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The risk stratification of diffuse large B-cell lymphoma (DLBCL) is crucial. The International

Prognostic Index, the most commonly used and the traditional risk stratification system,

is composed of fixed and artificially dichotomized attributes. We aimed to develop a novel

prognostic model that allows the incorporation of up-to-date attributes comprehensively

without information loss. We analyzed 204 patients with primary DLBCL who were

uniformly treated with R-CHOP (rituximab, cyclophosphamide, doxorubicin, vincristine,

and prednisone) from 2007 to 2012 at Asan Medical Center. Using the multivariable

fractional polynomial (MFP) method and bootstrap resampling, we selected the variables

of significance and the best fitted functional form in fractional polynomials. Age, serum

β2-microglobulin, serum lactate dehydrogenase, and BCL2 expression were selected

as significant variables in predicting overall survival (OS), while age was excluded in

predicting 2-years event-free survival. The prognostic score calculated by the MFPmodel

effectively classifies patients into four risk groups with 5-years OS of 89.91% (low risk),

81.21% (low-intermediate risk), 66.40% (high-intermediate risk), and 37.89% (high risk).

We suggest a new prognostic model that is simple and flexible. By using the MFP

method, we can incorporate various clinicopathologic factors into a risk stratification

system without arbitrary dichotomization.

Keywords: diffuse large B-cell lymphoma, prognosis, multivariable fractional polynomial, risk stratification,

prognostic model

1. INTRODUCTION

Diffuse large B-cell lymphoma (DLBCL) is an aggressive and the most prevalent subtype of non-
Hodgkin lymphoma (NHL) (1, 2). Despite the improvement of overall outcomes with up-front
immunochemotherapy (rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisone
[R-CHOP]), ∼40% of patients with DLBCL fail to achieve remission and ultimately succumb to
death (3–5). One reason for treatment failure is the limitations of current prognostication systems
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for DLBCL. Since 1993, the International Prognostic Index
(IPI) has been the most commonly used clinical tool for the
risk stratification of patients with DLBCL (6). It considers
age (>60 years), the Ann Arbor Stage (III/IV), serum
lactate dehydrogenase (LDH) levels (>upper limit of normal),
performance status [Eastern Cooperative Oncology Group
(ECOG) >1], and the number of extranodal involvements (>1).
However, the IPI does not completely predict the prognosis
of patients and also narrows the outcome differences between
the IPI risk groups (7). In addition, the risk stratification
system solely based on clinical factors does not reflect the
fundamental biological properties of the tumors. Recently, with
the advancement of research on the pathophysiology of DLBCL,
many biological and molecular features, such as the cell of
origin (COO), BCL2 and MYC status, and genetic alteration,
have been discovered to be associated with poor prognosis (8–
13). Additionally, new therapeutic agents, including immune
checkpoint blockers, are undergoing clinical trials to overcome
the limitation of current R-CHOP therapy (14). Therefore,
there is an impending unmet medical need to develop a risk
stratification system that allows incorporation of the latest
clinical and biological attributes comprehensively.

One limitation of the current IPI is that attributes that
originally had continuous values are dichotomized by using
the artificially assigned thresholds. To build prognostic models,
most studies have included continuous predictors as categorized
forms with their arbitrary optimal cut-off points. Although
there has been constant criticism of this approach (15–17),
categorization is widespread in clinical studies (18). One of the
perceived advantages of categorization is that it is easy to apply
to clinical practice that determines the diagnostic or therapeutic
procedures. However, finding an “optimal” cut-off point is
virtually infeasible; it has been reported that neither Kaplan–
Meier nor the receiver operating characteristic (ROC) methods
can be relied upon to represent a true biological threshold
in prognosis (19). Fundamentally, categorization induces the
inevitable loss of information and statistical power and may
increase the probability of false-positive results (20–22).

To overcome these pitfalls of dichotomization, Royston
et al. developed the multivariable fractional polynomial (MFP)
approach to build models from multiple predictors with a
combination of continuous and categorical variables (23, 24).
In handling the continuous variable, a logistic regression model
presumes a linear relationship between covariates and a response
variable in the logit scale. However, various functional forms of
covariates which incorporate non-linear relationships should also
be considered (25). For that reason, the MFP model uses possible
transformed predictors with various powers and performs closed
test to select significant predictors. In brief, the MFP method
can be explained in two main concepts: backward elimination
among all possible predictors and selection of an fractional
polynomial (FP) function to incorporate non-linear relationship
of continuous variables (26). This allows us the determination
of whether an explanatory variable is important and the return
of its optimal functional form among the possible combinations
of fractional polynomials (FP) (27). In addition, using the
prognostic index which is the combination of selected variables

with weights taken from the Cox model can explain the relative
hazard of the patient with certain predictor values.

