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The tumor microenvironment (TME) is composed of various cell types embedded in an

altered extracellular matrix (ECM). ECM not only serves as a support for tumor cell but

also regulates cell–cell or cell–matrix cross-talks. Alterations in ECM may be induced by

hypoxia and acidosis, by oxygen free radicals generated by infiltrating inflammatory cells

or by tumor- or stromal cell-secreted proteases. A poorer diagnosis for patients is often

associated with ECM alterations. Tumor ECM proteome, also named cancer matrisome,

is strongly altered, and different ECM protein signatures may be defined to serve as

prognostic biomarkers. Collagen network reorganization facilitates tumor cell invasion.

Proteoglycan expression and location are modified in the TME and affect cell invasion and

metastatic dissemination. ECM macromolecule degradation by proteases may induce

the release of angiogenic growth factors but also the release of proteoglycan-derived

or ECM protein fragments, named matrikines or matricryptins. This review will focus on

current knowledge and new insights in ECM alterations, degradation, and reticulation

through cross-linking enzymes and on the role of ECM fragments in the control of cancer

progression and their potential use as biomarkers in cancer diagnosis and prognosis.

Keywords: cancer, microenvironment, extracellular matrix, matrikines, integrins, proteases

INTRODUCTION

The tumor microenvironment (TME) is a complex structure composed of a large variety of cell
types embedded in a modified extracellular matrix (ECM), with bidirectional communication
between cells and ECM macromolecules to determine tumor progression and metastatic
dissemination. The communication may involve cell–cell contacts but may also be controlled by
intact ECM macromolecules or by several of their domains released by limited proteolysis and
called matrikines or matricryptins. In this review, we will focus on ECM alterations occurring in
TME, on the role of released matrikines in the control of cancer progression, and on the potential
use of ECM fragments as biomarkers for cancer diagnosis and prognosis.
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TUMOR MICROENVIRONMENT: AN
ACTIVE PLAYER IN CANCER
PROGRESSION

Tumors are diverse by the nature of their TME composition,
stromal cell proportion, and activation states. TME undergoes
transformations during tumor progression as a result of tissue
remodeling. TME comprises a wide variety of cell types
such as fibroblasts, endothelial cells, pericytes, and immune
and inflammatory cells. These different cells elicit cross-talks
leading to cell activation and differentiation and alterations in
ECM structural and biological properties facilitating tumor cell
proliferation, invasion, and metastatic dissemination. Within
the TME, different T cell and B cell populations infiltrate
invasive tumors and draining lymphoid organs (1). Tumor-
associated macrophages (TAMs) are either tissue-resident or
derived from bone marrow or spleen and play an important
role in tumorigenesis regulation by facilitating cell migration,
invasion, and metastasis (2). Tumor cells lead to the recruitment
of neutrophils in tumorigenesis sites by secreting chemokines
and interleukin (IL)-8. Infiltration by neutrophils appears to
confer a poor prognosis (3). A dominant cellular component
is fibroblasts that exert a key role in cancer progression
and metastasis. Fibroblasts are usually quiescent and become
activated to differentiate into myofibroblasts, also called cancer-
associated fibroblasts (CAFs) (4). The main progenitors of
CAFs come from resident fibroblasts, but CAFs can also
come from smooth muscle cells, pericytes, or from bone
marrow-derived mesenchymal cells leading to a heterogeneous
cell population (5–7). Growth factors, secreted by tumor
cells and infiltrating immune cells, largely govern stromal
fibroblast recruitment. Transforming growth factor (TGF)β,
platelet-derived growth factor (PDGF), and fibroblast growth
factor (FGF)2 are key mediators of fibroblast activation. CAFs
become synthetic machines that produce TME components
creating an ECM structure as well as metabolic and immune
reprogramming of TME. CAF secretome includes growth factors
[epidermal growth factor (EGF), bone morphogenetic protein
(BMP), FGF, or TGFβ] and some chemokines such as C-
X-C motif ligand (CXCL)12 or stroma-derived factor (SDF)-
1, which recruit circulating endothelial progenitor cells (4).
These soluble factors, in conjunction with the angiogenic
switch and several miRNAs, stimulate endothelial cells and
their associated pericytes to develop tumor angiogenesis or
lymphangiogenesis (2).

