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Early ducts of breast tumors are unequivocally acidic. High rates of glycolysis

combined with poor perfusion lead to a congestion of acidic metabolites in the

tumor microenvironment, and pre-malignant cells must adapt to this acidosis to thrive.

Adaptation to acidosis selects cancer cells that can thrive in harsh conditions and are

capable of outgrowing the normal or non-adapted neighbors. This selection is usually

accompanied by phenotypic change. Epithelial mesenchymal transition (EMT) is one of

the most important switches correlated to malignant tumor cell phenotype and has been

shown to be induced by tumor acidosis. New evidence shows that the EMT switch is not

a binary system and occurs on a spectrum of transition states. During confirmation of the

EMT phenotype, our results demonstrated a partial EMT phenotype in our acid-adapted

cell population. Using RNA sequencing and network analysis we found 10 dysregulated

network motifs in acid-adapted breast cancer cells playing a role in EMT. Our further

integrative analysis of RNA sequencing and SILAC proteomics resulted in recognition

of S100B and S100A6 proteins at both the RNA and protein level. Higher expression of

S100B and S100A6 was validated in vitro by Immunocytochemistry. We further validated

our finding both in vitro and in patients’ samples by IHC analysis of Tissue Microarray

(TMA). Correlation analysis of S100A6 and LAMP2b as marker of acidosis in each patient

from Moffitt TMA approved the acid related role of S100A6 in breast cancer patients.

Also, DCIS patients with higher expression of S100A6 showed lower survival compared

to lower expression. We propose essential roles of acid adaptation in cancer cells EMT

process through S100 proteins such as S100A6 that can be used as therapeutic strategy

targeting both acid-adapted and malignant phenotypes.
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INTRODUCTION

The principle driver of evolutionary processes is the concept of
survival of the fittest. Those given populations that are the most
well adapted to survive in an environment are the ones that will
persist. In higher order organisms, the surviving populations are
those that have a set of static traits that make them successful
in a given environment. At a cellular selection level, organisms
have the ability to acclimate to a given environment and alter
their phenotype to be more successful in surviving. This ability
to alter phenotype in order to acclimate to a given environment
is particularly important in the context of cancer cell survival.
In order for a cancerous cell population to persist, it must be
able to adapt and evolve to maintain its’ fitness within a given
tumoral environment (1–3). Those cellular populations with the
ability to more rapidly and efficiently adapt to the environment
will have an advantage over the other cell populations when
facing the challenges of a new or changing environment (4).
Epithelial to mesenchymal transition (EMT) is one of the
phenotypic switches that promote cancer progression, invasion
and metastasis. EMT tests a cancer cells ability to efficiently
change cellular states in response to changing conditions, also
denoted as cellular plasticity, which also often referred to in the
cancer stem cell model (5, 6). Although denoted as a transition,
It has been recently observed that the EMT process is non-
binary and occurs on a spectrum of transition states that can
have the characteristics of both epithelial and mesenchymal
phenotypes (7, 8). The transition to one of the intermediate
states between epithelial and mesenchymal phenotype has been
denoted partial EMT (pEMT), with cells expressing both markers
of epithelial and mesenchymal cell status. pEMT states compared
to complete EMT carry different migratory patterns during
cancer metastasis (9, 10), and demonstrate the elevated plasticity
of their epithelial progenitors (8). Another cause of EMT can
be functional heterogeneity of cancer cells that is the result
of genetic and epigenetic makeup as well as their interactions
with the microenvironment. It has been recently shown that
phenotypic heterogeneity is a dynamic reversible state of highly
plastic cancer cells and their response to microenvironmental
changes in GBM (11). Lately, there have been proposals for a
strong connection between tumor plasticity and recreating intra-
tumoral phenotypic heterogeneity (12) and also emphasizing
the role of microenvironment in shaping spatial and temporal
heterogeneity (13). It looks like the relationship between tumor
cell plasticity, and intra-tumoral heterogeneity with emerging
new phenotypes such as EMT or pEMT in everchanging cancer
microenvironments is getting more attention and will be new
area of research. It has been shown that growth factors, such
as epidermal growth factor (EGF), transforming growth factor-
β (TGF-β), and basic fibroblast growth factor (bFGF/FGF2) are
also able to induce EMT (14, 15). It has also recently reported
that tumor microenvironment conditions such as hypoxia and
acidosis can induce EMT (16, 17).

Adenocarcinomas initiate and evolve within the hostile
microenvironment of avascular ducts, which are characterized
by acidosis, hypoxia, reactive oxygen species (ROS), and nutrient
deprivation (18, 19). In particular, the acidic microenvironment

of tumors strongly influences cancer progression and evolution.
We have proposed that chronic acidosis induces genomic
instability and selects for emergence of aggressive clones, leading
to genomic diversity and increased tumor heterogeneity (20–24),
a proximal cause of malignancy and resistance (25). Specifically,
the acidified habitat imparts a Darwinian selection pressure that
favors cells that adapt mechanisms to resist acid-mediated cell
death. Further, the acidic microenvironment is also manifested
in locally invasive cancers where it confers cancer cells a
selective advantage over the stromal cells, leading them to invade
to surrounding stroma. Indeed, an acidic microenvironment
stimulates invasion andmetastasis and also promotes remodeling
of the extracellular matrix (ECM) (26–30). Further, acidosis
promotes angiogenesis via the release of VEGF (31) and impairs
immune surveillance (32, 33). Acid adaptation also pushes cancer
cells toward a more aggressive phenotype through lysosomal
redistribution (34) and plays a major role in subpopulation
formation and evolution of solid tumors.

