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Regardless of the promising results of certain immune checkpoint blockers, current

immunotherapeutics have met a bottleneck concerning response rate, toxicity, and

resistance in lung cancer patients. Accumulating evidence forecasts that the crosstalk

between tumor and immune cells takes center stage in cancer development by

modulating tumor malignancy, immune cell infiltration, and immune evasion in the tumor

microenvironment (TME). Cytokines and chemokines secreted by this crosstalk play

a major role in cancer development, progression, and therapeutic management. An

increased infiltration of Tumor-associated macrophages (TAMs) was observed in most

of the human cancers, including lung cancer. In this review, we emphasize the role

of cytokines and chemokines in TAM-tumor cell crosstalk in the lung TME. Given the

role of cytokines and chemokines in immunomodulation, we propose that TAM-derived

cytokines and chemokines govern the cancer-promoting immune responses in the TME

and offer a new immunotherapeutic option for lung cancer treatment.
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INTRODUCTION

Worldwide, Lung cancer is responsible for the highest number of cancer-related death in men and
women (1). The 5-year survival rate in metastatic lung cancer (5%) is much lower than primary
lung cancer (56%), colon (64.5%), breast (89.6%), and prostate (98.2%) cancer. Only 16% of lung
cancer is diagnosed in early stages (2).

The first line of treatment in lung cancer is surgery, but most clinically detected cases are
inoperable, and the chances of missing micro-metastasis and recurrence are high. When surgical
intervention is not possible, then chemotherapy and radiotherapy are the next potential options,
these therapies exert a devastating effect on normal tissue homeostasis and reduce health-related
quality of life. An upcoming molecular targeted therapy targeting epidermal growth factor receptor
(EGFR) and anaplastic lymphoma kinase (ALK), improved treatment regimen in patients with
these detectable mutations. Still, for a large group of lung cancers, molecular alterations have not
been shown as effective for molecularly targeted therapies. Traditionally, immunotherapy showed
marginal success in lung cancer. Recently, immune checkpoint blockers targeting cytotoxic T-
lymphocyte-associated protein 4 (CTLA4) and anti-programmed cell death protein 1 (PD-1) have
shown results in lung cancer treatment, but only a subset of the patients achieved a strong response
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with minimum toxicity in these immunotherapies (3–6), which
is attributed to the fact that the lung tumor cells acquire
large numbers of somatic mutations, and therefore induce
tumor immune evasion by suppressing immune cell-mediated
immunosurveillance via multiple mechanisms, such as secretion
of pro-tumor cytokines, dysfunctional antigen expression, and
inactivation of T cell activation (7–10). Thus, to develop new
targeted therapies, future studies should be oriented toward the
analysis of the tumor-infiltrating immune cells’ landscape in the
tumor microenvironment (TME) and how this contributes to
lung carcinogenesis.

The driver mutations in tumors operate together and direct
changes in the TME, especially in tumor-infiltrating immune cells
(11). The driver mutations in lung cancer are gene mutations in
EGFR and KRAS proto-oncogene (KRAS), ALK rearrangements,
and altered MET proto-oncogene (MET) signaling (12). Notably,
the extensive immunogenomic analysis of more than 10,000
samples from The Cancer Genome Atlas comprising 33 diverse
cancer types displayed a more prominent macrophage signature
with T helper (Th) 1 cell suppression and anM2-like macrophage
response in tumors with gene mutations in EGFR, KRAS,
and KRAS G12 (13). The infiltration of macrophages was
found to be increased in lung tumor area when compared
to the non-tumor area. Currently, there is no consensus in
the literature on whether the high density of macrophages
is detrimental or beneficial in lung cancer, while few recent
reports demonstrated the correlation between prognosis and
patient survival with the density of particular phenotype of
macrophages. The prolonged patient survival correlated with a
high density ofM1macrophages, while poor prognosis correlated
with a high density of M2 macrophages in tumor islets (14–19).
Evidences suggest that cytokines secreted by TAMs induce
hyperproliferative, anti-apoptotic, and metastatic responses in
lung cancer, offering a potential immunotherapeutic option for
its treatment (20–22).