In this study, we developed a new risk stratification model
for DLBCL using the MFP method. Among the various
clinical and biological factors related to DLBCL, statistically
significant variables were selected while retaining the properties
of the continuous variables. We selected suitable FP functions
among selected variables to build a parsimonious and medically
consistent final model. The model stability was also investigated
using the bootstrap assessment. The final survival model was
formed by fitting a Cox model with finally selected covariates.
Using this MFP method, we suggest a clinically feasible and
flexible model that can comprehensively allow for continuously
updating clinical and biological attributes.

2. MATERIALS AND METHODS

2.1. Patients and Clinicopathologic
Information
For the analysis, clinicopathologic information was
retrospectively collected from patients with primary DLBCL
diagnosed between 2007 and 2012 at Asan Medical Center.
A total of 204 cases were comprehensively reviewed, and
diagnoses were confirmed by two expert hematopathologists
(RJ and CSP) according to the 2016 WHO Classification of
Tumors of Haematopoietic and Lymphoid Tissues (2). All
patients underwent the standard staging procedures and were
treated with R-CHOP. Patients with primary central nervous
system lymphoma and patients who were initially treated
with other treatments rather than R-CHOP were excluded.
Clinicopathological information known to be associated with
the prognosis of DLBCL was meticulously obtained from
medical records including sex, age, body mass index (BMI)
(28), status of concurrent hepatitis B virus infection (29), levels
of serum LDH and B2M (30), hemoglobin (Hb) levels (31),
and baseline peripheral absolute neutrophil, lymphocyte, and
monocyte counts (32), Ann Arbor stage, ECOG performance
status, presence of B symptoms, involvement of two or
more extranodal sites, and COO. The COO was determined
using immunohistochemistry (IHC) according to the Hans
classification at the time of diagnosis (33).

Among the clinicopathological variables, B2M contained 11
missing values, which accounted for 5.39% of the total. These
missing values were imputed by multiple imputations using the
Amelia package in R which is known to be effective for handling
large numbers of missing data (34). This study was approved by
the institutional review board (No. 2015-0720).

2.2. Quantitative Analysis of Biomarker
Expression
We selected BCL2 and MYC as candidates for predictors because
numerous studies on DLBCL have reported their association
with poor prognosis (9, 35, 36). Although the proportions of
40 and 50% were generally considered as cut-off points for
positivity in MYC and BCL2 IHC, respectively (2), it was
mostly dependent on visual observation, and there have been
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controversies regarding various proportional cut-off points (36,
37). Therefore, we employed a digital quantitative acquisition
and analysis for the objective measurements of BCL2 and MYC
expressions without dichotomization.

The quantitative analyses of BCL2 and MYC expressions were
performed using multiplex immunofluorescence (IF) labeling
and the Automated Quantitative Analysis (AQUA) scoring
method to minimize interobserver variation. Multiplex IF
labeling with tyramide signal amplification was performed
using the Opal IHC Kit (NEL8100KT, PerkinElmer) according
to the manufacturer’s instructions. To analyze tumor-specific
biomarker expression, tumor cells were selected using CD20
expression. The tumor-specific quantitative immunofluorescence
(QIF) score representing protein expression on a cell was
calculated using the AQUA scoring method. The QIF scores
for BCL2 and MYC were calculated as the signal intensities
of each biomarker in the target compartment divided by the
pixel area of the target compartment (38) (Figure S1). Details
on multiplex IF labeling and QIF scoring are provided in the
Supplementary Material.