Integrative analysis has received a lot of attention lately
in biology and cancer biology specifically, due to its nature
of inter-validating data in different levels of biology such
as genome, transcriptome, proteome, and metabolome (35).
Different data integration approaches can help to combine
various high throughput omics data to construct an integrative
regulatory network. These networks can help to understand
the molecular basis of carcinogenesis and provide a powerful
framework for exploring new cancer biomarkers (36, 37).
With the advancements in network inference and construction
methods, network analysis, and interpretation approaches it
is feasible now to explore authentic and accurate molecular
signatures. Another advantage of such analysis is discovery of
groups of co-regulated molecules as a sub-network biomarker for
treatment, diagnosis or prognosis applications.

Expression profiling is a major key to unraveling gene
expression patterns and the transcriptome. RNA sequencing is
a next-generation sequencing (NGS) technology that sequences
cDNA in order to provide accurate measurement of transcripts
levels to define biological networks (38). Networks are the
language of complex systems like biological systems. Biological
networks are used widely to model biological interactions at the
molecular level to understand biological processes particularly in
the case of cancer (39). To assess biological networks different
techniques have been developed; centrality analysis is one of
them (40, 41). Centrality analysis ranks the nodes (genes in gene
regulatory networks) based on their significance. In centrality
analysis, adding topological parameters to biological data leads
to sufficiently informative results that have been shown to
be effective in exploring key signature molecules in biological
processes (42). Such biological network analysis has been used
in cancer biomarker discovery (43).

Here in, we studied the effect of acid adaptation on early
stage breast cancer evolution using the MCF7 cancer cell line.
We studied EMT phenotypic switches as regulators of acid
adaptation using RNA sequencing data and gene regulatory
network analysis and by integrating the results to SILAC
proteomics data. For that reason, we compared acid-adapted
MCF7 breast cancer cell line RNA profile to parental MCF7
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cells. The differentially expressed genes in the acid-adapted cells
were used to construct a gene regulatory network. This network
was implemented to explore sub-network biomarkers related to
EMT by a set of robust criteria. We then compared our findings
with the SILAC proteomics results and found S100 family
proteins such as S100A6 and S100B are abundant in both sets
of omics data. We validated both S100B from RNA sequencing
and S100A6 from proteomics data, by Immunocytochemistry
(ICC). We further our validation using IHC of breast cancer
patient TMAs with 160 biopsy cores. S100A6 expression was
compared to LAMP2b as a biomarker of acidosis in solid
tumors, and each core’s LAMP2b expression was co-registered
with S100A6 expression using Definiens tissue studio software
analysis. The TMA co-registration analysis showed correlation
of S100A6 with LAMP2b expression the most in early breast
cancer stage, ductal carcinoma in situ, DCIS. Survival analysis of
patients with different expression of S100A6 revealed correlation
of high S100A6 expression with worse outcome in survival
of breast cancer patients. When taken in total, we conclude
that amongst many paths of EMT, S100 proteins play critical
roles in acid-induced EMT that can be responsible for cancer
progression and survival of cancer cells in their continuously
changing microenvironments.

MATERIALS AND METHODS

Cell Culture and Acid Adaptation in vitro
MCF7 cells were acquired from American Type Culture
Collection (ATCC, Manassas, VA, 2007–2010) and were grown
in DMEM-F12 (Life Technologies) with 10% fetal bovine serum
(HyClone Laboratories) and 1% peniciline/stroptomycine added.
Growth medium was buffered with 25 mmol l−1 each of PIPES
and HEPES and the pH adjusted to 7.4 or 6.5. Cells were tested
for mycoplasma contamination and authenticated using short
tandem repeat DNA typing according to ATCC’s. To achieve acid
adaptation, cells were chronically cultured and passaged directly
in pH 6.5 medium for∼2 months. Chronic low-pH-adapted cells
underwent at least 20 passages.

RNA Sequencing
RNA sequencing was performed on MCF7 and acid-adapted
MCF7 cells using the NuGen Ovation Encore Complete RNAseq
kit, which generates strand-specific total RNAseq libraries
(Nugen, Inc., San Carlos, CA). Following quality control
screening on the NanoDrop to assess 260/230 and 260/280 ratios,
the samples were screened on the Agilent BioAnalyzer RNA
Nano chip to generate an RNA Integrity Number (RIN) (Agilent
Technologies, Santa Clara, CA). Hundred nanogram of DNase-
treated total RNA was then used to generate double-stranded
cDNA, which was initiated with selective random priming
allowing for the sequencing of total RNA, while avoiding rRNA
and mitochondrial transcripts. After primer annealing at 65◦C
for 5min, a first strand cDNA synthesis reaction was performed
at 40◦C for 30min using kit-supplied reverse transcription
reagents. Second strand cDNA synthesis was performed in a
70 µl reaction volume at 16◦C for 1 h and the reaction was
stopped by adding 45 µl of stop solution. The double-stranded