TUMOR ASSOCIATED MACROPHAGES
(TAMs)

Macrophages are a plastic, heterogeneous group of cells.
Besides providing the innate immune response against invading
pathogens, they play an essential role in maintaining tissue
integrity and homeostasis. Macrophages encounter diverse
microenvironmental signals, which can alter their transcriptional
program and role, based on the location and distinct gene
expression profiles. Functional and phenotypic dysregulation
has been associated with a wide range of chronic inflammatory
and autoimmune diseases, including cancer. Classically,
macrophages divided into two major types, classical macrophage
activation (M1) promotes a pro-inflammatory response,
while alternative macrophage activation (M2) stimulates
an anti-inflammatory response (23). Recently, according to
specific cytokine stimulation conditions, M1 macrophages
are subdivided into M (lipopolysaccharide [LPS]), M (LPS
+ interferon [IFN]γ), and M (IFNγ). M2 macrophages are
subdivided into M (interleukin [IL] 4), M (immune complexes

[Ic]), M(IL10), M (glucocorticoids [GC] + transforming growth
factor β [TGFβ]), and M (GC) (24). These different types of
macrophages drastically differ in their intrinsic transcription
factors, metabolism, surface receptors, and secretory molecules,
such as cytokines, chemokines, and growth factors, etc.

Tumor cell-macrophage crosstalk drives phenotypic and
functional changes in both cell types. An intrinsic and extrinsic
molecular patterning of tumor cells influences infiltration
and activation of macrophages via multiple mechanisms: (i)
Secretome of tumor cells shift the transcriptional program
responsible for M1-like TAM activation to M2-like TAMs.
Tumor cells derived Colony Stimulating Factor 1 (CSF1) and C-
C motif chemokine ligand (CCL) 2 leads to increased infiltration
of macrophages in TME, which later increased angiogenesis by
stimulating the secretion of vascular endothelial growth factor
(VEGF) (25). Tumor cells-macrophage co-culture increases
expression of IL10, IL12, IL6, TNF, CCL5, CCL22, and CSF1
in macrophages, thereby inducing M2-like polarization (26). (ii)
Apoptosis of tumor cells induces the activation of M2-like TAMs
or suppress activation of M1-like TAMs (27). Apoptotic tumor
cell-derived sphingosine-1-phosphate (S1P) and microRNA-375
alter macrophage polarization (28, 29). (iii) The alteration in
macrophage function by necrotic tumor cells is still not very
well elucidated. A study by Reiter et al. suggests that necrotic
tumor cells promote the anti-tumor function of macrophages
by increased production of nitric oxide (NO) (30). Another
study by Brouckaert et al. suggests that phagocytosis of necrotic
tumor cells by macrophages does not induce the production
of inflammatory cytokines (31). Tumor cell-derived colony
stimulating factor 1 (CSF1) promotes macrophage infiltration in
the necrotic tumor area (32–34). These TAMs further support
angiogenesis and invasion, and more interestingly, their high-
density associated with reduced relapse-free survival (35, 36). (iv)
Hypoxic tumor environments attract monocyte/macrophages
followed by the differentiation and production of hypoxia-
inducible factor (HIF) 1α and HIF2α, which then control
the transcription of genes associated with tumor promotion
processes, such as angiogenesis. Neuropilin 1 (NRP1) mediate
hypoxic TME-induced activation and the pro-tumoral function
of TAMs in cervical cancer (37). (v) The tumor cell-mediated
metabolic shift in macrophage phenotype activates M2-like
TAMs in TME. Through the mechanistic target of rapamycin
kinase (mTOR) inhibition, TAMs from hypoxic areas show
a decrease in glycolysis and increase in endothelial glucose
availability, thereby disturbing a compact tumor vasculature to
undergo invasion and metastasis (38). (vi) TAMs maintain an
immunosuppressive phenotype by receiving polarization signals
from tumor cells. IL1R andMYD88mediated inhibitor of nuclear
factor kappa B kinase subunit beta (IKBKB) andNFKB1 signaling
cascade maintain M2-like phenotype in TAMs (39).

