistant tumors present different
metabolic phenotypes related to non-treated tumors, thus
it’s needed a better understanding of the new dependencies
and vulnerabilities across different chemotherapy treatments in
different tumors to reduce toxicity and to increase the efficacy of
chemotherapeutic drugs.

CONCLUDING REMARKS

Metabolic deregulation is an established hallmark of cancer,
thus the elucidation of novel therapy combinations based on
new tumor-specific metabolic liabilities after chemotherapy will
be essential to the development rational metabolic therapeutic
strategies to overcome drug resistance.
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