cDNA was then fragmented to ∼200 bp with the Covaris M220
sonicator (Covaris, Inc., Woburn, MA), followed by purification
with Agencourt RNAClean XP (Beckman Coulter Life Sciences,
Indianapolis, IN). The fragmented DNA was suspended in 10 µl
of water and end repair was performed in a 13 µl for 30min
at 25◦C, followed by a heat inactivation of 70◦C for 10min.
Sample-specific indexed adapter was ligated to the end-repaired
DNA for 30min at 25◦C, followed by a two-step strand selection
process with an intervening 1.8X volume RNAClean XP bead
purification. 13 cycles of library amplification and a 1.2x volume
RNAClean XP purification of the strand-selected library was
performed, followed by resuspension of the library DNA in 30
µl of RNase-free water. Final libraries were screened for library
fragment size distribution using an Agilent BioAnalyzer High
sensitive DNA Chip. Libraries were then quantitated using the
Kapa Library Quantification Kit (Roche Sequencing, Pleasanton,
CA), normalized to 4 nM, and were sequenced on an Illumina
NextSeq 500 150-cycle high-output flow cell in order to generate
∼40 million paired-end reads of 75-base per sample (Illumina,
Inc., San Diego, CA) (44).

RNA Sequencing Data Processing and
Analysis
The RNA-seq data analysis workflow has been provided
schematically in Supplementary Figure 1. Raw reads were
quality-filtered to obtain clear data via removal of adaptor
sequences, ambiguous or low-quality reads and reads with
more than 5% N, using FastQC version 0.11.8 (http://
www.bioinformatics.babraham.ac.uk/projects/fastqc/) and
Trimmomatic version 0.39) (45). Then clean reads were aligned
to the reference genome (GRCh37) using HISAT2 version 2.1.0
(46). Finally, the read count values for aligned sequences of genes
were computed to represent the expression levels of genes using
HTSeq version 11.1 (47). Differentially expressed genes (DEGs)
between two groups were explored using R (48) package DESeq2
version1.24.0 (49).

Genes with p-value <0.05 were selected as differentially
expressed Genes. Benjamini-Hochberg (BH) multiple testing
correction was applied on results.

PROTEOMICS

SILAC Labeling
Acid-adapted and naive cells were labeled by SILAC. Cells were
cultured in heavy SILACmedia (16-lysine and110-arginine) for
eight doubling time of MCF7. Extent of labeling was determined
by LC–MS/MS analysis of tryptic peptides from labeled samples
to ensure >90% labeling.

Lysis and Digestion
Cells were lysed by sonication in a buffer of 50% trifluoroethanol
and 50mM ammonium bicarbonate, pH 8.0, and protein
was measured by the Bradford method. Protein from heavy-
and light-labeled cells was combined in equal amounts, and
lysis buffer was added to bring the final volume to 200 µl.
The combined protein was reduced with 100 µl of 40mM
TCEP/100mM dithiothreitol for 1 h at 37◦C. Proteins were
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alkylated with 100 µl of 200mM iodoacetamide for 30min in
the dark at ambient temperature. The volume of the reduced and
alkylated sample was brought to 1ml with 50mM ammonium
bicarbonate, pH 8.0. Trypsin was added at a ratio of 1:50 and
samples were digested at 37◦C overnight. Digests were frozen
at −80◦C and lyophilized. Dried peptides were resuspended
in HPLC water with 0.1% TFA and desalted on 100-mg
Thermo hypersep C18 columns. Eluted peptides were dried in
a Speed-Vac and resuspended in HPLC water for isoelectric
focusing fractionation.

Isoelectric Focusing Fractionation
Tryptic peptides were fractionated using a narrow-pH-range
fractionation strategy. At the end of the isoelectric focusing
programme, strips were manually cut into 20 fractions. Peptides
were extracted and samples were combined in the following
manner to achieve 15 fractions for LC–MS/MS analysis:
(anode end) samples 1–2, 3–4, 5–6, 7–8, and 9–10 were
combined to make five fractions, samples 11–20 were left as
individual fractions.

LC–MS/MS
Samples were analyzed as duplicate injections for each fraction. A
nano-flow ultra-high performance liquid chromatograph (RSLC,
Dionex, Sunnyvale, CA) coupled to an electrospray ion trap mass
spectrometer (LTQ-Orbitrap, Thermo Scientific, San Jose, CA)
was used for tandem MS peptide-sequencing experiments. The
sample was first loaded onto a pre-column (2 cm × 75µm ID
packed with C18 reversed-phase resin, 5µm particle size, 100 Å
pore size) and washed for 8min with aqueous 2% acetonitrile
and 0.04% trifluoroacetic acid. The trapped peptides were eluted
onto the analytical column (C18 Pepmap 100, 75µm × 50 cm
ID, Dionex). The 120-min gradient was programmed as: 95%
solvent A (2% acetonitrile+ 0.1% formic acid) for 8min, solvent
B (90% acetonitrile + 0.1% formic acid) from 5 to 15% in
5min, 15 to 40% in 85min, then solvent B from 50 to 90%
B in 7min and held at 90% for 5min, followed by solvent B
from 90 to 5% in 1min and re-equilibration for 10min. The
flow rate on the analytical column was 300 nl min−1. Ten
tandem mass spectra were collected in a data-dependent manner
following each survey scan. The MS scans were performed in the
Orbitrap to obtain accurate peptide mass measurements, and the
MS/MS scans were performed in the linear ion trap using a 60-
s exclusion for previously sampled peptide peaks. Mascot (www.
matrixscience.com) searches were performed against the UniProt
human database downloaded on 11 July 11 2012. Two missed
tryptic cleavages were allowed, the precursor mass tolerance was
1.2 Da to accommodate selection of different isotopes of the
peptide precursor. MS/MS mass tolerance was 0.6 Da. Dynamic
modifications included carbamidomethylation (Cys), oxidation
(Met), heavy lysine (16) and heavy arginine (110).