On the other hand, TAMs establish a pro-tumor
microenvironment that influences the origin, progression,
dissemination, and drug resistance of tumor cells in several ways,
such as:(i) TAMs promote tumor cell growth and metastasis by
secreting EGF (40), matrix metallopeptidase (MMP)s (41, 42),
Wnt family member (WNT) 5A, cathepsin B, semaphorin 4D
and IL1β (43). (ii) TAMs-derived migration inhibitory factor
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(MIF) induce DNA damage and immune escape by suppressing
tumor protein P53 (TP53) activity (44). (iii) TAMs in hypoxic
regions adapt to low oxygen tension by expressing HIF1α and
subsequently secrete angiogenic factors, such as VEGF, IL8,
cytochrome C oxidase assembly factor (COX2), and MMP9 (45).
TAMs also increase tumor hypoxia and aerobic glycolysis (46).
(iv) To support invasion and metastasis of tumor cells, TAMs
induce epithelial-mesenchymal transition (EMT) in tumor cells
via secretion of MMPs (47). (v) TAMs establish a pro-tumor
anti-inflammatory environment by the recruitment of Th2 cells
and regulatory T cells (48). (vi) TAMs play a part in T cell anergy
and inhibition of the activation and growth of naïve T cells
(49, 50). (vii) TAMs induced autocrine IL10 signaling pathway
drives M2-like TAMs polarization to suppress anti-tumor
response in TME (51). (viii) TAMs induce intrinsic activation of
the immune checkpoint protein PDL1, which by binding to PD1
on T cells, leads to cytotoxic T cells senescence, exhaustion, and
apoptosis (52).

CYTOKINES AND
CHEMOKINES–DIAGNOSTIC AND
PROGNOSTIC BIOMARKERS IN LUNG
CANCER

Although tumor cell-TAM crosstalk is dependent on many
factors, secreted factors (such as cytokines, chemokines, etc.) play
a significant role in the crosstalk. Cytokines and chemokines
are low molecular weight proteins, mainly produced by
macrophages and lymphocytes. They mediate intra- and extra-
cellular communication as hormones and neurotransmitters
through an autocrine, paracrine, and endocrine manner. Upon
binding to specific cell surface receptors, they regulate a variety
of cellular processes, such as local and systemic anti- and pro-
inflammation, cellular proliferation, metabolism, chemotaxis,
and tissue repair, etc. In the TME, the primary role of these
factors is to regulate the tumor immunity cycle. Cytokines and
chemokines produced by tumor-infiltrating immune cells play a
significant role in tumor development, progression, metastasis,
and therapy resistance; therefore, they widely used as diagnostic
and prognostic biomarkers in the treatment of cancer. As shown
in Table 1, most common cytokines and chemokines used in the
therapeutic management of lung cancer are IL6, tumor necrosis
factor α (TNFα), IL10, IFNγ, IL2, IL22, IL32, IL37, IL8, CCL2,
C-X3-C motif chemokine ligand (CX3CL1) (53–59, 64, 82–85),
among which macrophages are the major source of IL6, TNFα,
IL10, IL8, CCL2, and CX3CL1 [(86, 87); Figure 1]. CCL2
and CX3CL1 receive special attention in chemokine biology,
because of their unique phenotypic and functional properties.
The decades of extensive research in the field of cytokines
and chemokines in cancer development published outstanding
research and review articles. Therefore, in this review, we
summarized the published literature from the year 2000 to the
year 2019, specifically focusing on the role of IL6, TNFα, IL10,
CCL2, CX3CL1, IL8 in the macrophages-tumor cells crosstalk;
leading to lung cancer development and progression.

TABLE 1 | Prognostic value of cytokines and chemokines in the therapeutic

management of lung cancer and their main source of production.

Cytokine and

chemokine

Main source Studies predicting

prognostic purpose in

lung cancer

Sample

IL6 Macrophage

Th cells

Fibroblasts

11

(53–63)

Blood

BALF

Pleural

effusion

TNFα Macrophage 6

(14, 55, 57, 58, 64, 65)

Blood

BALF

IL10 Macrophages

Monocytes

Th cells

DCs

8

(53, 55, 58, 59, 61, 66–68)

Blood

Serum, Saliva

IFNγ Activated–T cells

Activated—NK

cells

3

(56, 62, 64)

Blood

Serum

Plasma

IL2 Activated–CD4+

T cells

–CD8+ T cells

3

(69–71)

Blood

Serum

IL22 Th17 cells

RORγ (T)+ Lti

cells,

NCR1+ cells

2

(72–74)