Abbreviations: ADAMTS, a disintegrin and metalloproteinase with

thrombospondin motifs; BMP, bone morphogenetic protein; CAF, cancer-

associated fibroblast; ECM, extracellular matrix; ERC, elastin receptor complex;

FGF, fibroblast growth factor; 4E-BP1 protein, eukaryotic initiation factor

4E-binding protein 1; HER2, human epidermal growth factor receptor-2; LN,

laminin; LOX, lysyl oxidase; MMP, matrix metalloproteinase; mTOR, mammalian

target of rapamycin; PDGF, platelet-derived growth factor; ROS, reactive oxygen

species; SDF 1, stroma-derived factor 1; SSTN, synstatin; sVEGFR1, soluble

VEGF tyrosine kinase receptor 1; TAM, tumor-associated macrophage; TGFβ,

transforming growth factor β; TME, tumor microenvironment.

METABOLIC ALTERATIONS IN THE
TUMOR MICROENVIRONMENT

During the local growth of tumor, the surrounding vessels
fail to meet the high demand of oxygen leading to hypoxic
areas within the tumor and TME (8). Prolyl-hydroxylases
are responsible for the labeling of hypoxia-inducible factors
(HIFs) to be degraded by 26S proteasome. Under hypoxic
conditions, prolyl-hydroxylases are inhibited, leading to the
stabilization of HIFs that induces the expression of various genes
implicated in tumor progression. Moreover, hypoxic responses
include the unfolded protein response (UPR) and mammalian
target of rapamycin (mTOR) signaling (9). mTOR signaling,
through the phosphoinositide 3-kinase (PI3K)/Akt pathway,
largely contributes to the regulation of cell survival, growth,
and metabolism through phosphorylation of the eukaryotic
initiation factor 4E-binding protein 1 (4E-BP1 protein) and
ribosomal protein S6 kinase (10). HIF-1 is also a key regulator
of the metabolic switch. By inducing specific gene expression, it
alters the cellular metabolism, increasing glycolysis and lactate
production (11, 12). Lactate arises from glycolysis which takes
place under hypoxic conditions, but in tumors, glycolysis can also
take place in oxygenated areas (8).

Nicotinamide adenine dinucleotide phosphate (NADPH)
oxidase of inflammatory cells generates oxidative stress.
Superoxide ions are converted into hypochlorous acid (HOCl)
by myeloperoxidase and into OH• radicals. Tumor cells with
a high metabolism also release reactive oxygen species (ROS)
and promoted ROS production in CAFs. ROS induce oxidative
stress in TME and activate HIF-1 and nuclear factor (NF)-κB
pathways, leading to an increase in autophagy (7). ROS also
induce strong alterations in DNA, cell membrane, and ECM
components. For example, collagen I is partially degraded by
ROS and becomes more susceptible to proteolytic cleavage
(13). Among proteases, neutrophils or TAMs secrete matrix
metalloproteinase (MMP)-8 and-9 as well as neutrophil elastase
that collaborates with CAF-secreted proteases to degrade ECM.

Main metabolic alterations of TME are summarized in
Figure 1.

EXTRACELLULAR MATRIX ALTERATIONS
IN THE TUMOR MICROENVIRONMENT

Another important feature of TME is the composition and
organization of ECM, whose mechanical properties affect cell
behavior. The ECM is mainly secreted by CAFs which produce
more ECM proteins than normal fibroblasts. It is composed
of various macromolecules including collagens, glycoproteins
(fibronectin and laminins), proteoglycans, and polysaccharides
with different physical and biological properties. Interstitial
matrix, primarily synthesized by stromal cells, is rich in fibrillar
collagens and proteoglycans. CAF secretome analyses show an
increased secretion of bone morphogenetic protein (BMP)1,
thrombospondin-1, and elastin interface 2 (7, 14). Several splice
variants of fibronectin ED-A and ED-B and tenascins C and
W may be secreted by CAFs (15). Interstitial ECM is highly
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FIGURE 1 | Main metabolic and extracellular matrix (ECM) alterations in the tumor microenvironment (TME) during tumor progression. During cancer progression,

tumor cells increase lactate production, leading to an acidification of TME. Tumor cells, cancer-associated fibroblasts (CAFs), polymorphonuclear leukocytes (PMNs),

and monocytes secrete proteases, such as matrix metalloproteinases (MMPs), that degrade ECM and release matrikines. CAFs induce a higher secretion of ECM

macromolecules that leads to an excessive deposition of ECM components. Tumor cells, PMNs, and monocytes produce reactive oxygen species (ROS) that degrade