Quantification of differences in protein expression between
SILAC-labeled samples was performed as described using
MaxQuant. Results were filtered to require a posterior error
probability (PEP) score < 0.05 and summed intensity > 0.
Candidates were selected among proteins that consistently

showed at least a 1.5-fold increase under low-pH conditions
across label-flipping experiments.

Network Construction
The STRING database is a valuable resource for the exploration
and analysis of functional gene/protein interactions (50).
STRING database was used to find conserved experimentally
validated gene-gene interaction networks for the explored DEGs.
Since STRING builds protein-protein interaction (PPI) networks
thereby our network was constructed upon coding RNAs.

Motif Exploring and Motif Ranking
Networks consist of smaller and repetitive structural units which
are called motifs. Network motifs can be described as recurring
circuits of interactions from which the networks are made (51).
Motifs have important roles in biological networks and suggested
that they accomplish overriding functions in biological networks.
In this study, Cytoscape (52) NetMatchStar plugin (53) was used
to find 3-node 3-edge network motifs in the gene regulatory
network which retrieved from STRING database.

In order to further our network analysis, multiple topological
and biological parameters were determined and used. Log2
fold change of differentially expressed genes associated
in the gene regulatory network (Supplementary Table 1),
association of network’s genes with biological processes
involved in EMT (based on explored GOBP terms related
to EMT) (Supplementary Table 2) and gene prioritization
score (Supplementary Table 3) which were obtained from
Cytoscape GPEC (54) plugin (54), were considered as biological
parameters. Betweenness centrality and node degree are two
network topological parameters (Supplementary Table 4) which
obtained using Cytoscape (52) NetworkAnalyzer (55) plugin
and were considered besides biological parameters for network’s
robust motif ranking. Node degree indicates the number of
connected edges to each node and betweenness centrality shows
the control level of a node over interactions of other nodes in a
network. This centrality parameter prefers the nodes that allow
to connect non-directly connected clusters of a network.

The next step was to find the most important motifs in the
network. For this purpose, a ranking scheme (56) was performed
based on a multi objective weighting function. This scheme is
based on parameters which we gathered before: (i) Topological
parameters, node degree and betweenness centrality, (ii) the
presence of motif genes in EMT related biological pathways (see
“Discussion” for more detail), (iii) the gene prioritization score
obtained from Cytoscape GPEC plugin (54), (iv) acid-adapted
MCF7 cell lines gene expression log2 fold-changes (based on
differential expression analysis of acid-adapted MCF7 cell lines
vs. non-adapted cell lines). Using this weighted multi-objective
function in Equation 1, the motif ranking was performed.

GSij =
w1j

2
.

〈nD〉i
max(nD)

+
w1j

2
.

〈nB〉i
max(nB)

+ w2j.
〈PP〉i

max(PP)

+w3j.
〈GPS〉i

max(GPS)
+ w 4j.

〈|LFC|〉i
max(LFC)

GSij is the ranking score for each motif (i = 1. . . n) in
different weighting scheme (j = 1. . . 13) as said in Table 1.
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TABLE 1 | Weighting scenarios for motif ranking.

Sets w1 w2 w3 w4

Set 1 1 0 0 0

0 0 1 0

0 0 0 1

Set 2 1.4 0 0 3.4

0 1.4 0 3.4

0 0 1.4 3.4

Set 3 1.8 1.8 0 3.4

1.8 0 1.8 3.4

0 1.8 1.8 3.4

Set 4 1.16 1.16 1.8 3.4

1.16 1.8 1.16 3.4

1.8 1.16 1.16 3.4

Set 5 1.4 1.4 1.4 1.4

Different weighting values including w1j to w4j are used to
strike importance of used factors, <nD>i: average node degree
for motif ’s node, <nB>i: average betweenness centrality of each
node in a motif, <PP>i: number of genes in a motif involved
in EMT related pathways, <GPS>i: average gene prioritization
score obtained from GPEC, <|LFC|>i: average absolute log2 fold
change for each motif.

Five different sets of weighting scenarios including 13 different
weighting schemes were applied (Table 1) to remove biasness
between used parameters in motif prioritization. Each set pays
more attention to specific parameters in Equation (1). In the first
set, only one parameter is more important for ranking. In the sets
2–4, two, three and four parameters are important, respectively,
and constantly have higher weights to the absolute LFC of the
motif to explore phenotype-specific top rankedmotifs. In the fifth
set, equal weights allocated to all the parameters. This weighting
scheme leads to 13 ranking score for each motif. After removing
duplicated motifs, we selected the top 10 motifs from each
weighting scenario for further analysis (Supplementary Table 5).