Blood Serum

Tissue

IL32 NK cells

T cells

Epithelial cells

Blood

monocytes

2

(75, 76)

Tissue

IL37 Monocytes

DCs

1

(77)

Tissue

IL8 Macrophages 5

(54–56, 58, 59)

Blood

BALF

Serum

Saliva

Plasma,

Sputum

CCL2 Macrophages

Monocytes

3

(61, 78, 79)

Serum Tissue

CX3CL1 Macrophages

Microglia

Activated

endothelial cells

Neurons

2

(80, 81)

Tissue

CCL2, C-C motif chemokine ligand 2; CX3CL1, C-X3-C motif chemokine ligand 1; DCs,

Dendritic cells; IFNγ, Interferon gamma; IL, Interleukin; Lti, Lymphoid-tissue inducer; NK,

Natural killer cells; NCR1, Natural cytotoxicity triggering receptor 1; RORγ, RAR-related

orphan receptor gamma; Th, T helper cells; TNFα, Tumor necrosis factor alpha.

CYTOKINES

IL6
IL6 plays a significant pro-inflammatory role under many
physiological and pathological conditions in multiple cell types
(88). Althoughmany different cell types secrete IL6, macrophages
are one of the major sources. IL-6 exerts its effects after binding
to ligand-binding IL-6 receptor (IL6R) α chain (gp80, CD126)
and the signal-transducing component gp130 (CD130) in an
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FIGURE 1 | Macrophage-Tumor cells crosstalk via cytokines and chemokines through an autocrine and paracrine manner is important for lung cancer development.

In the TME, cytokines, and chemokines secreted by macrophages (IL-6, -10, CCL-2, -3, -4, -5, -18, -20, CX3CL1, TGFβ, VEGF, TNFα, etc.) and tumor cells (IL-6, -8,

-10, TNFα, CCL-2, -3, -4, -5, -18, -20, CX3CL1, MMPs, etc.) induce phenotypic and functional changes in both the cell types. Macrophage secretome influences

tumor growth, angiogenesis, invasion, metastasis, and immune evasion by the tumor cell, while secretory factors from tumor cells regulate monocyte/macrophage

infiltration, activation and polarization toward pro-tumor M2-like TAMs phenotype. Abbreviations: CCL, chemokine ligand; CXCL, chemokine (C-X-C motif) ligand; IL,

interleukin; MMPs, matrix metalloproteinase; TGFβ, transforming growth factor β; TNFα, tumor necrosis factor α; VEGF, vascular endothelial growth factor.

autocrine and paracrine manner. IL6 is a double-edged sword
in the tumor microenvironment. Several studies demonstrated
the role of IL6-mediated pro-proliferative, anti-apoptotic,
angiogenic, metastatic, and immunosuppressive responses in
tumor development and progression. While other studies
demonstrated the role of IL6 in promoting anti-tumor immunity
through the stimulation of proliferation, survival and trafficking
of T cells to lymph nodes and tumor sites, where T cells effectively
shift tumor-suppressive state to responsive state to inhibit tumor
growth and progression (89, 90). An increased level of IL6
correlates with the poor prognosis and survival of lung cancer
patients (54, 60). TAM-derived IL6 plays a role in progression,
invasion, angiogenesis, EMT, immune cell infiltration, and cancer
stem cell (CSC) development andmaintenance, throughmultiple
unexplored molecular mechanisms (91–93). The activation of
signal transducer and activator of transcription (STAT) 3 by
TAM-derived IL6 in the lung TME considered as the prime
mechanism responsible for the development of mouse lung
tumor model and crosstalk with small cell lung cancer (SCLC)
cell lines (94, 95). Phosphatidylinositol-4,5-Bisphosphate 3-
Kinase/AKT Serine/Threonine Kinase 1 (PI3K/AKT) signaling
is another pathway engaged by TAM-derived IL6 to influence
growth of lung cancer cell line, A549 (96). TAM-derived IL6-
mediated STAT3 signaling pathway also found to increase the
proliferation of human cancer stem cells (97). In different phases
of lung cancer development and its therapeutic management,
IL6 drives multiple molecular mechanisms responsible for the
epithelial-mesenchymal transition (EMT) (98, 99) and therapy
resistance, such as infiltration of pro-tumor macrophages after
irradiation through the upregulation of CCL2/CCL5 in vitro
human and in vivo mouse lung tumor models (100). Therefore,
the blockade of IL6 reprograms the TME to restrict lung