ECM components and particularly collagen I, facilitating tumor cell migration. They also stimulate the production of MMPs. Hypoxia also induces hypoxia-inducible

factor (HIF) stabilization, lysyl oxidase (LOX) and transglutaminase activation, collagen and elastin cross-linking leading to ECM stiffening. These events favor tumor cell

migration and cancer progression.

charged and hydrated and greatly participates in the tensile
strength of tissues. Stiffness of neoplastic tumors is strongly
higher than adjacent normal tissues. Cancer cells, CAFs, and
TAMs, stimulated by hypoxia, modulate together ECMwithin the
TME through an excessive deposition of structural components
such as collagens, as well as cross-linking enzymes of the
lysyl oxidase (LOX) and transglutaminase families, particularly
LOX-1, LOXL-2, and transglutaminase-2 (16, 17). Collagen
and elastin fibers are reoriented and cross-linked by LOX and
transglutaminase, resulting in larger and more rigid fibrils that
facilitate cell migration (18, 19). Figure 1 summarizes the main
ECM alterations in TME.

EXTRACELLULAR MATRIX BREAKDOWN
BY MIGRATING CANCER CELLS

A decisive hallmark in cancer progression is the crossing of ECM
and basement membrane (BM) by cancer cells. To penetrate the
ECM, cancer cells secrete a number of proteolytic enzymes of
the MMP family. BMs are specialized ECMs which are more

compact and less porous. They present a distinct composition
with collagen IV and laminin interconnected networks and
proteoglycans such as perlecan. Several other types of collagen
are associated to the BM, collagens XV, XVIII, and XIX.
During ECM-barrier crossing, proteases release soluble and
active fragments referenced in Table 1, called matrikines or
matricryptins which may control cancer progression.

EXTRACELLULAR MATRIX-DERIVED
FRAGMENTS INFLUENCE TUMOR
PROGRESSION

The different matrikines derived from ECM macromolecules,
collagens, glycoproteins, or proteoglycans may exert either
pro- or anti-tumorigenic properties in various cancer models
(Table 1). We and others demonstrated that collagen IV-
derived matrikines (canstatin, tumstatin, and tetrastatin) and
collagen XIX-derived matrikine act through binding to α3β1,
α5β1, or αVβ3 integrins. The binding elicits an inhibition of
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TABLE 1 | ECM fragments affect the main hallmarks of cancer progression.

ECM bioactive fragments Parent molecule Generating enzymes Receptors Biological activity

Collagen fragments

Type IIB procollagen NH2 propeptide Type IIB collagen ADAMTS-3 (20) αvβ3, αvβ5 integrins (21) ր EC and tumor cell death (chondrosarcoma,

cervical and breast cancer) (21) through

programmed cell necrosis (22)

Arresten (α1 chain NC1 domain) Type IV collagen Cathepsin S (23)

MT1-MMP,

MT2-MMP (24)

α1β1 integrin (25, 26) ց Angiogenesis and tumor growth (melanoma,

glioblastoma, colorectal and lung cancer,

squamous cell carcinomas) (25)

ց FAK/c-Raf/MEK-1/2/ERK-1/2/p38 MAPK

pathways in EC

ր EC apoptosis through bcl-xl/bax ratio

modulation (25)

Canstatin (α2 chain NC1 domain) Type IV collagen Cathepsin S (23)

MT1-MMP,

MT2-MMP (24)

α1β1, αvβ3, αvβ5 integrins

(27)

ց Angiogenesis and tumor growth (ocular,

lung, breast, oral squamous cell, esophageal

carcinoma, gastric, ovarian, pancreatic,

prostate, and colorectal cancer (28)

ց VEGF-A/VEGFR-1-2 signaling pathway in

squamous cell carcinoma (29)

ր Apoptosis in cancer cell and EC through

bcl-2bcl-xl/bax ratio modulation (30)

ց Caspase 8 and 9 activation in EC (27)

Tumstatin (α3 chain NC1 domain) Type IV collagen MMP-9 (31) αvβ3, αvβ5 integrins (32) ց Angiogenesis and tumor growth (melanoma,

glioma, osteosarcoma, breast, colon, prostate

and lung cancer, gastric, hepatocellular, and

squamous cell carcinoma (33, 34)