PROTEOMICS AND TRANSCRIPTOMICS
INTEGRATIVE DATA ANALYSIS

Integrative proteomics and transcriptomics data analysis was
performed in roder to ensure about consistency of proteomic
and transcriptomic data regarding explored motifs. In this regard
19 differentially expressed genes of the top 10 explored motifs
cross referenced with SILAC proteomics data (DCIS and MCF7
cell lines) to see which of the following transcriptomes are
alternatively translated in the proteomics level.

EXAMINING SURVIVAL AND GENE
ALTERATION CHANGES

cBioportal.org was used to examine the survival and gene
alteration changes in breast cancer patient samples. For non-
invasive breast cancer sample data, the set from Razavi et al. (57)

was used, and for invasive breast cancer sample data the set from
Curtis et al. (58) was used.

IMMUNOFLUORESCENCE

Cells cultured at pH 6.5 chronically and pH 7.4 of with
the same passage were rinsed with PBS, fixed in cold
Methanol:Acetone (1:1) for 10min and then blocked with
4% bovine serum albumin in PBS for 1 h. Samples were
incubated with primary antibody of S100B and S100A6(1:100)
and secondary Alexa-Fluor 488 antirabbit (1:500) antibody)
for 1 h in room temperature. Coverslips were mounted
using ProLong Gold Antifade Reagent (Life Technologies)
and images were captured with a Leica TCS SP5 (Leica)
confocal microscope.

IMMUNOHISTOCHEMISTRY

For human tissues, a TMA containing formalin-fixed and
paraffin-embedded human breast tissue specimens was
constructed in Moffitt Cancer Center histology core. The
TMA contains 27 normal breast tissue, 30 DCIS, 48 invasive
ductal carcinomas without metastasis, 49 invasive ductal
carcinomas with metastasis and 48 lymph node macro-
metastases of breast cancer. Cores were selected from viable
tumor regions and did not contain necrosis. A 1:400 dilution
of anti-LAMP2 (#ab18529, Abcam), anti-S100A6 antibody
(Prestige Antibodies Powered by Atlas Antibodies, Sigma-
Aldrich) and anti S100 protein were used as primary antibodies.
Positive and negative controls were used. Normal placenta
was used as a positive control for LAMP2, normal breast
was used as a positive control for S100 and normal kidney
was used as a positive control for S100A6. For the negative
control, an adjacent section of the same tissue was stained
without application of primary antibody, and any stain
pattern observed was considered as non-specific binding of
the secondary.

Immunohistochemical analysis was conducted using digitally
scanning slides and scoring by three independent reviewers. The
scoring method used by the pathologist reviewer to determine
(1) the degree of positivity scored the positivity of each sample
ranged from 0 to 3 and were derived from the product of staining
intensity (0–3+). A zero score was considered negative, score 1
was weak positive, score 2 was moderate positive, and score 3 was
strong positive (2). The percentage of positive tumors stained (on
a scale of 0–3).

STATISTICAL ANALYSIS

Statistical analysis and estimation of correlations in this
study were performed using GraphPad Prism v.6. Correlation
significance calculated by Pearson correlation. The p-values
reported for survival analysis measured by cox regression hazard
ratio and log rank tests. All paired tests were performed by
Student’s t-test.
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RESULTS

RNA Sequencing of Acid-Adapted and
Non-adapted MCF7 Cells Unravels the
EMT Mechanism of Breast Cancer Cells
In order to study the effects of acidosis on EMT of breast cancer
cells at early stages such as ductal carcinoma in situ (DCIS)
we first probed the effect of chronic acid adaptation on EMT
status of MCF7 breast cancer cell line using quantitative reverse
transcription-polymerase chain reaction (qRT-PCR) (Figure 1A)
and Immunofluorescent (IF) (Figure 1B) techniques. Acid
adaptation showed some of the epithelial to mesenchymal
phenotypes such as high expression of Vimentin or loss of
membrane β-catenin and ZO-1 and didn’t show some other’s
such as loss of E-Cadherins (Figures 1A,B). So, we concluded
acid adaptation is a path to complete EMT and the status we
observed can be explained as partial EMT induced by acid
adaptation that can be completed by further adaptation to
acid or other microenvironmental conditions (Figures 1A,B).
The partial EMT is reported in other publications and referred
as a measure of plasticity (8, 10). Then we carried out

sequencing of RNA on a paired sample of MCF7 cells and its
acid-adapted counterpart. MCF7 cells are ER, PR, and HER2
positive with many phenotypes of early neoplastic cells such
as slow metabolism, and low rate of glycolysis and Warburg
phenotype that makes them a proper model of studying
acidosis at early stages of breast cancer (27, 59). They are also
tumorigenic but not metastatic i.e., injection of MCF7 into
immunodeficient mice will result in tumor growth but not
metastasis. For RNA extraction we used acid-adapted and non-
adapted MCF7 (parental) at the same passage number with
similar growth rate at the time of experiment. We identified
1,928 differentially expressed genes in acid-adapted MCF7
cells compared to non-adapted MCF7 (Supplementary Table 1).
Using STRING database, a regulatory interaction network
based on experimentally validated interactions was plotted.
The constructed network was replotted in Cytoscape software
for better visualization (Supplementary Figure 2). Then we
searched for EMT related markers in the RNA sequencing data
and found that acid adapted cells show some of epithelial markers
and some of the mesenchymal markers validating the partial
EMT statues of acid adapted cells (Figure 1C).