cancer development and progression in experimental lung
tumorigenesis models (101). Many different approaches are used
in variousmalignancies and other diseases to target IL-6 signaling
pathways. For example–small molecules, blocking peptides, and
antibodies against IL6, IL-6R, IL6–sIL6R complex, janus kinase
(JAK) phosphorylation, and STAT3 activation (102, 103). The
upregulation of systemic level of IL6 upon treatment of anti–
PD1 antibody nivolumab leads to poor clinical outcome because
inhibition of PD1–PDL1 promotes production of IL6 by PD1+
TAMs. Depletion of macrophages in vivo model of melanoma
reduces the systemic level of IL6 and upregulates anti-tumor
Th1 response, suggesting that the narrow therapeutic window of
PD1–PDL1 blockade can be overcome by inhibition of IL6 (104).

TNFα

As the name suggests, TNFα initially found to induce necrosis
and cytotoxicity in certain tumors (105). It is also known
as a pyrogenic cytokine because of its ability to establish an
inflammatory environment in response to pathogens (106). To
exert a molecular action on the target cell, TNFα binds to
one of the two receptors, TNF receptor superfamily member
(TNFR1) (TNFRSF1A, p55TNFR1, p60, or CD120a) and TNFR2
(TNFRSF1B, p75TNFR, p80, or CD120b). According to the
molecular context, TNFα exerts an opposite effect on tumor
progression. In lung cancer, TNFα found to induce cell
proliferation, apoptosis resistance, angiogenesis, invasion, and
metastasis in various in vitro and in vivo lung tumor models
(107). On the other hand, doxorubicin treatment-induced
TNFα triggers apoptosis of TP53-deficient lung tumor cells
via downregulation of cyclin dependent kinase inhibitor 1A
(CDKN1A) (108). In the TME, crosstalk of TAMs with tumor
cells and other tumor-associated cells via TNFα not only activates
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survival and proliferation pathways through the transcriptional
activation of nuclear factor kappa B subunit 1 (NFKB1), fos
proto-oncogene (FOS), and jun proto-oncogene (JUN) but also
activates apoptotic pathways via TNFR1. Considering anti-tumor
effects of TNFα, number of attempts were made to administer
TNFα either systemically or locally in various cancer types.
Although administration of TNFα significantly decreased the
tumor growth, but many side effects were observed in the studies.
In order to augment endogenous TNFα activity, Immunicon Inc.
developed a single chain TNFα based affinity column to remove
soluble TNF receptors from the blood (109). The pretreatment of
low dose of TNFα prior to administration of chemotherapeutic
agents such as Cisplatin, Paclitaxel, and Gemcitabine improved
the efficacy of the agents in the experimental cancer model
(110). On the hand recent studies showed that instead of
augmenting effect of TNFα in tumor, TNFα blockade increases
effect of immune checkpoint inhibitors (111, 112). Therefore,
therapeutic approaches manipulating TNFα in cancer should be
interpreted with great caution. The recent studies demonstrated
that the higher number of tumor islets with infiltration of
TNFα+ TAMs (cytotoxic M1 phenotype) confers a survival
advantage in non-small-cell lung cancer (NSCLC) and other
malignancies (14, 65). In TAMs-tumor cells in vitro co-culture
model, tumor necrosis factor-related apoptosis-inducing ligand
(TRAIL) reprograms TAMs to M1-like phenotype by inducing
expression of proinflammatory cytokines like IL1B, IL6, TNFα
(113). TAMs-specific TNFα or its receptors induce apoptosis in
vitro and in vivo tumor model by activating CD8+ T cells (114).
Therefore, current immunotherapeutics need to be directed
toward the induction of TNFα+ expression in TAMs, thereby
reactivating anti-tumor immunity in the TME.

