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Partner and localizer of BRCA2 (PALB2) is vital for homologous recombination (HR)

repair in response to DNA double-strand breaks (DSBs). PALB2 functions as a tumor

suppressor and participates in the maintenance of genome integrity. In this review, we

summarize the current knowledge of the biological roles of the multifaceted PALB2

protein and of its regulation. Moreover, we describe the link between PALB2 pathogenic

variants (PVs) and breast cancer predisposition, aggressive clinicopathological features,

and adverse clinical prognosis. We also refer to both the opportunities and challenges

that the identification of PALB2 PVs provides in breast cancer genetic counseling and

precision medicine.
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INTRODUCTION

Partner and localizer of BRCA2 (PALB2) is encoded on chromosome 16p12.2 and comprises 1186
residues (1). As a major BRCA2 binding partner, PALB2 licenses the function of BRCA2 and
participates in homologous recombination (HR), a faithful DNA double-strand break (DSB) repair
pathway in mammalian cells (2–4). Numerous studies have demonstrated that biallelic mutations
in PALB2 resulted in a subtype of Fanconi anemia (FA-N), while monoallelic PALB2 mutations
predispose carriers to multiple cancers such as breast, pancreatic, and ovarian cancers (5–8).

Breast cancer is the most frequently diagnosed cancer and the major cause of cancer death
among women worldwide (9). Approximately 10–15% of breast cancer cases are due to familial
and genetic factors, underscoring the great significance of genetic susceptibility in breast cancer
development (10). Previous studies have identified a broad range of breast cancer susceptibility
genes, including BRCA1, BRCA2, and TP53 (11). However, the high-penetrance BRCA1 and
BRCA2 are responsible for only ∼20% of the familial aggregation of breast cancer (12, 13), and
syndromic breast cancer susceptibility genes such as TP53, PTEN, and CDH1 are estimated to
explain just 5% of familial breast cancers (14). Large-scale analyses of multigene panel testing
recently confirmed PALB2 as a high-risk breast cancer susceptibility gene (15), and the odds ratio
(OR) of PALB2 mutations for breast cancer was comparable to that of BRCA2 mutations (16).
Hence, a comprehensive understanding of the biological functions of PALB2 is vital for breast
cancer management and precision medicine.
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STRUCTURES OF PALB2 AND ITS
BIOLOGICAL FUNCTIONS IN HR

PALB2, first described by Xia et al. in 2006 (1), has an important
role in HR. It mainly serves as a bridging molecule that
connects the BRCA complex (BRCA1-PALB2-BRCA2-RAD51)
and facilitates the function of RAD51, a protein vital for strand
invasion during HR (Figure 1). The role of PALB2 in HR
has been shown to involve several protein domains, including
a coiled-coil domain, a WD40 domain, and a chromatin-
association motif (ChAM) (Figure 2).

The coiled-coil domain is located in the N terminus of
PALB2 (residues 9–42) and is responsible for its interaction
with BRCA1 (2–4). The L21A, Y28A, and L35A mutations
in the PALB2 coiled-coil domain disrupt the BRCA1-PALB2
interaction, impairing the function of PALB2 in HR repair and
inducing hypersensitivity to mitomycin C (MMC) treatment
(3). In addition to positively regulating HR, the BRCA1-PALB2
interaction is required for preventing single-strand annealing
(SSA), which is a deletion-causing DSB repair pathway. Using
U2OS/DR-GFP and U2OS/SA-GFP reporter cells, Anantha et al.
demonstrated that depletion of either PALB2 or BRCA2 led to
impaired HR activity and a substantial increase in SSA, whereas
BRCA1 depletion caused a reduction of both HR and SSA activity
(17). These results established that BRCA1 is essential for DSB
repair, while PALB2 serves to direct the DSB repair toward the
HR pathway following resection.

The WD40 domain is located in the PALB2 C-terminus and
in the shape of a WD40-type β-propeller with seven blades
(18). This domain is involved in the interaction with BRCA2,
DNA polymerase η, RAD51, RAD51C, and the ubiquitin ligase
RNF168 (5, 19–21). Even a single nucleotide change within
the WD40 region (e.g., L939W) can disturb the PALB2-BRCA2
interaction and causes HR deficiency (20). The WD40 domain of
PALB2 is also crucial for the interaction with DNA polymerase η,
which is vital for the initiation of HR-mediated DNA synthesis
and D-loop extension (19). Recently, a hidden nuclear export
sequence (NES) was found in the WD40 domain of PALB2. The
breast cancer-associated PALB2 truncating mutation, W1038X,
exposes this NES, resulting in PALB2 translocation to the
cytoplasm and defects in HR (22).