2.3. Modeling With Multivariable Fractional
Polynomials
Using the MFP algorithm, which variables are significant and
what functional form to take is determined through iterative
fashion. At first, the complexity of the functional form for
continuous variables and a nominal P-value for the inclusion
of variables were determined. The maximum degree of FP
for each continuous variable was set at two to prevent
the formation of overly complex model, and the nominal
significance level for testing variables and functions was set
at the conventional 0.05 level (39). FP of a certain degree
contains various terms, depending on the number of powers
allowed. By convention, powers are selected from the collection
(−2, −1, −0.5, 0, 0.5, 1, 2, 3), where 0 indicates the log
transformation. Repeated power indicates powers of log(X). For
example, an FP2 with powers (−1, −1) is of the form β0 +

β1X
−1

+ β2X
−1 log(X). All categorical variables are not subject

to FP transformation and are modeled with one degree of
freedom. Among these categorical variables and FP-transformed
continuous variables, significant variables were selected by using
backward elimination.

To reduce the risk of overfitting and find a stable multivariable
model, bootstrap resampling was performed (40, 41). After one
thousand bootstrap replications, variables for the final model
were selected according to the resulting bootstrap inclusion
fractions (BIF). BIF are defined as the proportion of bootstrap
replications in which a given variable or type of function selected
by MFP (41). To obtain a stable and interpretable model,
variables with BIF >60% were selected for the final model.
The final model in the survival analysis aimed to produce
a prognostic index which is a weighted combination of the
predictors with weights (regression coefficients) taken from the
Cox model. The prognostic index value for a given individual
summarizes the relative hazard of that person with respect to the
control population.

2.4. Statistics
We verified the performance of the fitted Cox model using
the resampling model calibration of the rms and time-
dependent receiver operating characteristic (ROC) curve of
the survivalROC packages, respectively. Survival curves
were plotted using the Kaplan–Meier method and the log-
rank test was used to analyze the statistical differences
between survival curves. P-values in the univariate analysis
were adjusted using the Benjamini-Hochberg procedure
considering multiple comparison testing. The nomogram
for predicting overall survival with the calculated prognostic
score was drawn using the rms package (42). All statistical
calculations including MFP modeling were conducted using
R version 3.4.0. (R Foundation for Statistical Computing,
https://www.R-project.org/).

2.5. Outcomes
Overall survival (OS) was defined as the time from diagnosis
until death as a result of any cause. Event-free survival (EFS)
was defined as the time from diagnosis until relapse or
progression, unplanned re-treatment of lymphoma after initial
immunochemotherapy, or death as a result of any cause. OS and
EFS time were measured in months. Outcome indicators with
given cut-off points (ie, EFS at 24 months [EFS24]) were defined
based on the outcome status at each cut-off point from the date
of the diagnosis (43).

3. RESULTS

3.1. Patient Characteristics
For the 204 patients, OS60 and EFS24 were 69.5 and 71.5%,
respectively, with a median follow up of 59 months. The
clinicopathological characteristics of the patients are summarized
inTable 1. Seven categorical (Sex, B symptom, COO, ECOG, Ann
Arbor stage, presence of HBsAg, and extranodal involvement)
and ten continuous (age, B2M, BMI, ANC, ALC, AMC,
Hb, LDH, BCL2 QIF score, and MYC QIF score) variables
were considered as candidates for selection. ECOG and
Ann Arbor stage were classified into two groups: low (0–
1)/high (2–5) ECOG and low (1–2)/high (3–4) Ann Arbor
stage. Results of univariate analysis for OS and EFS24 were
also described in Table 1. Fluorescence in situ hybridization
(FISH) results for BCL2 and MYC were available in 50
(24.51%) patients. Of those 50 patients, only one patient
(2.00%) showed rearrangements of both BCL2 and MYC. All
potential explanatory covariates were applied to the initial
cycle, because the MFP method uses backward elimination for
variable selection. Initially, the Spearman correlation matrix
was examined to investigate the dependence between variables
(Figure S2). Moderately strong positive correlations were noted
between the serum LDH and B2M levels (correlation coefficient,
0.57). The Ann Arbor Stage and extranodal involvement showed
a strong positive correlation (correlation coefficient, 0.66). There
were no significant correlations among other variables. These
results were later considered in developing a parsimonious
multivariable model.
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TABLE 1 | Baseline characteristics of patients.