IL10
IL10 is an anti-inflammatory cytokine mainly produced by
activated macrophages, B cells, and T cells (115). IL10 binds
to the receptor IL10R. IL10R is a heterotetramer complex
consisting of two IL10Rα and two IL10Rβ molecules (116). The
main anti-inflammatory functions of IL10 are suppression of
classical macrophage activation, suppression of the production
of proinflammatory cytokines TNFα, IL1β, IL6, IL8, IL12, and
granulocyte-macrophage colony-stimulating factor (GM-CSF)
(51, 117), inhibition of antigen presentation by suppressingmajor
histocompatibility complex (MHC) II expression in activated
macrophages (118), and inhibition of IFNγ production by Th1
and natural killer (NK) cells (119). Tumor cells often secrete a
high amount of IL10, and increased serum concentration of IL10
found to be associated with simultaneous immunostimulation
and immunosuppression in different types of cancer (120).
The prognostic significance of IL10 in serum or whole tissue
homogenate is controversial because a study by De vita et al.
suggested that serum IL10 level was a prognostic indicator of
advanced NSCLC (66) while studies by Soria et al. demonstrated
that patients lacking IL10 expression in early-stage NSCLC have
a worse prognosis than those with IL10 expression (67). On
the other hand, TAMs-derived IL10 level showed consistent
prognostic significance in lung cancer patients (121, 122). TAMs-
derived IL10 perform several tasks in lung cancer progression

and development (123). Similar to IL6, crosstalk within different
cells of the TME via TAMs-derived IL10 leads to the activation
of STAT3 (124, 125). Additionally, TAM-derived IL10 promotes
the stemness of lung cancer via JAK1/STAT1/NFKB/NOTCH1
signaling pathways in vivo tumorigenesis mouse models (126).
IL10 also drives in vivo lung cancer growth and metastasis
by upregulating the CCL2/C-C motif chemokine receptor 2
(CCR2) and C-X-C motif chemokine ligand (CXC3CL1)/C-X3-
C motif chemokine receptor 1 (CX3CR1) axis in macrophage-
tumor cell crosstalk (20). IL10 signaling pathway is a complex
molecular network comprising a minimum of 37 molecules and
76 reactions to support cancer development (127). The blockade
of IL10 signaling pathways in human diseases is under critical
investigation. Various strategies, such as blocking peptides and
monoclonal antibodies against IL10, receptor-blocking strategies
for IL10R, and small molecule inhibitors targeting JAK/STAT3
signaling, are under clinical evaluation (128, 129).

CHEMOKINES

CCL2
Concerning the potential therapeutic intervention point in
various human diseases, CCL2 is one of the most studied
chemokines. CCL2 is a potent monocyte chemotactic factor
from the C-C chemokine family. It mainly produced by
monocyte/macrophages either constitutively or upon induction
by other soluble factors and oxidative stress. CCL2 binds to
its receptor CCR2 to mediate its effect through an autocrine
or paracrine manner (130). Expression of CCL2, CCR2 or
in combination with IL6 and IL10 correlates with a worse
prognosis in lung cancer patients (61, 78, 79). In various
cancers, the crosstalk of TAMs with tumor cells via the
CCL2/CCR2 axis play multiple roles in cancer development,
such as monocyte/macrophage recruitment at the tumor site
(131), tumor progression, EMT, invasion, and metastasis (132).
Experimental lung tumor models, in vitro TAMs-tumor cells, co-
culture models, and human lung cancer biopsies demonstrated
that CCL2/CCR2 signaling is one of the central signaling
pathways involved in lung cancer growth andmetastasis (20, 133,
134). In the in vivometastasis lung tumor model and human lung
cancer biopsies, infiltration of TAMswas found to be increased by
NFKB1-CCL2 signaling via an elevation in neddylation pathway
(135). In the flank and orthotopic lung tumor model, blockade of
CCL2 reduces lung tumor growth not only by reprogramming
TAMs to M1-like phenotype but also by activating CD8+ T
cells (136). Deficiency of CCL2 in stromal cells like macrophages
reduces infiltration of macrophages, angiogenesis, early tumor
necrosis and lung metastasis in the 4T1 breast tumor model
(137). Targeting of the CCL2/CCR2 axis in TAMs is an emerging
immunotherapeutic tool in various human diseases. Therefore,
therapeutic strategies blocking CCL2, CCR2, and CCL2/CCR2
complexes in TAMs are under extensive evaluation (138, 139).