FIGURE 1 | Acid adapted cells show partial EMT phenotype. (A) q-RT-PCR-analysis and (B) IF of EMT marker at RNA and protein level respectively show both

markers of epithelial and mesenchymal phenotype are present in acid adapted cells confirming their transient EMT phenotype. (C) Analysis of RNA sequencing shows

a mixed epithelial and mesenchymal markers. Heatmap plot for EMT related deferentially expressed genes in AA-MCF7 compared to MCF7. Each row represents a

gene and each columns stands for a sample. Cells color is correlated to gene count in the corresponding sample. Color code for gene count: red, high expression;

green, low expression.

Frontiers in Oncology | www.frontiersin.org 6 March 2020 | Volume 10 | Article 304

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sadeghi et al. Acid-EMT Phenotype Switch

Gene Regulatory Network
To obtain an interaction network, an effort to unravel the
regulatory core related to EMT under the influence of acidosis
was made through identifying and ranking 3-node and 3-edge
motifs (Figure 2A). To this end, n = 3,320 three member motifs
were identified in the network using Cytoscape NetMatchStar
plugin. In order to take the significance of motifs in cellular EMT
into account, GOBO terms related to EMT were explored. Then
for motif ranking scheme a factor was considered for each motif
based on the membership of its genes in these terms. In order to
place more emphasis on EMT Cytoscape GPEC plugin was used
for gene prioritization based on explored GOBP terms. It works
based on a random walk with restart algorithm. GPEC helps to
rank genes based on their association with specific diseases or
biological pathways (EMT in our case) The obtained scores were
considered as another weight in scoring function (60). The log
fold change, node degree and betweenness centrality were used
in the scoring function as well. Using these factors in the scoring
function the explored motifs were prioritized and ranked. The

top 10 ranking motifs (Figure 2B) were selected for enrichment
analysis toward EMT and acid adaptation. These motifs consist
of 19 unique genes. Merging of these top ranked motifs leads to
construct the underlying core subnetwork of the genes that were
affected by acidosis and are related to EMT, differentiation and
invasion of the tumor cells (Figure 2C).

Integrative Analysis of Transcriptomics and
Proteomics of Acid-Adapted and
Non-adapted MCF7 Cells Reveals the Role
of S100 Proteins in Acid-Induced Epithelial
to Mesenchymal Transition
For further validation of our findings in RNA sequencing and
EMT related motif analysis at the protein level, we compared
all the genes in the EMT motifs with their relative protein
change in our SILAC discovery proteomics of the MCF7 cell
line published previously (27) as well as the MCF-DCIS (DCIS)
cell line which we conducted SILAC proteomics on for this

FIGURE 2 | RNA sequencing motif analysis unravels EMT related genes involved in acid adaptation. (A) Experimentally validated gene regulatory networks of

differentially expressed genes. For better visualization Y files layout algorithm of cytoscape was used to organize the network. Two node interactions and disconnected

nodes were ommited. (B) Top ten ranked motifs of our network, directed toward EMT. (C) Top 10 explored motifs based on ranking analysis were merged together.

The association of some of genes like P4HB and CALR in multiple motifs which present in top 10 motifs leads to construct a small sub-network by merging of these

motifs which leads to construct core regulatory subnetwork.
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study. Since the focus of this study is on early adaption of breast
cancer cells we selected DCIS cell lines and adapted them to
acid for 3–6 months in the same process as the MCF7 cells.
The SILAC proteomics approach was applied to compare the
whole proteome of acid-adapted cancer cells to non-adapted
counterparts. SILAC or stable isotope-labeled amino acids in
cell culture is a quantitative mass spectrometry (MS) based
technique that is used to compare the proteome of pairs of
biological samples (61) which in our case is acid-adapted and
acid-naive breast cancer cell lines. To minimize the rate of
false-positive biomarker association, parallel SILAC experiments
were conducted for each cell lines in which the acid-adapted
or non-adapted cells were labeled by growing them in SILAC
“heavy” media (13C6 lysine and 13C14

6 N4 arginine), while the
comparator cells (acid-naive or acid-adapted cells, respectively)
were cultured in media containing the corresponding amino
acids of naturally occurring isotopic distribution. The labeling
strategy was reversed (flipped) to eliminate potential bias due to
the media and incorporation of the stable isotope-labeled amino
acids (Figure 3A) (62). MCF7 data was previously published
for biomarker discovery of acid adaptation (27). In DCIS
SILAC proteomics, 2,841 proteins were detected with 466 unique
proteins for acid-adapted DCIS cells and 323 unique proteins for
non-adapted ones (Figures 3B,C and Supplementary Figure 3).
We used fold change to plot our data and used 1.5-fold change
cut off (Figure 3C). The same analysis and cut off was applied
for both DCIS and MCF7 cells. To do integrative analysis,
we looked for any proteins related to the five explored motif
packs isolated from RNA sequencing data (Figure 2C) in both
MCF7 and DCIS proteomics with more than 1.5 ratio change
in acid-adapted vs. non-adapted condition (Figure 3C). In order
to perform integrative proteomics and transcriptomics data
analysis we focused on 10 explored motifs based on motif
ranking analysis (Figure 2C). This analysis has been conducted
to ensure consistency of proteomics and transcriptomics data.
Translational pattern of 19 differentially expressed genes were
assessed in MCF7 and DCIS proteomics data. We plotted
the interactome map for these altered proteins that were
identified through integration of transcriptome and proteome
data (Figure 3D). In this figure nodes in rectangular shape have
both gene expression and protein translation alteration and
oval nodes only present alterations in transcriptomics level. Ten
proteins out of 19 discovered genes had more than 1.5-fold
change in MCF7 and DCIS proteomics data (Figure 3E). Among
these genes the ones presented in Figure 3F are differentially
expressed at the proteomics level in the DCIS and MCF7 cell
lines (Figure 3F). Due to abundancy of the S100 family proteins
in both transcriptomics and proteomics data, this motif pack was
chosen for further experimental validation.