Characteristics N (total = 204) % OS 2 years EFS

HR (95% CI) P-value HR (95% CI) P-value

Age (years) Median 59

Range 20–82 1.0468 (1.02–1.07) 0.0003 1.0247 (1.00–1.05) 0.0582

Sex Male 117 57.4 1.3362 (0.80–2.24) 0.3245 1.3568 (0.80–2.29) 0.3530

B symptom Present 56 27.5 1.6901 (1.01–2.83) 0.0919 1.4155 (0.83–2.42) 0.3068

β2-microglobulin (mg/L) Median 2.1

Range 0.2–15.1 1.2040 (1.10–1.31) 0.0002 1.1984 (1.10–1.31) 0.0004

BMI Median 23.5

Range 17.2–33.6 0.9479 (0.87–1.03) 0.2827 0.9755 (0.90–1.06) 0.6316

ANC (/µl) Median 4130

Range 20–16,450 1.000 (1.00–1.00) 0.870 1.000 (1.00–1.00) 0.4916

ALC (/µl) Median 1612

Range 0–11,210 0.9996 (0.99–1.00) 0.0929 0.9996 (0.99–1.00) 0.1021

AMC (/µl) Median 523

Range 0–6,000 1.0001 (1.00–1.00) 0.5883 1.000 (1.00–1.00) 0.8858

COO Non-GCB 139 68.1 1.4304 (0.80–2.56) 0.2927 1.2432 (0.70–2.20) 0.5470

ECOG High (2–5) 21 10.3 4.1723 (2.32–7.51) < 0.0001 3.4683 (1.90–6.32) 0.0004

Ann Arbor Stage High (3–4) 116 56.7 1.7883 (1.04–3.07) 0.0789 1.697 (0.99–2.92) 0.1021

Extranodal (>1) 88 43.1 2.028 (1.22–3.37) 0.0224 1.834 (1.10–3.06) 0.0582

Hb (g/dl) Median 12.0

Range 7.1–16.2 0.8918 (0.79–1.01) 0.1166 0.8585 (0.76–0.98) 0.0582

LDH (IU/L) Median 235.5

Range 93–7,131 1.0002 (1.00–1.00) 0.1011 1.0002 (1.00–1.00) 0.1021

BCL2 QIF Median 32.5

Range 0–100 1.0205 (1.01–1.03) 0.0080 1.0231 (1.01–1.04) 0.0031

MYC QIF Median 36.2

Range 0–100 1.0168 (1.00–1.03) 0.0463 1.0195 (1.01–1.03) 0.0160

BMI, body mass index; ANC, absolute neutrophil count; ALC, absolute lymphocyte count; AMC, absolute monocyte count; COO, cell of origin; ECOG, Eastern Cooperative Oncology

Group; LDH, lactate dehydrogenage; QIF, quantitative immunofluorescence; OS, overall survival; EFS, event-free survival; P-values were adjusted using the Benjamini-Hochberg

procedure.

3.2. Building an MFP Model and Bootstrap
Resampling
An initial MFP model was built for the entire cohort with
variables described above at the conventional 5% of significance
level (p <0.05) (39). For OS, age (p = 0.003) and ECOG group
(p = 0.001) were selected as statistically significant variables in
the model. For EFS24, B2M (p = 0.001) and BCL2 QIF score (p
= 0.031) were selected in the model. Age and BCL2 QIF score
were best fitted in the model when they were transformed as
first-degree FP (FP1) with power 1. B2M was best fitted when it
was transformed as FP1 with power−0.5 (Table 2). These results
suggest that age, ECOG group, and BCL2 QIF score were the
most important predictors in the initial MFP model. However,
this model was difficult to consider as stable because the model
targeted a single data set.

The stability of the established model was investigated by
bootstrap resampling (Table 3). The same algorithm was applied
to 1,000 bootstrap samples for OS and EFS24, respectively.
Some algorithms built with bootstrap samples failed to converge.
However, it was presumed that this did not affect the results

because the model was successfully developed in over 90% of the
replications. Overall, 958 and 966 MFP models with replications
were built for OS and EFS24, respectively. BIF and frequencies
for selected power are described in Table 3. Although the ECOG
group was selected in the initial model, the inclusion proportions
were only 47.60 and 36.54% in OS and EFS24, respectively.
BIF for age was 88.94% in OS but only 40.68% in EFS24. In
contrast, some of the variables that were not included in the

initial model were frequently included in the replications. In

addition, 60% of BIF was selected as a cut-off point for the

importance of a variable considering the model complexity and
clinical significance. The variables with more than 60% of BIF
were as follows: age (88.94%), B2M (78.39%), LDH (60.86%),
and BCL2 QIF score (64.09%) for OS; B2M (76.92%), LDH
(65.42%), and BCL2 QIF score (66.25%) for EFS24. Between
FP1 and FP2 transformations of each variable, a polynomial
transformation was chosen that was selected more frequently
in the model. Because second-degree FP consists of FP1 and
additional polynomials, the BIF for FP1 contains that of FP2.
Therefore, to determine the BIF of FP1 alone, the BIF of FP2
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TABLE 2 | Summary of the MFP algorithm applied to the DLBCL patient data set.