The ChAM is an evolutionarily conserved domain located
in the middle region of PALB2 (23). ChAM-deleted PALB2
has a compromised role in supporting MMC-induced RAD51
focus formation, suggesting that ChAM promotes the function
of PALB2 through chromatin association (23). The ChAM

Abbreviations:ATM, ataxia telangiectasia mutated protein; ATR, ATM and Rad3-

related kinase; CDK, cyclin-dependent kinase; ChAM, chromatin-association

motif; CI, confidence interval; DSBs, DNA double-strand breaks; FA, Fanconi

anemia; FPC, familial pancreatic cancer; H3K36me3, lysine 36-trimethylated

histone H3; HR, homologous recombination; MBC, male breast cancer; MMC,

mitomycin C; MRN, Mre11–RAD50–Nbs1 complex; NES, nuclear export

sequence; OR, odds ratio; PALB2, partner and localizer of BRCA2; PARP,

poly (ADP-ribose) polymerase; PARPi, PARP inhibitor; PV, pathogenic variant;

ROS, reactive oxygen species; RPA, replication protein A; SETD2, SET domain

containing 2; SSA, single-strand annealing; ssDNA, single-stranded DNA; VUSs,

variants of unknown significance.

binds to nucleosomes and participates in the formation of
the PALB2-BRCA2-RAD51 complex on chromatin, which
rapidly transforms into an active BRCA complex following
DSBs (23).

In addition to BRCA complex formation, PALB2 also directly
interacts with RAD51 and enhances its strand invasion activity
(24, 25). In vitro D-loop assays revealed increased product
formation when PALB2 was included in the RAD51 reaction.
Moreover, Buisson et al. also identified two DNA-binding
domains in PALB2 (24) (Figure 2). More recently, Deveryshetty
et al. (26) showed that the main DNA-binding domain (DBD)
of PALB2 is located in its N-terminus (N-DBD, residues 1–200).
Mutation of just four amino acids in the N-DBD significantly
disrupts the HR activity of PALB2. Surprisingly, the authors
discovered that theN-DBDof PALB2 enhances RAD51-mediated
strand exchange and also promotes a similar reaction in the
absence of RAD51. Using strand exchange fluorescent assays,
they further demonstrated that PALB2 N-DBD promotes both
forward and inverse strand exchange using either DNA or RNA
as substrate (26).

These studies uncoveredmultiple effects of PALB2 during HR.
On the one hand, PALB2 serves as the bridging molecule in the
BRCA complex; on the other hand, it potently stimulates strand
invasion in HR.

PALB2: A VERSATILE PLAYER IN
BIOLOGICAL REGULATION

PALB2 and Chromatin Association
Chromatin association is considered indispensable for the
biological function of PALB2. In addition to the ChAM,
MRG15 is another PALB2-interacting factor involved in
PALB2 chromatin association (27) (Figure 3A). In 2009, Sy
et al. unveiled MRG15 and another MORF-related gene
product, MRGX, as PALB2 cooperators through tandem affinity
purification and mass spectrometry analysis (28). MRG15
belongs to the highly conserved MRG protein family (29) and
has two functional domains: one is an MRG domain that
binds to PALB2 as well as multiple transcriptional regulators
(28, 30), the other is N-terminal chromodomain that binds
lysine 36-trimethylated histone H3 (H3K36me3) (31), which is
mediated by lysine methyltransferase SET domain containing
2 (SETD2) (32). The MRG15-binding region was roughly
mapped to the middle region of PALB2 (residues 611–764) and
exactly matched two highly conserved regions named MBD-
I (residues 611–629) and MBD-II (residues 724–737) (33). Sy
et al. found that reconstitution of MRG15-binding domain
deleted PALB2 could restore RAD51 foci formation and cell
survival after MMC treatment in EUFA1341F PALB2-deficient
cells (28). Strikingly, a concurrent study reached a contradictory
conclusion, whereby siRNA-mediated MRG15 depletion in
cells compromised HR repair efficiency and sensitization to
MMC (34). Furthermore, MRG15 knockout murine embryonic
fibroblasts exhibited moderate sensitivity to γ-irradiation and
decreased capacity for RAD51 nuclear foci formation (35).
Considering the studies above, we could propose that the
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FIGURE 1 | The role of PALB2 in homologous recombination (HR). In response to DNA double-strand breaks (DSBs) induced by genotoxic agents in the S/G2 phase,

the Mre11–RAD50–Nbs1 (MRN) complex is recruited to DSBs and promotes ATM recruitment. The inactive ATM dimer then dissociates into active monomers through

autophosphorylation at serine 1981. Active ATM monomers phosphorylate H2AX in regions of DSBs and create a platform to recruit BRCA1, which facilitates a shift

