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Sialic acids (SA), negatively charged nine-carbon sugars, have long been implicated

in cancer metastasis since 1960’s but its detailed functional roles remain elusive. We

present a computational analysis of transcriptomic data of cancer vs. control tissues of

eight types in TCGA, aiming to elucidate the possible reason for the increased production

and utilization of SAs in cancer and their possible driving roles in cancer migration. Our

analyses have revealed for all cancer types: (1) the synthesis and deployment enzymes of

SAs are persistently up-regulated throughout the progression for all but one cancer type;

and (2) gangliosides, of which SAs are part, tend to converge to specific types that allow

SAs to pack at high densities on cancer cell surface as a cancer advances. Statistical and

modeling analyses suggest that (i) a highly plausible reason for the increased syntheses

of SAs is to produce net protons, used for neutralizing the OH− persistently generated

by elevated intracellular iron metabolism coupled with chronic inflammation in cancer

tissues; (ii) the level of SA accumulation on cancer cell surface strongly correlates with

the stage of cancer migration, as well as multiple migration-related characteristics such

as altered cell-cell adhesion, mechanical stress, cell protrusion, and contraction; and (iii)

the pattern of SA deployment correlates with the 5-year survival rate of a cancer type.

Overall, our study provides strong evidence for that the continuous accumulation of SAs

on cancer cell surface gives rise to increasingly stronger cell-cell repulsion due to their

negative charges, leading to cell deformation by electrostatic force-induced mechanical

compression, which is known to be able to drive cancer cell migration established by

recent studies.

Keywords: sialic acids, cancer migration, transcriptomic data, electrostatic repulsion, metastasis

INTRODUCTION

It has been observed that increased syntheses of sialic acids (SAs) are associated with cancer
development and metastasis since 1960’s (1, 2), where SAs are negatively charged nine-carbon
sugars and generally serve as the capping molecules of cell-surface glycan, as part of plasma
membrane-embedded gangliosides (3). Under physiological conditions, brain tissues have the
highest concentration of SAs, used for synaptogenesis. Outside of brain, red blood cells have the
highest cell-surface concentration of SAs. As of now, it remains largely unknown of why cancer
cells produce unusually large numbers of SAs and accumulate them on cell surface (4). Published
studies have been mostly focused on their signaling roles with other cell types such as immune and
endothelial cells, via binding to siglecs and selectins, to facilitate interactions between cancer and
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immune cells (5) and to enable cancer cells interactions with
and penetration into blood vessels (1), respectively. Very little
has been established regarding if they may play roles in
creating mechanical compression within cancer tissues, knowing
their negative charges and being increasingly placed on cell
surface, hence possibly resulting in increasingly stronger cell-cell
repulsion, while mechanical pressure has been widely observed
in cancer tissues but largely attributed to the confined space for
growing tumors (6, 7).

We have recently studied 44 reprogrammed metabolisms
widely observed in cancer, including persistent SA synthesis, and
discovered that each of them produces more protons than its
original metabolism (8). In addition, we have also discovered that
all cancer tissue cells harbor Fenton reactions: Fe2+ + H2O2 -
> Fe3+ + qOH + OH− in their cytosol; and the rates of OH−

production can saturate the intracellular pH buffer within days,
hence increasing the intracellular pH if not neutralized (9), which
posts a major stress to the host cells. A linear regression analysis
was conducted of the predicted level of Fenton reactions against
the predicted levels of all ∼50 reprogrammed metabolisms
(Figure S1), which achieves high R2 values with statistically
significant p-values for each cancer type (8). This strongly
suggests that these reprogrammed metabolisms are induced to
respond to cytosolic Fenton reactions, serving as neutralizers for
the OH− persistently produced by Fenton reactions.

In this context, we present a computational study of
transcriptomic data of SA related vs. migration related genes in
cancer tissues of eight cancer types from the TCGA database
(10). Our analyses have revealed: (1) majority of the cancer
types has increased production and deployment of SAs on
cell surface, where the synthesis of a SA generates two net
protons; (2) the level of SA synthesis correlates with the level
of cytosolic Fenton reaction for all cancer types studied; and
(3) as a cancer progresses, it tends to converge to use of
specific types of gangliosides, facilitating SA packing at high
densities. Further analyses lead to the following discoveries: (i)
a simple model for predicting the level of SA accumulation
on cell surface can statistically well explain cancer progression
from stage N0 through stage N3 and then stage M (using
the TNM stage notation), where Ni represents cancer tissues
that have metastasized to i lymph nodes and M for distant
metastasis; (ii) strong correlations are observed between a range
of cell migration-associated characteristics, such as increased
mechanical stress, cell contraction and protrusion, and SA
production and/or deployment; and (iii) the detailed expression
patterns of SA synthesis and degradation genes can statistically
well explain the average 5-year survival rates of each cancer
type, hence the level of metastasis since the survival rate strongly
correlates with the level of metastasis across all eight types.
Overall, our analyses provide strong evidence for that the SA
accumulation on cancer cell surface plays key roles in mechanical
compression and cell deformation in cancer tissues.