OS EFS24

Predictor In/out of

model

P-

valuea
FP In/out of

model

P-

valuea
FP

BINARY

Sex Out 0.415 Out 0.277

B symptom Out 0.414 Out 0.760

COO Out 0.408 Out 0.397

ECOG group In 0.001 N/A Out 0.056

Stage group Out 0.276 Out 0.578

Extranodal

involvement

Out 0.102 Out 0.440

CONTINUOUS

Age In 0.003 FP1(1) Out 0.595

β2-

microglobulin

Out 0.088 In 0.001 FP1

(−0.5)

BMI Out 0.397 Out 0.829

ANC Out 0.314 Out 0.311

ALC Out 0.435 Out 0.224

AMC Out 0.514 Out 0.450

Hb Out 0.485 Out 0.824

LDH Out 0.195 Out 0.388

BCL2 QIF Out 0.050 In 0.031 FP1 (1)

MYC QIF Out 0.807 Out 0.678

aAt the final cycle of the MFP algorithm. COO, cell of origin; ECOG, Eastern Cooperative

Oncology Group; BMI, body mass index; ANC, absolute neutrophil count; ALC, absolute

lymphocyte count; AMC, absolute monocyte count; Hb, hemoglobin; LDH, lactate

dehydrogenase; QIF, quantitative immunofluorescence; MFP, multivariable fractional

polynomial; FP, fractional polynomial; DLBCL, diffuse large B-cell lymphoma; OS, overall

survival; EFS24, 2-years event-free survival.

must be subtracted from that of FP1. Because the FP2 BIF for
LDH was 41.44% out of 60.86% of the entire FP1 BIF, LDH was
mainly selected with FP2 transformation in both OS and EFS24.
The mainly selected polynomial and its power for each variable
were as follows: age FP1 (1), LDH FP2 (3, 3), B2M FP1 (0), and
BCL2 QIF score FP1 (1).

3.3. Final Model and Prognostic Index
To build a parsimonious model, it is necessary to review
each selected variable and simplify unnecessary complex
transformations. As a result of the preceding analysis, a non-
monotonic second-degree FP was chosen for LDH with powers
(3, 3). Full curves of the LDH-component of the log-hazard-
ratio (HR) from both models with FP1 and FP2 were compared
(Figure S3). The model with the first-degree FP for LDH was
adjusted to 0 at 0.0008 which was 263.62 in raw data. In contrast,
the second-degree FP for LDH was adjusted to 0 at −0.00611
which was 92.80 in raw data. Considering the general clinical
knowledge regarding 250 IU/l as a cutoff value for increased
serum LDH, the first-degree FP for serum LDH was selected
for to the final model. In addition, dependence for inclusion
between B2M and LDH was also analyzed because of their
positive correlation (Figure S2). In all 958 replications, both LDH
and B2M were selected in 463 replications (48.32%). When LDH

TABLE 3 | Numbers and percentages of selected powers from 1,000 bootstrap

replications.

Variable Power Included (OS) (n = 958) Included (EFS24) (n = 966)

BIF (n) BIF (%) BIF (n) BIF (%)

Age p1 852 88.94 393 40.68

p2 328 34.24 183 18.94

Sex 232 24.22 331 34.27

B symptom 103 10.75 145 15.01

β2-microglobulin p1 751 78.39 743 76.92

p2 304 31.73 306 31.68

BMI p1 241 25.16 216 22.36

p2 39 4.07 124 12.84

ANC p1 566 59.08 527 54.55

p2 297 31.00 304 31.47

ALC p1 543 56.68 491 50.83

p2 374 39.04 332 34.37

AMC p1 201 20.98 491 50.83

p2 90 9.39 224 23.19

COO 113 11.80 135 13.98

ECOG low/high 456 47.60 353 36.54

Stage low/high 151 15.76 156 16.15

Extranodal (>1) 159 16.60 149 15.42

Hb p1 192 20.04 139 14.39

p2 132 13.78 29 3.00

HBsAg 254 26.51 105 10.87

LDH p1 583 60.86 632 65.42

p2 397 41.44 396 40.99

BCL2 QIF p1 614 64.09 640 66.25

p2 51 5.32 43 4.45

MYC QIF p1 217 22.65 298 30.85

p2 94 9.81 118 12.22

BIF, bootstrap inclusion fractions; BMI, body mass index; ANC, absolute neutrophil