(Continued)
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FIGURE 1 | from non-homologous end-joining to HR. Meanwhile, CtBP-interacting protein (CtIP), in conjunction with the MRN complex, catalyzes 5′-3′ resection at

DSBs to generate single-stranded DNA (ssDNA), and further resection is completed by Exo1 exonuclease and Dna2 nuclease/helicase in cooperation with BLM

helicase. The resulting ssDNA is then covered by replication protein A (RPA). PALB2 is phosphorylated on S59 by ATR/Chk1, which accelerates its recruitment to sites

of damage. Thereafter, BRCA2 is recruited by PALB2. PALB2 and BRCA2 further promote RPA removal and RAD51 loading. The resulting RAD51-ssDNA filament

invades the intact sister chromatid and extends the strand with the help of DNA polymerase δ/η/κ. Finally, further restoration and ligation of double strands are

carried out.

FIGURE 2 | Schematic representation of the PALB2 protein and the position of functionally validated PALB2 pathogenic missense variants. The structural motifs and

functional domains of PALB2. C.C.: coiled-coil motif (9–42); ETGE motif (88–94); ChAM: chromatin-association motif (395–446); WD40: WD40-repeats (853–1186);

NES: nuclear export sequence (928–945). The validated pathogenic missense variants are marked on top. The only recognized PALB2 pathogenic missense variant

(p.L35P) validated by systematic in vitro functional assays is highlighted in red.

MRG15-PALB2 interaction is involved in HR repair, but may not
be critical for this process.

Intriguingly, a genome-wide analysis evaluating PALB2
chromatin residence revealed a tight relationship between
PALB2 chromatin residence and transcriptionally active genes
(36). This result confirmed that MRG15-PALB2 interaction
is associated with unperturbed chromatin. In 2017, Bleuyard
et al. hypothesized the innovative concept that the MRG15-
PALB2 interaction within undamaged chromatin maintains
chromatin stability during DNA replication (33) (Figure 3A).
This idea was supported by genome-wide PALB2 chromatin
immunoprecipitation-sequencing analysis, which indicated
gathering of PALB2 at H3K36me3-modified genes through
the SETD2/H3K36me3/MRG15 axis. Moreover, expression
of MRG15 binding-defective PALB2 leads to compromised
proliferation, DNA stress, and genome instability when
compared with wild-type PALB2 expression in EUFA1341

cells (33). These findings indicate that the MRG15-PALB2
complex may be a genomic stabilizer within active genes,

which renders PALB2 immediately available following DNA
damage and guarantees a rapid response to replication
stress, thereby maintaining genome stability. In addition
to MRG15-PALB2 interaction, PALB2 is also recruited by
phosphorylated replication protein A (RPA) during replication
stress. Murphy et al. revealed that phosphorylation of RPA
during replication stress stimulates the recruitment of
PALB2 and increases the stability of PALB2 chromatin
binding, making PALB2 available to alleviate replication
stress and facilitating the recovery of stalled replication
forks (37).

PALB2 and Oxidative Stress
KEAP1, an oxidative stress mediator that negatively regulates
the function of the antioxidant transcription factor NRF2,
was revealed to bind PALB2 by coimmunoprecipitation (38).
Surprisingly, a highly conserved 7-aa motif (LDEETGE) within
the KEAP1 binding domain of PALB2 (residues 76–100) was
identical to the ETGE motif of NRF2 that binds KEAP1,
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FIGURE 3 | The multifaceted functions of PALB2 and its regulation. (A) PALB2 is recruited through the SETD2/H3K36me3/MRG15 axis and protects transcriptionally

active genes from replication stress. (B) PALB2 promotes NRF2 function during oxidative stress by competitively binding KEAP1. (C) Following ionizing radiation (IR),

the switch from PALB2 oligomerization to BRCA1-PALB2 interaction is regulated by S988 phosphorylated BRCA1. (D) Phosphorylation events in PALB2 regulation. In

the resection phase, high CDKs induce PALB2 phosphorylation at S64, inhibiting its interaction with BRCA1, whereas in post-resection phase, ATR-induced PALB2

phosphorylation at S59 promotes BRCA1-PALB2 binding and enhances HR activity. (E) In the G1 phase of the cell cycle, PALB2 is ubiquitylated by the CUL3–KEAP1

complex, which disrupts BRCA1-PALB2 interaction, whereas in the G2 phase, PALB2 ubiquitylation is neutralized by USP11. (F) RNF168 mediates PALB2

recruitment and RAD51 loading in BRCA1-deficient cells.