CX3CL1
To date, CX3CL1 is the only known chemokine from the CX3C
family. CXCL1 has received particular attention in chemokine
biology because it is found in two forms, either bound to
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the cell membrane or in a soluble form. Therefore, it acts
as both an adhesion molecule and chemoattractant (140). It
plays a role in the activation and migration of monocytes, NK
cells, T cells, and mast cells at the site of action in various
physiological and pathological conditions. It also promotes the
binding of leukocytes and the adhesion and activation of target
cells. CX3CL1 mediates its cellular effects by interacting with
CX3CR1 (141). A recent study by Liu et al. demonstrated
that high CX3CL1 mRNA expression served as a positive
prognostic indicator in patients with lung adenocarcinoma (80).
Another study by Su et al. demonstrated that the CXC3CL1
level showed survival effects in lung adenocarcinoma but not in
squamous cell carcinoma (81). The expression of CX3CL1 was
found to be increased in lung cancer with higher pathological
grades and metastatic lymph nodes (142). CX3CL1-induced
M2 macrophage polarization increases invasiveness of human
endometrial stromal cells (ESCs) by upregulating expression of
MMP9, tissue inhibitor of metalloproteinases (TIMP)-1, -2 and
by activating P38MAPK and integrinβ1 signaling (143). In the
co-culture of peripheral blood mononuclear cells (PBMCs) and
pancreatic cancer cell lines, TRAIL/NFKB1/CX3CL1 dependant
bi-directional crosstalk leads to therapy resistance (144). In the
mouse mammary tumor model, activation of fibroblast growth
factor receptor 1 (FGFR1) leads to migration and recruitment of
macrophages via secretion of CX3CL1 (145). In in vitro, in vivo,
and ex vivo models of lung cancer, TAM-tumor cell crosstalk via
the CX3CL1/CX3CR1 axis found to be crucial in lung tumor cell
growth, andmetastasis, suggesting a potential axis for therapeutic
intervention in lung cancer (20).

IL8
IL8/CXCL8 is a proinflammatory chemokine (from the CXC
family) mainly secreted by macrophages. It exerts its effect
by binding to CXCR1 and CXCR2, which are heterotrimeric
G-protein-coupled receptors. These receptors are expressed
not only by neutrophils but also by monocytes, endothelial
cells, tumor cells, and tumor-associated stromal cells (146).
Therefore, IL-8 is responsible for the migration and activation
of all these cells (87). IL-8 plays multiple roles in lung cancer
development (147–151). IL8 serves as a potential biomarker
to predict tumor burden, treatment response, and patient
survival in lung cancer (152–154). The expression of IL8
mRNA in the lung TME induced by infiltrating macrophages
via the NFKB pathway significantly correlates with increased
tumor angiogenesis and shorter median survival of lung cancer

(155). IL8 is known to activate major oncogenic signaling
pathways through autocrine and paracrine functions in the TME
[e.g., PI3K, RAS/mitogen-activated protein kinase (MAPK),
and JAK/STAT] (156). Therefore, the precise molecular role
of TAM-derived IL8 in TAMs-tumor cell crosstalk requires
further investigation. To block IL8 dependent responses,
IL8 neutralizing antibodies (ABX-IL8 and HuMax-IL8), small
molecule inhibitor of CX3CR1/CX3CR2 (Reparixin, JMS-17-
2) are in the different phases of preclinical and clinical
development (157, 158).

CONCLUSION

The understanding of cytokines and chemokines-mediated
interplay between TAMs and tumor cells on a molecular
level will allow the development of new immunotherapeutic
strategies aimed to unleash the anti-tumor immunity of TAMs
in the TME. Given the potential immunomodulatory role of
TAM-specific secretory factors in lung cancer development and
progression, it is crucial to address the following questions
to develop a therapeutic strategy: (i) Are the pro- and anti-
inflammation environments triggered by TAM-derived cytokines
and chemokines context-dependent? (ii) How does cytokine-
and chemokine-based TAM-tumor cell crosstalk influence other
immune cells of the TME? (iii) Which are the central signaling
pathways regulated by TAM-derived cytokines and chemokines
that influence cancer development? A critical evaluation of
therapeutic strategies targeting cytokines and chemokines is
required to develop potent and efficient immunotherapeutics
to restrict cancer development and further validation of
these experimental findings in patient samples required for
clinical translation.
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