count; ALC, absolute lymphocyte count; AMC, absolute monocyte count; COO, cell of

origin; ECOG, Eastern Cooperative Oncology Group; LDH, lactate dehydrogenage; Hb,

hemoglobin; QIF, quantitative immunofluorescence; OS, overall survival; EFS24, 2-years

event-free survival.

was omitted, B2Mwas included in 288 replications (30.06%), and
LDH was included in 120 replications (12.53%) when B2M was
omitted (Table S1). This result supports that both variables of
B2M and LDH should be included in the final model.

With the finalmodel, prognostic scores for OS and EFS24 were
calculated using the Cox model. The formulae for OS and EFS24
are as follows:

[OS] Prognostic index = 3.78 × Age + 0.0022 × (
LDH

1000
)3

+ 0.096 × B2M + 1.8 ×
BCL2

100

[EFS24] Prognostic index = 0.0011 × (
LDH

1000
)3

+ 0.153 × B2M + 2.11 ×
BCL2

100

The performance of the fitted Cox model was assessed in
terms of calibration and discrimination. In resampling model
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calibration, the mean absolute calibration error for OS and
EFS were 5.9 and 2.9%, respectively (Figures S3A,B). For
evaluating discrimination, time-dependent ROC curves were
plotted (Figures S3C,D). After the last observed date for OS60
and EFS24, the area under the curve (AUC) stabilized at 0.68 for
OS60 and 0.71 for EFS24, without decay of the performance.

Kaplan–Meier survival curves were depicted by applying
temporary cutoff values to the prognostic score at the 25th,
50th, and 75th quantiles (Figures 1A,B). Patient groups were
named as low, low-intermediate, high-intermediate, and high-
risk groups from the low-scoring order. OS60 for low (n =

51), low-intermediate (n = 51), high-intermediate (n = 51),

FIGURE 1 | Survival analysis according to the risk groups. Kaplan–Meier survival curves for (A) overall survival (OS) and (B) 2-years event-free survival (EFS24)

according to the prognostic index from the MFP model. (C) Kaplan–Meier survival curves for OS and (D) EFS24 according to the IPI.
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and high-risk (n = 51) patients were 89.81, 81.21, 66.40, and
37.89%, respectively. EFS24 for patients in each risk group were
89.96, 79.70, 68.26, and 48.33%, respectively. These survival
curves classified patients as efficiently as those of conventional IPI
(Figures 1C,D). Notably, log-HR values for OS and EFS24 using
prognostic scores showed a continuously increasing tendency,
while IPI showed non-continuous and inconsistent trends
(Figure S4). Survival curves and log-HR values were also plotted
with IPI risk group (Figure S6). IPI risk group was classified as
low (IPI 0–1), low-intermediate (IPI 2), high-intermediate (IPI
3), and high (IPI 4–5). The results were similar to those with IPI.
This promising result implies that the prognostic score calculated
from theMFPmodel efficiently classifies the prognosis of patients
with DLBCL.

4. DISCUSSION

Recent advances in molecular pathobiology confirmed that
DLBCL is highly heterogeneous both genetically and biologically
(12, 44). Proper risk stratification and patient selection are
required for both clinical practice and new drug development
(45). The current risk stratification systems for DLBCL, such as
IPI, have limitations in incorporating newly discovered tumor-
intrinsic prognostic factors. Moreover, determining optimal
cut-off points for these pathobiological prognostic factors is
highly difficult as readouts of most biological molecules are
continuous variables. Several studies have shown that the MFP
approach provides an improved predictive ability in analyzing
medical data that consists of various categorical and continuous
variables (25, 46, 47). In this study, we developed a prognostic
model using the MFP method in patients with DLBCL. By
using this method, continuous variables could be used as they
were without dichotomization, which minimized information
loss. In addition, this model produced a prognostic score
for each patient as a continuous variable, unlike that in the
traditional methods. As a result, age, serum LDH, serum B2M,
and BCL2 QIF score were selected to calculate prognostic
score for OS. Serum LDH, serum B2M, and BCL2 QIF score
were selected to calculate the prognostic score for EFS24.
The higher the prognostic score of the patient, the worse
was the prognosis of the patient. Risk groups based on the
prognostic score from the MFP model were well-separated by
their prognosis.