implying that PALB2 may promote the role of NRF2 by
competitively binding KEAP1 (Figure 3B). This was supported
by increased levels of reactive oxygen species (ROS) and
reduced expression of NRF2-regulated genes after PALB2

depletion. Thus, this study unveiled a unique function of
PALB2 during oxidative stress and provided a possible link
between the oxidative stress response and PALB2-associated
cancer formation.
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PALB2 and Cell-Cycle Checkpoint Control
Cell-cycle checkpoints are essential for DNA damage repair
following genotoxic exposure because of their role in
constraining cell-cycle progression and providing time for
accurate DSB repair by HR, thereby guaranteeing genome
stability (39). Menzel et al. performed a high-throughput
siRNA screen to explore potential G2 checkpoint modulators,
and identified PALB2 as a main G2 checkpoint maintainer
(40). Depletion of PALB2 led to G2 checkpoint dysregulation
and premature checkpoint recovery. In the same study, the
role of PALB2 in the maintenance of the G2 checkpoint was
seemly independent of the HR pathway, as RAD51 depletion
did not compromise G2 checkpoint control. More recently,
Simhadri et al. proposed a novel model in which PALB2
serves as a nexus that connects BRCA1 and BRCA2 in G2/M
checkpoint control (41). Consistent with this view, disturbing
the interactions of BRCA1-PALB2 or BRCA2-PALB2, using
the L35P or A1025R mutant of PALB2, respectively, severely
impaired the checkpoint response. Notably, BRCA1-PALB2
interaction seems to be critical for checkpoint initiation, whereas
BRCA2-PALB2 interaction plays a more significant role in
checkpoint maintenance. Although these studies have unveiled
the role of PALB2 in checkpoint control, it remains unclear how
exactly PALB2 participates in the pathway.

REGULATION OF PALB2

The biological functions of PALB2 are strictly regulated.
To date, many mechanisms of its regulation have been
elucidated, including PALB2 oligomerization, phosphorylation,
ubiquitylation, and interaction with RNF168.

PALB2 Oligomerization
PALB2 oligomerization negatively regulates HR through its
coiled-coil domain (42, 43) (Figure 3C). Overexpression of
the PALB2 coiled-coil domain markedly impairs RAD51
filament formation, suggestive of competition between PALB2
oligomerization and BRCA1-PALB2 interaction. Meanwhile,
immunoprecipitation analyses showed that the presence of
BRCA1 completely abrogated PALB2 self-interaction, indicating
that PALB2 self-interaction can be inhibited by its interaction
with BRCA1 (43). As the Chk2-induced BRCA1 phosphorylation
of S988 is important for HR activity (44), Buisson et al. proposed
that BRCA1 phosphorylation may lead to a molecular switch
from PALB2 homodimerization to BRCA1-PALB2 interaction,
thereby promoting HR (43) (Figure 3C). Song et al. recently
reported that PALB2 homodimerization is mediated by an
antiparallel coiled-coil leucine zipper (45). Mutation of residue
Leu24, a key stabilizer at the dimer interface, greatly reduces
PALB2 homodimer stability and results in genomic instability
in mutated cells, suggesting an important role of PALB2
oligomerization in HR regulation.

PALB2 Phosphorylation
PALB2 phosphorylation is also critical for its modulation. Three
N-terminal S/Q sites of PALB2 (S59, S157, and S376) were
found to be phosphorylated following ionizing radiation, and the

phosphorylation events were mediated by ataxia telangiectasia
mutated protein (ATM) and ATM and Rad3-related kinase
(ATR) (46, 47). Phosphorylation-deficient PALB2 failed to
promote RAD51 foci formation, leading to impaired HR and
genome instability, highlighting the role of phosphorylation
in PALB2 regulation (47). Strikingly, Buisson et al. (48)
demonstrated a phosphorylation conversion at S59 and S64 on
PALB2 during the phosphorylation process (Figure 3D). In this
model, PALB2 is first phosphorylated at S64, a cyclin-dependent
kinase (CDK) site, and high CDK activity actuates DNA end
resection and ATR activation. Activated ATR then induces
S59 phosphorylation and suppresses CDK activity, followed by
hypo-phosphorylation of S64 and a strengthened BRCA1-PALB2
interaction (48). This CDK-ATR switch is crucial for attaining
optimal levels of PALB2 at DSBs.