54–132 amino-acid sequence 54–132 amino-acid sequence:ր G1 arrest, ր

caspase-3 activation and ց

FAK/PI3K/Akt/mTOR pathway in ECs (35)

185–203 amino-acid sequence 185–203 amino-acid sequence :ց melanoma

and EC migration through a decrease in

MMP-2, uPA, t-PA (36)

Tetrastatin (α4 chain NC1 domain) Type IV collagen αvβ3 integrin (37) ց Tumor growth (melanoma, glioma,

osteosarcoma, breast, colon, prostate and lung

cancer, gastric, hepatocellular and squamous

cell carcinoma (37–40)

ց FAK/PI3K/Akt pathway and ց MMP-2 in

tumor cells (37, 38)

Lamstatin (α5 chain NC1 domain) Type IV collagen ց Angiogenesis (41) and lung cancer growth

(42, 43)

Unknown molecular mechanism

Hexastatin (α6 chain NC1 domain) Type IV collagen ց Angiogenesis and tumor growth (Lewis

lung carcinoma and spontaneous pancreatic

insulinoma) (44)

Unknown molecular mechanism

Vastatin (NC1 domain of collagen VIII

alpha 1 chain)

Type VIII collagen ց EC proliferation and tumor growth and

metastasis in murine hepatocellular carcinoma

models (45)

ց PcK1, JAG2, and c-Fos, ց Notch/AP-1

pathway (46)

Restin (NC10 domain of collagen XV) Type XV collagen ց EC migration, renal carcinoma growth (47)

and breast cancer metastasis (48)

ց ATF3 activity by direct interaction (49)

ց EMT through p-73 binding, mir-200a/b

increase and ZEB1/2 inhibition in breast cancer

cells (48)

Endostatin (20-kDa C-terminal

fragment of collagen XVIII)

Type XVIII collagen α5β1 integrin; caveolin-1 (50) ց Angiogenesis, lymphangiogenesis and tumor

growth (51)

ր Src-kinase pathway, ց RhoA GTPase

activity; ց Ras/c-Raf/p38/Erk-1 pathway in EC

(52, 53)

(Continued)
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TABLE 1 | Continued

ECM bioactive fragments Parent molecule Generating enzymes Receptors Biological activity

Frizzled domain (FZC18): ց Wnt/β-catenin

pathway (54)

NC1 XIX Type XIX collagen Plasmin (55) αvβ3 integrin (56) ց Melanoma cell migration, invasion, tumor

growth and angiogenesis (56, 57)

ց MMP-14 (57) in melanoma

ց FAK/PI3K/Akt/mTOR pathway in melanoma

cells (57)

Elastin fragments

VG-6 (VGVAPG) Elastin Proteinase 3,

cathepsin G (58),

MMP-7,9,12 (59),

neprilysin (60)

ERC, αvβ3 and αvβ5 integrins,

galactin-3 (61), RPSA (62)

ր Angiogenesis (63) and tumor growth in

melanoma models (62, 64, 65)

ր MT1-MMP, ր PI3K/Akt/NO synthase, ր

NO/cGMP/Erk1/2 pathways in EC (66)

ր IL-1β through NF-κB pathway in melanoma

cell (67)

ր MMP and plasminogen activation cascades

in cancer cells

AG-9 (AGVPGLGVG) Elastin Proteinase 3,

cathepsin G (58),

MMP-7,9,12 (59),

neprilysin (60)

RPSA (62) ր Tumor growth in a melanoma model (62)

ր Tumor cell migration, invasion through MMP

and plasminogen activation cascades

Laminin fragments

IKVAV (α1 chain fragment) Laminin-111 α3β1 and α6β1 integrins (68) ր Angiogenesis, tumor growth, and metastasis

(68)

ր bone marrow mesenchymal stem cell

proliferation by activating MAPK/ERK1/2 and

PI3K/Akt signaling pathways (69)

ր t-PA in melanoma cells (68)

AG73 (RKRLQVQLSIRT from α1 chain) Laminin-111 Syndecans 1, 2, and 4 (68) ր Angiogenesis and tumor growth (68)

ր Rac1 and ERK1/2 signaling pathways (70)

YIGSR (β1 chain fragment) Laminin-111 67 KD receptor (68) ց Tumor growth and metastasis (68)