It has been observed that cancer tissues have strong
mechanical pressure within (6, 7). It was suggested that
this is due to the confined space for the growing tumors.
However, the “confined space” argument may not be supported
by experimental data. For example, skin melanoma starts to

metastasize as soon as the cancer starts to grow vertically, which
is clearly not confined by space. Our analyses suggest: mechanical
pressure strongly correlates with the cell-surface accumulation
level of SAs. A previous study has convincingly demonstrated
that mechanical compression can lead to cell deformation, which
can drive the activation of actomyosin filaments and associated
contractile motion, ultimately driving collective migration by cell
clusters with enhanced cell-cell adhesion (11).

By integrating all these together, we have developed a model
for how SA synthesis and deployment, responding to cytosolic
Fenton reactions, can give rise to increasingly stronger cell-cell
repulsion, further leading to mechanical compression and cell
deformation, which can drive cancer cell migration.

RESULTS

Elevated Synthesis of Sialic Acids in
Cancer
We have examined the key genes involved in SA synthesis
(CMAS) and degradation (NEU1). CMAS is up-regulated in
seven of the eight cancer types (except for COAD); and NEU1
tends to correlate with CMAS throughout the major portion of a
cancer progression for all cancer types, except for the last stage(s),
where the two curves may diverge or converge for some cancer
types, as detailed in Figure 1.

Previous studies generally attribute the increased SA
production to their signaling roles in cancer (12). However,
this is not supported by the transcriptomic data analyzed here.
It is known that SAs conduct their functions through binding
with the siglec and/or selectin molecules. Our analyses of the
gene expression data in (bulk) cancer tissues show that there
is no or little correlation between CMAS and any siglec gene
(SIGLEC1-16), selectin gene (SELE, SELL, and SELP) or their
total expressions (data not shown).

We have previously predicted that 44 known reprogrammed
metabolisms (8), including persistent production of SA, in
cancer are induced to generate protons for neutralizing OH−

persistently generated by cytosolic Fenton reactions.
Figure 2 shows the predicted levels of cytosolic Fenton

reactions (9) vs. the expression level of CMAS across different
stages of all cancer types under study. The majority of the
cancer types show statistically significant positive correlations
like BRCA (cor = 0.352, p-value = 3.05E-33), COAD (cor =

0.216, p-value= 2.32E-04), LUAD (cor= 0.343, p-value= 1.04E-
15), LUSC (cor= 0.206, p-value= 3.45E-06), STAD (cor= 0.212,
p-value = 9.96E-04). While the detailed correlation between the
two curves may not always be high due to contributions by
other reprogrammed metabolisms to neutralize OH− by Fenton
reactions, their overall trends are generally the same. Hence,
we predict: the SA synthesis is induced to respond to cytosolic
Fenton reactions.

Accumulation of Sialic Acids on Cancer
Cell Surface and 5-Year Survival
It has been established that cancer cells accumulate SAs on cell
surface, and the level of such accumulation could be considerably
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FIGURE 1 | Average expression levels (y-axis) of CMAS (SA synthesis, blue) and NEU1 (SA degradation, orange) in tissues of cancer adjacent control, stage N0, N1,

N2, N3, and M (x-axis), respectively.

FIGURE 2 | Predicted levels of cytosolic Fenton reactions (orange) vs. expression levels of CMAS gene (blue), where the level of Fenton reaction is estimated based

on the expressions of genes related to macromolecular damages such as proteasome genes, as given in Sun et al. (9).

higher than that of red blood cells (13), which are known to have
high-levels of cell-surface SAs that prevent red blood cells from
adhering to each other due to their negative charges (14). If our

immune system detects adhered red blood cells, it will destroy
them as their adhesion indicates that such cells have reached the
end of their working lives.
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FIGURE 3 | Expression levels for SA placement on cell surface (blue) and degradation (orange).