PALB2 Ubiquitylation
Ubiquitylation has also been reported to regulate PALB2
function via cell-cycle control (Figure 3E). In the G1 phase,
the CUL3–KEAP1 complex ubiquitylates PALB2 on its N
terminus, which is the BRCA1-binding region, to suppress
BRCA1-PALB2 interaction, ultimately inhibiting HR. As cells
enter the S/G2 phase, PALB2 ubiquitylation is neutralized by
USP11, a deubiquitylase that is antagonized by CRL4 in the
G1 phase. Restoration of BRCA1-PALB2 interaction facilitates
BRCA complex formation and induces HR repair (49).

PALB2 and RNF168
The E3 ubiquitin ligase RNF168 was recently found to promote
PALB2 accumulation in the S/G2 phase and facilitate DNA
repair. It was supported by the restoration of PALB2 foci in
endogenous RNF168-depleted S/G2 cells after re-expression of
RNF168. The intrinsic mechanism is a physical interaction
between the WD40 domain of PALB2 and the newly uncovered
PALB2-interacting domain of RNF168 (21). Recently, Zong et al.
revealed that RNF168-driven PALB2 recruitment, a BRCA1-
independent pathway, serves as a backup tomaintain DNA repair
by HR (50) (Figure 3F). In this model, PALB2 recruitment is
mainly orchestrated by BRCA1 in BRCA1-proficient cells, and an
RNF168-driven pattern is applied as an auxiliary. Nevertheless,
in BRCA1 mutated cells, RNF168-mediated PALB2 recruitment
plays a vital alternative role for RAD51 loading and genome
stability. Considering the unambiguous association between
RNF168 and PALB2, inhibiting RNF168 signaling in BRCA1-
insufficient cancers may be an effective therapeutic strategy (51).

PALB2 AND DISEASES

PALB2 and Fanconi Anemia
Fanconi anemia (FA) is a rare human genetic instability
syndrome associated with diverse developmental defects, early-
onset bone marrow failure, and cancer predisposition, mainly
to acute myeloid leukemia and head and neck squamous cell
carcinoma. Cells derived from FA patients are hypersensitive
to DNA crosslinking agents such as MMC and cisplatin, and
this hallmark is commonly used for the clinical diagnosis of
FA (52). To date, 22 FA-related proteins have been identified
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in the FA-BRCA pathway for DNA interstrand cross-link repair
(53–55), and PALB2 serves as a mediator in the BRCA pathway
(56). In 2007, Xia et al. (5) reported a new subtype of Fanconi
anemia (FA-N) resulted from biallelic mutations in PALB2 (also
known as FANCN). A PALB2-deficient Fanconi anemia cell line
showed impaired RAD51 foci formation and hypersensitivity to
MMC treatment (5). Notably, FA-N patients are at a high risk of
developing embryonal cancer, similar to that seen in patients with
biallelic BRCA2 mutations, but differing from that observed for
patients of other FA subtypes (57). These findings emphasize the
important role of PALB2 in maintaining genomic stability and
tumor suppression.

PALB2 and Breast Cancer
PALB2 is tightly correlated with breast cancer and has been
associated with breast cancer predisposition, clinicopathological
features, and prognosis.

In 2007, Rahman et al. (6) provided a profile of PALB2
mutations in breast cancer predisposition. The authors
determined the frequency of PALB2 monoallelic truncating
variants in a familial breast cancer cohort negative for BRCA
mutations (10/923, 1.1%), which was far more common than
in controls (0/1,084, 0%; p = 0.0004). They also revealed that
individuals with monoallelic PALB2-mutations had a 2.3-fold
increased risk of breast cancer compared with controls (95%
confidence interval [CI], 1.4–3.9; p = 0.0025) (6), hinting that
monoallelic PALB2mutations may have a more moderate role in
breast cancer predisposition than monoallelic BRCA2 variants
(58, 59). At the same time, research in Finland identified a
recurrent mutation, c.1592delT, in 1% of unselected breast
cancer patients (60). This frameshift mutation resulted in a
40% cumulative risk of developing breast cancer by age 70
(95% CI, 17–77) (61), similar to that for BRCA2 mutation
carriers (∼45%; 95% CI, 31–56) (62), implying a striking role
of PALB2 in predisposition to breast cancer. Subsequently,
multiple population-based screenings of PALB2-truncating
mutations reported 2–30-fold increases in breast cancer risk
for PALB2-truncating mutations carriers (6, 63–67). In 2014,
Antoniou et al. (64) estimated the age-specific relative risk for
PALB2 mutation carriers, which was highest among women
before age 40 years (relative risk, 8–9) then gradually declined
with age, with the lowest risk after the age of 60 years (relative
risk, ∼5). Meanwhile, female PALB2 mutation carriers showed
an estimated cumulative breast cancer risk of 35% (95% CI,
26–46) by age 70 (64). A recent international study from 21
countries that comprised 524 families with PALB2 pathogenic
variants (PVs) revealed that the estimated relative risk associated
with PALB2 PVs for breast cancer in females was 7.18 (95% CI,
5.82–8.85; p = 6.5 × 10−76). The authors also showed that the
estimated relative risk for female breast cancer declined with age,
varying from 13.1 at young ages to 4.69 for older ages, and the
estimated female breast cancer risk was 53% (95% CI, 44–63) to
age 80 years (68).