Acid-Adapted MCF7 Cells Express Higher
S100A6 and S100B Proteins
To further validate the S100 motif discovered in both RNA
sequencing and proteomics data in acid-adapted EMT analysis,
we performed Immunocytochemistry (ICC) experiments on our
acid-adapted and non-adapted MCF7 cells. We chose S100A6

and S100B from the family because of over expression of S100A6
at the protein level in both MCF7 and DCIS cells and S100B
as one marker discovered in RNA sequencing of MCF7 cells
and the proteomics of DCIS. To do the experiment, both AA
MCF7 and NA MCF7 were seeded on the one slide with eight
chambers on it and were treated with exactly equal amounts of
antibodies. Slides were imaged using a Leica TCS SP5 confocal
microscope with exact settings for both cells, and samples were
imaged the same day. We found higher expression of both
S100B and S1006 in acid-adapted MCF7 cells (Figures 4A,B).
To confirm the acid adaptation status of our cells, we also
stained the acid-adapted MCF7 cells and the non-adapted MCF7
cells with the known marker of acid adaptation, LAMP2b. We
observed membrane localization of LAMP2b in our acid-adapted
MCF7 cells (Figure 4C), which is characteristic of acid-adapted
cell populations.

S100A6 Expression Correlates With
Survival in Breast Cancer Patients
We then sought to clinically validate our identified S100 proteins
expression in breast cancer patient Tissue Micro Arrays (TMA)
that we have available at the Moffitt Cancer Center tissue core
bank. On the basis of our previous findings, we hypothesized that
an acidity biomarker should have two characteristics. First, due
to the increase in glycolytic rate with breast cancer progression,
there should be an association of progression with marker
of acidity and second, the expression of the proteins should
correlate somehow with the expression pattern of LAMP2b as
it is a known marker of acidosis (27, 34). In short, S100A6 and
S100B proteins should increase with stage similar to LAMP2b. To
test this, we analyzed protein expression of S100A6 and S100B via
IHC of TMAs containing patient sample biopsies from different
stages of breast cancer totaling 160 cores. While the protein
expression of S100A6 showed statistically (P < 0.0001) higher
in tumor samples compared with adjacent normal breast there
was no difference for S100B. The negative results of S100B could
be the cause of problems with antigen specificity or epitopes
that were used. We then continued our analysis with S100A6 by
measuring the positivity of each core in different stages of breast
cancer. Increased S100A6 expression correlates with increased
tumor progression from DCIS to invasive ductal carcinoma
(Figure 5A). There were notably significant differences between
normal breast and DCIS, Invasive Ductal Carcinomas (IDCs),
and IDCs with local metastases indicating the role of this protein
in cancer progression and invasiveness. We then compared the
survival of patients with high and low expression of S100A6
for each biopsy cores in three categories of DCIS, IDC and
IDC with local metastasis. For defining high vs. low expression,
we use the median of all the cores in each category as middle
point and anything below the media was taken as low and
vice versa. The data was analyzed using two testing methods:
Mantel-Cox and Gehan-Greslow-Willcoxon. The DCIS category
showed significant difference between low and high expression
(Figure 5B), which confirms our previous studies of DCIS as
the most acidic tumors in breast cancer. The difference wasn’t
significant for survival of patients with breast cancer at IDC,
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FIGURE 3 | Integrative analysis of proteomics and transcriptomics data to discover the acidic microenvironment induced EMT genes. (A) A schematic of our SILAC

proteomics design. We flipped the labeling to make sure the changes in protein expression is not affected by the type of labels. (B) Venn diagram and (C) Log 2 fold

change of SILAC proteomics data discovered in each flipping experiment. (D) Integrated interaction map of the regulatory subnetwork and their related altered

proteins in both DCIS and MCF7 cell lines. (E) Venn diagram indicating that among n = 45 transcripts (The subnetwork and it’s near interactions) n = 12 proteins were

differentially translated with the abundancy of S100 family. (F) The name of proteins that are discovered in DCIS and MCF7 proteomics and are correlated to the

motif’s from RNA sequencing data.
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FIGURE 4 | Validation of higher expression of acid-induced EMT markers by

Immunocytochemistry. (A) S100B protein expression in acid-adapted and

non-adapted MCF7 cells with the analysis on right. S100B expression is

significantly higher in acid adapted cells. (B) S100A6 ICC of acid-adapted and

non-adapted MCF7 cancer cells shows higher expression of S100A6 in AA

MCF7 cells. (C) LAMP2b ICC of acid-adapted and WT MCF7 cancer cells.