Unknown mechanism

C16 (KAFDITYVRLKF from γ1 chain) Laminin-111 αvβ3 and α5β1 integrins (68) ր Tumor growth (68)

ր MMP-9 production in melanoma cells (68)

γ2 chain N-terminal fragment Laminin 332 MMP-2, cathepsin S,

MT1-MMP (71)

α3β1 integrin, CD-44 (71) ր Angiogenesis, tumor growth and metastasis

(71)

Unknown mechanism

α3 chain C-terminal fragment Laminin 332 Plasmin, MMP-2,

MT1-MMP,

C-proteinase, mTLD,

BMP-1 (71)

α3β1 and α6β1 integrins (71) ր Angiogenesis, tumor growth (71)

Unknown mechanism

A5G27 (RLVSYNGIIFFLK from α5 chain) Laminin 511 Cell surface glycans (72) ց Breast tumor cell proliferation

ր 4T1.2 experimental pulmonary metastasis

(72)

Unknown mechanism

Fibronectin fragments

Anastellin (type III module) Fibronectin ց Angiogenesis, tumor growth and metastasis

(73)

ր p38 MAPK activation in EC (74)

Proteoglycans fragments

Metastatin Aggrecan ADAMTS (75) ց Growth, migration, angiogenesis of

melanoma and prostate cancer (76)

Unknown mechanism

Endorepellin

LG3 fragment (C-terminal fragment of

Endorepellin)

Perlecan MMP-7 (77)

Cathepsin L and

BMP-1-Tolloid-like

proteases (78)

α2β1 integrin (79) ց EC proliferation and migration, angiogenesis,

tumor growth (78–84)

ց VEGF-A/VEGFR pathway in EC (79)

ր autophagy through Peg3 activation in EC

(79, 85)

(Continued)

Frontiers in Oncology | www.frontiersin.org 5 April 2020 | Volume 10 | Article 397

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Brassart-Pasco et al. ECM Alterations Influence Tumor Progression

TABLE 1 | Continued

ECM bioactive fragments Parent molecule Generating enzymes Receptors Biological activity

Versikine Versican ADAMTS (86) TLR2 (34) ր Immunogenicity in myeloma (87, 88)

ր IL-1β, IL-6 expression by

myeloma-associated macrophages through

both Ppl2 kinase-dependent or -independent

pathways (88)

Lumcorin (SSLVELDLSYNKLKNIP)

L9M (ELDLSYNKLK) Lumikine/LumC13

(YEALRVANEVTLN)

Lumican α2β1 integrin (89), MMP-14

(90, 91), ALK5/TGFβR1 (92)

ց Growth, migration, angiogenesis in

melanoma and breast cancer (93–96)

ց FAK/Akt/ERK pathway

ց MMP-14 proteolytic activity (90, 97)

ր keratocytes migration (92, 98)

Synstatins

SSTN 92-119, SSTN 82-130, SSTN

210-240

Syndecan-1 αvβ3, αvβ5 and α3β1

integrins,

HER2, VEGFR2 (co-receptors

of ectodomain) (34, 99–103)

ց Angiogenesis in breast cancer (104–106)

Depend on HER2- and EGFR-coupled

mechanism (104)

SSTN87-131 Syndecan-4 EGFR, α3β1 integrin

(co-receptors of ectodomain)

(34)

ց Cell motility (104)

Depend on HER2- and EGFR-coupled

mechanism (104)

Glypican fragments

Glypican-3 derived peptide Glypican-3 Wnt ր Cell proliferation, migration and invasion in

hepatocellular carcinoma (107)

րWnt/β-catenin, Hedgehog, and YAP pathway

(108–110)

ր Macrophage recruitments in tumor (108)

ր EMT (108)

Has

HA oligosaccharides HA CD44 (111) Alters tumor growth, metastatic potential, and

progression in prostate, colon, breast, and

endometrial cancers (112, 113, 165)

LMW HA promotes angiogenesis (114)

HMW HA decreases angiogenesis, induces

EMT (114)

4E-BP1 protein, eukaryotic initiation factor 4E-binding protein 1; ADAMTS, a disintegrin and metalloproteinase with thrombospondin motifs; AP-1, activator protein 1; ATF, activating

transcription factor; ALK5, TGFβ type I receptor kinase; BMP, bone morphogenetic protein; cGMP, cyclic guanosine monophosphate; EC, endothelial cell; ECM, extracellular matrix;