Male breast cancer (MBC) is a rare disease that accounts for
<1% of all breast cancer cases (69). However, ∼20% of MBC
patients have a family history of breast cancer (70), highlighting
a strong correlation between genetic susceptibility genes and

MBC. Two high-penetrance breast cancer genes, BRCA1 and
BRCA2, are thought to be responsible for only 13% of MBC
(71), and multiple genetic factors remain unknown. To date,
many PVs of PALB2 have been reported in MBC patients (72–
76). In 2017, Pritzlaff et al. uncovered that PALB2 variants
significantly increased the risk of MBC (OR, 6.6; p = 0.01) (77).
This viewpoint was further supported by an Italian population-
based multicenter study in 2019 (78). Rizzolo et al. found that
PALB2was themost frequently mutated gene (1.2%) among non-
BRCA1/2 altered MBC patients, and deleterious PALB2 variants
conferred a 9.63- to 17.30-fold increased risk of MBC (78). More
recently, Yang et al. further showed an estimated MBC relative
risk of 7.34 (95% CI, 1.28–42.18; p = 0.026) for PALB2 PVs
carriers by analyzing data from 524 families with PALB2 PVs
from 21 countries (68).

Several studies have also found that PALB2-mutated breast
cancer is associated with aggressive clinicopathological features.
In 2009, Heikkinen et al. reported that breast cancer patients
harboring the PALB2 c.1592delT mutation were more likely
to present the triple-negative phenotype (54.5%, p < 0.0001),
characterized by the absent expression of estrogen receptor,
progesterone receptor, and human epidermal growth factor
receptor 2 (79), than other familial (12.2%) or sporadic (9.4%)
breast cancer patients (80). This finding was further supported by
other population-based screening studies (10, 81–84). Heikkinen
et al. also showed that PALB2-mutated breast cancer patients
were more likely to present at an advanced disease stage (p =

0.0027 and p= 0.0017, respectively) and have a higher Ki67 level
(p = 0.0004 and p = 0.0490, respectively) compared with other
familial or sporadic patients (80).

In 2015, Cybulski et al. first evaluated the prognostic
effects of two PALB2 deleterious mutations (509_510delGA and
172_175delTTGT) in Poland (83). In this study, the 10-year
survival rate for female breast cancer patients with a PALB2
mutation was 48.0% (95% CI, 36.5–63.2), significantly lower
than that for PALB2 mutation-negative female breast cancer
patients (74.7%; 95% CI, 73.5–75.8). The 10-year adjusted hazard
ratio for all-cause mortality was 2.27 (95% CI, 1.64–3.15; p <

0.0001), indicating an adverse prognostic effect of PALB2 in
breast cancer (83). More recently, a population-based screening
of breast cancer susceptibility genes in China further confirmed
the prognostic value of PALB2 in breast cancer; patients with
a PALB2 mutation presented shorter overall survival compared
with noncarriers (adjusted hazard ratio, 8.38; 95% CI, 2.19–32.11;
p= 0.002) (85).

PALB2 and Other Cancers
In addition to breast cancer, PALB2 has also been identified
as a susceptibility gene for pancreatic cancer. Jones et al.
(86) first discovered a germline PALB2-truncating mutation
(c.172_175delTTGT) in a familial pancreatic cancer (FPC)
patient, and three PALB2-truncating mutations were further
identified in 96 additional FPC patients (3.1%). In contrast,
no PALB2-truncating mutation was found in 1,084 normal
individuals (86). Subsequent studies also revealed the prevalence
of PALB2 deleterious mutations in patients with FPC (∼3–4%)
(87, 88), validating the role of PALB2 mutations in pancreatic
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cancer predisposition. To date, several studies have indicated
that PALB2 mutations are associated with ovarian cancer (8, 89,
90). Although the mutation frequency was low, Norquist et al.
demonstrated that PALB2 mutation carriers had a significantly
higher risk of ovarian cancer compared with the NHLBI Exome
Sequencing Project (OR, 10.2; 95% CI, 2.2–47.0; p < 0.001) or
the Exome Aggregation Consortium database (OR, 4.4; 95% CI,
2.1–9.1; p < 0.001) (8). Pathogenic PALB2 mutations have also
been identified in patients with other cancers, such as gastric
and prostate cancer; however, whether these mutations confer
an increased cancer risk for these cancer types requires further
research (91–94).