Acid-adapted MCF7 cells display membrane localization of LAMP2b,

compared to cytoplasmic localization in non-adapted MCF7 cells.

and IDC with local invasion stages, implying the importance of
acidosis and acid related phenotype at early stages of cancer again
(Supplementary Figure 4).

To further prove the correlation of S100A6 and acidosis we
compared the positivity of LAMP2b as a marker of acidosis and
S100A6 as our candidate, for each biopsy core in our TMA.
Comparative analysis of S100A6 positivity from each biopsy core

to LAMP2b expression of the same core showed a correlation
between these two proteins (Figures 5C,D) validating the role of
S100A6 in acid adaptation.

DISCUSSION

Deregulated energetics is a hallmark of cancer progression, and
the deregulation of cellular energetics has a profound effect on
the growth and progression of a tumor. The creation of an
acidic tumor microenvironment (TME) is one of these major
consequences of deregulated cancer cell energetics. When faced
with the acidic TME the cancer cell population must either adapt
or perish, with the former being the usual outcome due to the
extraordinary ability of cancerous cell populations to adapt to
a changing environment. This adaptation to an acidic TME is
not a passive action and leads to permanent changes in the
phenotype of the surviving population. Little is known about the
phenotypic changes that occur throughout the arduous task of
adapting to the acidic TME, and deeper insight into these changes
will move us a step in the direction of targeting these aggressive
populations therapeutically.

Although the concept of lower pH in the tumor
microenvironment is not a new discovery, the specific studying
of acid-adapted cancer cell phenotypic switch is a relatively new
realm of science. Previous investigations have found numerous
phenotypic changes that occur during cancer cell populations
adapting to an acidic environment such as, chronic autophagy
(63), increased presence of lysosomal proteins in the plasma
membrane (27), and heightened aggressiveness (34). Acidity
in the intratumoral environment, not associated with acid
adaptation, has also been shown to foster the stemness of cancer
cell populations in osteosarcoma (64).

The aim of this study was to understand the role of
acidic microenvironment in the EMT phenotypic switch, a
demonstration of cancer plasticity and heterogeneity of cancer
cell populations, and study their role in patient survival. We used
a unique approach to identify vital regulatory sub-networks that
are involved in the acid adaptation of cancer cell populations
using integrative analysis of transcriptomic and proteomic data
of selected cancer cells under an acid microenvironment that
mimics one of the harsh selection pressures amongst many in
solid breast tumors. The advantage of our approach is that
our network analysis workflow encompasses different layers of
information such as log fold change in cells, involvement of genes
in partial and complete EMT processes and network centrality
parameters which reflects gene regulatory role in the whole
network. These considerations led to isolation of the motifs that
have a critical role in cancer cells’ acid adaptation and pEMT.
The discovered motifs also have significant regulatory function
throughout the network from a structural perspective. Network
centrality parameters were considered as a unique factor to
weighting nodes. Log fold changes of motif genes were another
parameter to rank motifs. Therefore, we have four parameters
to rank the motifs: direct association of motif in EMT, motif
prioritization score which is based on Cytoscape GPEC plugin
and reflect indirect association of motif in EMT, centrality of the
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FIGURE 5 | Clinical validation of S100A6 expression correlation to acid phenotype in breast cancer. (A) TMA analysis of 160 biopsy cores stained with S100A6

antibody showed increased expression of this protein from normal to DCIS, IDC, and IDC with Mets. Data are shown as mean with standard deviation as error bar.

(B) Kaplan-Meier graph comparing DCIS patient’s survival with low expression of S100A6 (Below the average) to patients with high S100A6 expression. Patients with

high expression survived less than patients with low expression. (C) Representative images of core biopsies stained for both LAMP2b and S100A6 on sequential cuts.

(D) Correlation analysis of LAMP2b and S100A6 in different stages of breast cancer.
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gene within the network, and expression behavior of motif in
acidosis. When taken in total, these four parameters return the
important motifs within the system.

Here in, we demonstrated the correlation of cancer cells
acid adaptation, EMT and its driven heterogeneity with patient’s
survival. Our findings demonstrated a partial EMT phenotype
in our acid-adapted cellular populations by correlation to
EMT markers accepted in the field. This partial transition
may represent a heightened degree of plasticity or metastatic
ability, with cells carrying phenotypic characteristics of both
epithelial and mesenchymal cells. We observed downregulation
of Snai1 in the acid-adapted group, which negatively correlates
with E-cadherin expression, and is not typical of a traditional
EMT switch. While this was not typical of the EMT response,
we did observe EMT characteristics with heightened vimentin
and N-cadherin expression. Due to the observed changes
in EMT markers caused by acid adaptation, we believe the
acid adaptation may target specific pathways in the EMT
process, while neglecting others. We also proposed one of the
possible mechanisms of acid-induced EMT phenotypic alteration
through S100 family proteins, specifically S100A6 and S100B
proteins. These findings can be used for therapeutic advances
targeting EMT and heterogeneity of breast tumors while also
providing a better understanding of the mechanism behind
microenvironment induced phenotypic changes toward EMT,
and the role EMT plays in acid-induced cancer progression
and evolution.
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