EGFR, epidermal growth factor receptor; EMT, epithelial–mesenchymal transition; ERC, elastin receptor complex; ERK, extracellular signal-regulated kinase; FAK, focal adhesion kinase;

HA, hyaluronan; HER2, human epidermal growth factor receptor-2; HMW-HA, high-molecular-weight HA; IL, interleukin; JAG2, jagged canonical Notch ligand 2; LMW-HA, low-molecular-

weight HA; MAPK, mitogen-activated protein kinase; MEK, MAPK/ERK kinase; MMP, matrix metalloproteinase; mTLD, mammalian Tolloid; mTOR, mammalian target of rapamycin; NF,

nuclear factor; NO, nitric oxide; PI3K, phosphoinositide 3-kinase; RPSA, ribosomal protein SA; TLR, Toll-like receptor; t-PA, tissue-type plasminogen activator; uPA, urokinase-type

plasminogen activator; VEGF, vascular endothelial growth factor; VEGFR, vascular endothelial growth factor tyrosine kinase receptor; TGFβ, transforming growth factor β.

the focal adhesion kinase (FAK)/PI3K/Akt/mTORC1 pathway,
which is one of the main intracellular pathways involved in
TME metabolic alterations. The inhibition leads to a decrease
in the proliferative and invasive properties of tumor cells in
various cancer models (27, 33, 38, 56). The main receptors,
biological activities, and molecular mechanisms identified for
ECM bioactive fragments are reported in Table 1 and are
illustrated in Figure 2.

EXTRACELLULAR MATRIX FRAGMENTS
AS TUMOR BIOMARKERS

During cancer progression, an excessive ECM remodeling by
proteinases, especially MMPs, is observed, and small ECM
fragments are released into the circulation. The levels of these
fragments may represent a measure of tumor activity and
invasiveness and could be proposed as biomarkers (115). Serum

and biofluid biomarkers are easy to collect, noninvasive, low
cost, and can be followed over the course of the disease.
Identification of new biofluid biomarkers may help in early
detection, diagnosis, disease monitoring, and in individual
treatment selection and thus on patient outcome. However, the
low concentrations of ECM-derived fragments in body fluids
remain a limitation to the development of these biomarkers in
daily practice.

Collagens
Type I collagen is a major ECM component susceptible
to proteinase degradation during cancer progression. Type
I collagen cross-linked carboxyterminal telopeptide (ICTP)
measurement in patient sera appears to be useful for bone
metastasis screening in lung cancer patients, including stage
III–IV non-small-cell lung cancer (NSCLC) or extensive
disease (ED) small-cell lung cancer (SCLC) (116). ICTP
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FIGURE 2 | Schematic representation of the main transduction pathways altered by extracellular matrix (ECM) bioactive fragments. Bioactive fragments stimulating

the pathway are outlined in green, and fragments with inhibitory activity are outlined in red. Endostatin inhibits the Wnt/β-catenin pathway, while glypican-3 triggers this

pathway. Tumstatin, tetrastatin, endostatin, NC1(XIX), and lumcorin inhibit the phosphoinositide 3-kinase (PI3K)/Akt/mammalian target of rapamycin (mTOR) pathway

through integrin binding while VGVAPG and IKVAV activate this pathway through elastin receptor complex (ERC) and integrin binding, respectively. VGVAPG and

IKVAV also activate the mitogen-activated protein kinase (MAPK) pathways. Arresten and canstatin activate the Bcl-2 pro-apoptotic pathway through integrin binding.

level in serum from patients with esophageal squamous
cell carcinoma significantly correlates with tumor progression
variables, including TNM stages (≥T2, N1, and M1), TNM
stage ≥II, and maximal tumor length greater than 50mm
(117). A high level of ICTP in preoperated patient serum
appears to be an important marker of better prognosis
in triple-negative breast cancer and luminal-B-like [human
epidermal growth factor receptor (HER)2-negative] subtypes
(118). The elevation of the cross-linked N-telopeptide of
type I collagen (NTx) appears positively related with the
development and progression of bone metastasis in lung cancer
(119). NTx serum concentration may also have a prognostic
value in patients with prostate cancer at diagnosis (120). A
high level of serum NTx (>22 nmol BCE/L) is correlated
with a reduction in overall survival (OS) in patients with
NSCLC (121).