PALB2 AND PRECISION MEDICINE

Excluding BRCA1/2, PVs in PALB2 contribute most significantly
to the mutation detection rate in multigene testing panels for
hereditary breast cancer (95). Thus, germline PALB2 status is
crucial for breast cancer risk assessment in individuals with
an apparent family history of breast cancer. To date, several
ethnic-specific PALB2 recurrent mutations have been reported,
and related cancer predisposition risks have been established in
distinct territories (60, 63, 82, 83, 96, 97) (Table 1). In these
regions, genotyping for specific PALB2 PVs can be applied as a
cost-effective tactic in high-risk individuals. For most high-risk
people who are not in these specific regions, multigene panel
testing that includes PALB2 is an advisable choice for genetic
counseling (98–100). According to National Comprehensive
Cancer Network (NCCN) guidelines, annual mammogram with
consideration of tomosynthesis and breast magnetic resonance
imaging with contrast are recommended for people with PALB2
PVs/likely PVs from the age of 30 to detect cancer at an early
stage (101).

Poly (ADP-ribose) polymerases (PARPs) act as DNA damage
sensors and regulators and play important roles in the repair
of single-stranded DNA breaks through the base-excision repair
pathway (102). PARP inhibitor (PARPi) treatment prevents the
repair of single-stranded DNA breaks and leads to DSBs in
cells. BRCA1/2-deficient cells are unable to repair DSBs via
the HR pathway, resulting in cell death (103). Consequently,
PARP inhibition is considered a promising strategy for the
treatment of BRCA1/2-deficient tumors through synthetic
lethality. More recently, the PARPi olaparib and talazoparib
have been approved for germline BRCA-mutated (gBRCAm)
HER2-negative metastatic breast cancer in clinic (104). Similar
to BRCA1/2, PALB2 is an essential component in HR-based
DNA repair, and PALB2 loss of function was shown to be
synthetic lethal in combination with PARPi (105). Recently,
PARPi sensitivity of PALB2 missense variants has been partially
elucidated in vitro. Foo et al. identified a PARPi-hypersensitive
PALB2 variant (p.L35P) using EUFA1341 cells, an FA-N patient-
derived skin fibroblast cell line with biallelic mutations in PALB2
(106). In 2019, Rodrigue et al. (107) utilized siRNA-mediated
RNA interference to generate PALB2-depleted HeLa cells, and
exogenous siRNA-resistant PALB2 variants were complemented
before PARPi sensitivity assay. Cells expressing the PALB2 T
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variants p.T1030I or p.W1140G showed significantly higher
olaparib sensitivity than those expressing wild-type PALB2 (107).
A concurrent study conducted by Wiltshire et al. revealed
four new PARPi-hypersensitive variants in PALB2 (p.L24S,
p.I944N, p.A1025R, and p.L1070P) using PALB2-deficient B400
mouse mammary tumor cells (108). Boonen et al. (109)
developed a cDNA-based system for the functional analysis of
PALB2 variants. By evaluating the ability of PALB2 variants to
rescue PARPi sensitivity in PALB2 knockout mouse embryonic
stem cells, they identified twelve PALB2 variants (p.Y28C,
p.L35P, p.W912G, p.G937R, p.I944N, p.L947S, p.L961P, p.L972Q,
p.A1025R, p.T1030I, p.G1043D, and p.L1172P) that showed
hypersensitivity to PARPi (109).