Attributes associated with the biological characteristics of
tumors, such as serum LDH and B2M, were selected in the model
for short-term outcomes (EFS24). Notably, age was additionally
selected in the prognostic model for the long-term outcome (OS)
compared to the prognostic model for the short-term outcome.
These results imply the overall status of a patient may play an
important role in their long-term prognosis. The serum LDH
level is included in the current IPI and represents the tumor
burden. In addition to serum LDH, serum B2M was also selected
in the prognostic model for both OS and EFS24. The serum
B2M levels in a patient with lymphoma, similar to the serum
LDH levels, have been widely accepted as directly related to
tumor burden (48). However, serum B2M levels also imply

involvement of the immune reaction to the tumor because it is
a component of major histocompatibility complex (MHC I) (49,
50). Based on these grounds, several studies have shown the poor
prognostic effect of serum B2M in DLBCL (30, 51, 52). However,
these results are controversial, and most of these studies have
shown difficulties in determining the universal optimal cut-off
point. The prognostic effect of serum B2M in DLBCL as a
continuous value was confirmed without determining a specific
cut-off point.

Using the current risk stratification system of hematologic
malignancy, it is difficult to comprehensively predict the
prognosis of patients with DLBCL. A major limitation of
the IPI system is that it does not allow the incorporation
of newly discovered prognostic factors, most notably BCL2
and MYC. BCL2 and/or MYC expression in DLBCL is
associated with aggressive behavior and poor prognosis (9,
35, 36, 53). However, the proportional cut-off points of their
expressions are still arbitrary, and a recent study has shown
the importance of intensity of BCL2 expression as well as
its extent (36). To overcome this limitation and produce
an objective, the continuous variable for measuring protein
expression, multiplex IF for BCL2 and MYC with tumor marker
CD20 was exploited. Fluorescence is more linear and has
a wider dynamic range compared to those of chromogenic
immunohistochemistry (54), which allows object acquisition
of the expression amount of each protein. As a result, the
BCL2 QIF score was selected as a predictor of poor prognosis,
which is consistent with previous findings. However, MYC
expression was not selected in the current prognostic model.
Of note, COO was not found to be an important predictor
and this result is consistent with the existing controversies on
the prognostic importance of COO (55). These results suggest
that our prognostic model is flexible enough to incorporate
biomarkers of DLBCL into a single risk stratification system
and is consistent with the results of other previous studies.
It can be also used to improve the prognostic ability of the
existing prognostic model by adding continuously updating
new information (56).

The limitation of this study is the relatively small sample size
and event number. Also, the lack of external validation can be
another limitation. To overcome these limitation and establish
a stable prognostic model, we performed bootstrap resampling
method. Although we verified the model using the internal
validation, further external validation study may potentially
provide better insight for performance of the model. Regarding
the relatively small event number, the final number of variables
for a Cox regression model was two or three. Considering the
suggestions of previous simulation studies that minimum events
per variable values of between 5 and 20 were needed for reliable
results, the final number of covariates of this study seems to be
reasonable (57).

In this study, we suggest a new prognostic model using
the MFP method in DLBCL, which allows the flexible
incorporation of variable clinicopathological factors into a single
risk stratification system. It is a simple and interpretable model
consisting of only objectively quantified measurements and
incorporates non-linear relationships. The model also presents
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a continuous prognostic score in each patient that can provide
enormous flexibility in classifying risk groups. In the clinical
practice, this prognostic score can be used in the form of a
nomogram predicting patients’ survival (Figure S7). The MFP
method has been studied in some solid cancers including breast
cancer and renal cell carcinoma (39, 56, 58). Prognostic modeling
using the MFP method with full information resulted in better
performance in previous studies. Most notably, this is the first
study to our knowledge to investigate the effectiveness of MFP
methods in hematological malignancies. Further studies using
a large patient population will increase the generalizability of
this method.
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