In the follow-up of patients with radical resection of colorectal
carcinoma, the N-terminal peptide of type III procollagen
(marker of ECM synthesis) was reported as an early prognostic
indicator of recurrence (122).

The serum level of tumstatin is significantly higher in patients
with NSCLC compared to healthy patients (123).

The levels of markers reflecting type I (C1M), type III (C3M),
and type IV (C4M, C4M12) collagen degradation by MMPs
were significantly elevated in serum of ovarian or breast cancer
patients compared to healthy controls (124).

Type VI collagen expression is correlated with various
pro-tumorigenic events. Levels of type VI collagen α1 and
α3 chain fragments, derived from MMP proteolysis, appear
higher in serum from cancer patients (breast, colon, gastric,
ovarian, pancreas, prostate cancer, NSCLC, SCLC, melanoma)
compared to healthy patients and have promising diagnostic
accuracy (125). Type VI collagen α3 chain circulating fragment
levels were significantly higher in the serum of pancreatic
ductal adenocarcinoma patients compared to healthy patients or
patients with benign lesions (126).

Elevated serum endostatin levels were found in various human
cancers including colorectal cancer (127), soft tissue sarcoma
(128), and advanced-stage nasopharyngeal carcinoma (129).
They are correlated with a favorable outcome in acute myeloid
leukemia (130). On the contrary, high serum endostatin levels
are associated with enhanced ECM degradation and poor patient
outcome in patients with bladder cancer (131) and with non-
Hodgkin lymphoma (132). Determination of soluble vascular
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endothelial growth factor tyrosine kinase receptor (sVEGFR)-
1 and endostatin levels may be useful in the diagnosis of
malignant pleural effusions in patients with lung cancer (133).
Preoperative serum VEGF and endostatin levels may be used for
evaluating the biological behavior, invasion, and metastasis of
gastric, hepatocellular, and colorectal carcinoma (134).

Elastin
Elastin fragments, released by proteases, are increased in the
serum of stage I–IV NSCLC patients compared to healthy
controls. These results suggest the use of elastin fragments as
potential biomarkers (135), but further validations in clinical
trials are needed.

Laminins
Laminins were reported to promote tumor progression. The
serum level of LNγ2 fragments increases according to the
T classification of head and neck squamous cell carcinoma
(HNSCC) and decreases after the use of curative treatments.
The level of LNγ2 fragments in serum may be useful to predict
response to treatment of patients with HNSCC (136). The
presence of soluble laminin fragments (ULN) corresponding
to the N-terminal domain of the β2 chain was measured in
urine of healthy subjects and patients with tumor. Mean level of
ULN in lung tumor patients is significantly higher than that in
healthy subjects (137). Serum laminin P1 fragment was studied
in patients with SCLC and NSCLC and in normal subjects. The
serum concentration of laminin P1 was elevated in 58.9% of
SCLC and in 11.5% of NSCLC patients compared to healthy
subjects. Median value in SCLC patients was significantly higher
than that in NSCLC patients and in normal subjects (138). Urine
laminin P1measurement allows to discriminate between invasive
and noninvasive urothelial cell carcinoma of the bladder (139).

Proteoglycans
The cleavage of proteoglycans like aggrecan and versican by a
disintegrin and metalloproteinase with thrombospondin motifs
(ADAMTS) in epithelial ovarian cancer has been demonstrated
and is considered of prognostic value (75).

Perlecan fragments in the serum of prostate cancer
patients were correlated with overall MMP-7 staining levels
in prostate cancer tissues. Domain IV fragments of perlecan
were highlighted in stage IV patient sera, but not detected in
normal patient sera, suggesting that perlecan is degraded during
metastasis. The association of perlecan fragments in sera and
MMP-7 expression in tissues reflects prostate cancer invasivity
(77). In breast cancer, the level of the endorepellin LG3 fragment
in serum was significantly lower in breast cancer patients
compared to healthy subjects. This suggests the endorepellin
LG3 fragment as a new potential serological biomarker in breast
cancer (140).

NSCLC patients presenting tumors with a low concentration
of sulfated glycosaminoglycans (GAG) and high proteoglycan
(PGs) levels presented better overall survival compared to
patients with a high concentration of sulfated GAG and low
expression of proteoglycans. These data suggest that matrix PGs
could be considered as biomarkers in lung cancer (141).