In spite of the lack of clinical evidence for PARPi treatment
efficacy in PALB2-deficient breast cancer patients, the response
of some other PALB2-deficient solid tumors to PARPi in
clinical/preclinical studies have been remarkable. A preclinical
study of BMN673 (talazoparib) for the panel of the Pediatric
Preclinical Testing Program showed that a maintained complete
response was observed in vivo in aWilms tumor xenograft model,
characterized by a truncating mutation in PALB2 (p.Y1108fs)
(110). de Bono et al. (111) conducted a phase I trial of the
PARPi talazoparib in patients with advanced solid tumors, and
reported an objective response rate of 20% in 10 pancreatic
cancer patients treated with 1.0 mg/day talazoparib. Of the
two patients who showed a partial response, one harbored a
mutation in BRCA2, and the other harbored a mutation in
PALB2 (111). These results suggest that PARPi exerts a synthetic
lethal effect in PALB2-deficient tumors. Several clinical trials of
PARPi are currently in progress for breast cancer with mutations
in DNA repair genes, including PALB2. A phase II trial is
underway for the evaluation of PARPi olaparib monotherapy
in the treatment of metastatic breast cancer patients harboring
germline/somatic mutations in non-BRCA1/BRCA2 DNA repair
genes (NCT03344965). A different phase II clinical trial of the
PARPi talazoparib is being performed for non-BRCA1/BRCA2-
mutated patients with advanced triple-negative breast cancer
and HR deficiency or advanced HER2-negative solid tumors
harboring a germline/somatic mutation in a HR pathway gene,
such as PALB2 (NCT02401347). The outcomes of these trials are
expected to expand the potential applications for PARPi therapy.

Overall, these data indicate that PALB2 status should
be assessed and included in genetic counseling and patient
treatment regimens for best clinical outcome.

THE CHALLENGES OF PALB2 RESEARCH
IN CLINICAL APPLICATION

Population-based screening has identified numerous PALB2
variants, and the frequency-penetrance profiles of some
ethnic-specific PALB2 PVs have been described. At least 604
distinct variants in PALB2 have been discovered according
to an established database (https://databases.lovd.nl/shared/
variants/PALB2/unique); however, only ∼140 of the variants
are thought to be pathogenic, whereas more than 400 are
missense variants of unknown significance (VUSs). The lack of

verification toward these VUSs challenges genetic counseling
(27). Here, we summarize the breast cancer-associated missense
variants of PALB2 that have been functionally verified (Figure 2).
Pathogenic PALB2missense variants are mainly located in the N-
and C-terminus. In the PALB2 N-terminus, p.L35P (c.104T>C)
disrupts BRCA1-PALB2 interaction and abolishes the HR activity
of PALB2, resulting in sensitivity to the PARPi (106). Moreover,
p.P8L (c.23C>T), p.K18R (c.53A>G), p.L24S (c.71T>C),
p.Y28C (c.83A>G), and p.R37H (c.110G>A) compromise
HR activity of PALB2 and are suggested to be pathogenic
(106–108). In the PALB2 C-terminus, p.W912G, p.G937R,
p.L939W, p.I944N (c.2831T>A), p.L947F (c.2841G>T),
p.L947S (c.2840T>C), p.L961P, p.L972Q, p.A1025R, p.T1030I
(c.3089C>T), p.I1037T, p.G1043D, p.L1070P (c.3209T>C),
p.P1088S (c.3262C>T), p.W1140G (c.3418T>C), p.L1143P,
and p.L1172P promoted a decrease in the HR activity of
PALB2 (20, 107–109, 112). Among these mutations, p.L939W,
p.A1025R, p.T1030I, p.P1088S, and p.L1143P disrupt BRCA2-
PALB2 interaction; p.W912G, p.G937R, p.I944N, p.L961P,
p.L972Q, p.T1030I, p.I1037T, p.G1043D, and p.L1172P are
associated with PALB2 protein instability; and p.I944N, p.L947F,
p.L947S, p.T1030I, p.L1070P, and p.W1140G result in the
mislocalization of PALB2 to the cytoplasm. However, p.L35P
remains the only recognized PALB2 pathogenic missense variant
validated by systematic in vitro functional assays. Further
functional analysis and people-based screening data are needed
to properly evaluate the pathogenicity of PALB2 VUSs.

CONCLUSIONS AND PERSPECTIVES

To date, the specific structures, multifaceted functions, and
complex regulatory networks of PALB2 have been elaborated by
multiple studies. PALB2 is a crucial regulator in maintaining
genome integrity, while its dysfunction leads to breast cancer
predisposition. The clinical relevance of PALB2 has been
partially described, and PALB2 is reported to be a high-
risk breast cancer susceptibility gene comparable to BRCA2
(16). With the identification of deleterious PALB2 recurrent
mutations and PARPi, individualized risk assessment and
precision medicine for PALB2mutation-associated breast cancer
become possible. Nevertheless, caution is warranted before
promoting specific treatments, such as preventive surgery, as
the existing experimental and clinical data are not sufficient.
Moreover, plenty of PALB2 VUSs emerged in large-scale PALB2
screenings; however, their pathogenicity remains undefined,
thereby precluding their clinical application. Altogether, to
deliver individualized precision medicine, further long-term,
population-based PALB2 mutation studies combined with
systematic functional verification are required.
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