Versican has been shown to be a potential biomarker in
different cancers such as hepatocellular carcinoma (142), colon
cancer (143), and recently in ovarian cancer (144). Hope et al.
(145) provide a rational for testing versican proteolysis as a
predictive and/or prognostic immune biomarker.

Lumcorin, a lumican-derived peptide mimics the inhibitory
effect of lumican in melanoma progression (97). Lumikine,
another lumican-derived peptide, promotes the healing of
corneal epithelium debridement (92). These peptides might be
putative cancer biomarkers but, to our knowledge, there are up to
now no data in the literature describing lumican-derived peptides
as biological markers in cancer.

Syndecan-1 was reported to play an immunomodulatory
function in the polarization of CD4+ T helper (Th) cells that
were isolated from the TME of inflammatory breast cancer (IBC)
and non-IBC patients (99). These results suggest that syndecan-1
expression in tumor could offer therapeutic potential in breast
cancer. Remarkably, syndecan-1 seems to be overexpressed in
inflammatory breast cancer, making it a potential biomarker.

New biomarkers such as syndecan-2 gene methylation (with
improved detection sensitivity and specificity at lower costs)
should lead to a great improvement in colorectal cancer
screening. Syndecan-2 gene methylation was reported as a
frequent event in precancerous lesions and appears detectable
in bowel lavage fluid to identify patients with colorectal cancer
(146, 147).

Syndecan-3- and aggrecan-peptides were recently described
as novel biomarkers for the detection of epithelial ovarian
cancer (144).

Syndecan-1 and syndecan-4 are described as independent
indicators in breast carcinomas (148). Peptides based on
interaction motifs in syndecan-1 and syndecan-4, named
synstatins or SSTN peptides, are potential therapeutic agents for
carcinomas depending on the HER2 and epidermal growth factor
receptor (EGFR) pathway for their invasion and survival (104).

Glypican-1 detected in exosomes was suggested as a putative
biomarker for early detection of pancreatic (149–154) and
colorectal cancer (155, 156).

Glypican-3 is an important player in the Wnt, Hedgehog,
and YAP signaling cascades involved in cancer cell proliferation
and migration (108, 109). It is overexpressed in hepatocarcinoma
and lung carcinoma and was reported as a poor prognosis
marker in hepatocarcinoma. Glypican-3 represents a promising
immunotherapeutic target. Different GPC3-targeting therapies
have been developed: the use of humanized anti-GPC3
cytotoxic antibodies, the treatment with peptide/DNA vaccines,
immunotoxin therapies, and genetic therapies (107, 157–162).

The involvement of CD44 and hyaluronan (HA) and the
interaction of both molecules were demonstrated in numerous
cancers (Table 1) and suggest their potential as biomarkers. HA
molecules may exert distinct effects depending on their size and
concentration. High-molecular-weight HAs (HMW HAs) are
involved in cell proliferation and tissue development, whereas
low-molecular-weight HAs (LMW HAs) enhance angiogenesis.
Serum level of LMW HA in patients with breast cancer was
correlated with lymph node metastasis, and LMW HA was
suggested as a cancer biomarker (114). An increase in HA levels
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induces tumor growth in mice and is associated with poor
prognosis in pancreatic ductal adenocarcinoma (PDAC) patients.
The inhibition of HA synthesis/signaling or the depletion of HA
in tumor stroma may be a promising therapeutic approach to
fight against PDAC progression (112). HA was also reported to
facilitate cell proliferation and invasiveness in malignant pleural
mesothelioma (163) and in melanoma (164) andmay be used as a
biomarker for early diagnosis and management of these diseases
(163–165).

CONCLUSION

ECM fragments evidenced peripheral tissue proteolysis by cancer
cells and could control cancer progression by exerting both
anti-angiogenic and anti-tumorigenic properties. We showed
that ECM-derived bioactive fragments are able to inhibit major
transduction pathways involved in TME alterations, such as
the FAK/PI3K/Akt/mTORC1 pathway (Figure 2). They represent
potent antitumor agents thatmight be useful in combination with
conventional chemo-, immune-, and targeted therapies as part
of personalized medicine. Moreover, they diffuse into the body

and are easy to measure in the blood or body fluids and thus
can represent valuable markers for the diagnosis and prognosis
of numerous cancers.
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