Knowing that the accumulation rate of SAs depends on the
rates of SA synthesis, degradation, and transfer to cell-surface
glycan, we have used the expressions of the following genes to
estimate the rate of such accumulation. CMAS is used for SA
synthesis, NEU1 for its degradation, and sialyltransferase genes
ST3GAL1, 2, 5, ST6GALNAC4, 5, and ST8SIA1, 5 for SA transfer
to glycan. The following is used to estimate the rate of the SA
placement onto glycan:

√

E (CMAS) ∗
∑

Y
E (Y)

where E(X) is for the expression of gene X, and Y represents
the seven SA transferase genes. Similarly, the following is used
to estimate the rate of SA degradation, where CTSA (Cathepsin
A) is needed to form a complex with NEU1 to conduct the
degradation function.

√

E (NEU1) ∗ E (CTSA)

Figure 3 shows the comparative levels of these two quantities
across different stages of all eight cancer types. An assumption
used here is: for a gene X with expression level E(X), the
maximum reaction rate of the enzyme encoded by X is
proportional to Kcat

∗ E(X), with Kcat being the reaction
rate constant catalyzed by enzyme X in the Michaelis-Menten
formulation [NOTE: this is essentially equivalent to the
assumption that (i) the expression level of a gene is linearly
proportional to its protein concentration; and (ii) the reactant
concentration is higher than the reaction constant KM, a

common assumption used when modeling human metabolisms
based on Michaelis-Menten formulation]. Hence the reaction
rates of the SA placement and degradation should be linearly
proportional to the two curves for each cancer in Figure 3.
Knowing that CMAS and NEU1 have comparable Kcat values
(15, 16), we predict that the two curves reflect the relative reaction
rates of the two enzymes.

From Figure 3, we conclude: (1) pancreatic cancer (PAAD)
has by far the largest (positive) difference between the SA
placement and degradation, measured using the total area
between the curves of SA placement and SA degradation (the
area is negative if the degradation curve is above the placement
curve), hence giving rise to highest level of the SA accumulation
and the strongest cell-cell repulsion, which is consistent with the
known fact that the cancer has the highest death rate, among all
cancer types; and (2) more generally, cancer types with higher 5-
year survival rates tend to have higher SA degradation rates than
their placement rates, especially toward the last stage of a cancer.
Figure 4 summarizes the average 5-year survival rates of the eight
cancers under study.

To further demonstrate that the rates of the SA placement and
degradation may have implications to a cancer’s 5-year survival
rate, we have conducted a linear regression analysis of the survival
rate against changes in the rate of the SA placement and the
rate of its degradation in the last two stages for each caner type.
Specifically, let P1 be the difference between the slopes of the
SA placement curve and the slopes of SA degradation in the
last two stages and P2 be the difference between the values of
SA placement curve and degradation in the last stage of each
cancer (Figure 3). Figure 4 shows a visualization of the values
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FIGURE 4 | Regression of 5-year survival rate against sialic-acid related gene

expression data. (A) Parameters used. (B) Visualization of data in (A) in 3D

space, where each red dot represents one line in (A), achieving R2 = 0.876,

p-value = 6.882E-03 when excluding LUSC, which does not fit our model.

of these two parameters along with the corresponding survival
rate for each cancer type. We can see that the survival rate can
be well explained by these two parameters achieving R2 = 0.876,
p-value = 6.882E-03, when not considering LUSC, which does
not fit our model. Hence, the regression analysis is conducted
only on the other seven cancer types, which gives the following
function and achieves a high fitness level R2 = 0.876 and p-value
is 6.882E-03.

S = 0.63−0.0725 × sign (P1)
√

|P1|−0.2279 × sign (P2)
√

|P2| .

Ganglioside Types as a Cancer Advances
Under physiological conditions, gangliosides, as the hosts of SAs,
are predominantly used in brains and red blood cells. In the
embryonic stage, brain cells tend to use simple gangliosides, i.e.,
those with simple glycan structures and gradually switch to more
complex structures, such as GM1, GD1a, GD1b, and GT1b (17),
where GM is formonosialoganglioside, GD for disialoganglioside
and so on.

It has been observed that advanced stage cancers tend to use
specific gangliosides such as GD2 and GM2, or GD3 and GM3

to a lesser extent (18). Majority of the published studies focus
on the possible signaling roles of such gangliosides like GD2 or
GM2 (19, 20). Other authors have examined the issue from the
perspective that different gangliosides enable different packing
densities of gangliosides inside plasma membrane, and observed:
generally, the simpler a glycan structure, the more gangliosides
can be packed into a fixed area.

To understand these observations, we have examined the
expression data of the enzyme genes in the synthesis network of
gangliosides (Figure 5), where the “typical” relative expression
levels of these genes are shown across the eight cancer types.
We note: the synthesis pathways of numerous gangliosides do
not quite follow the normal pathways as shown in Figure S2,
instead they form distinct synthesis fluxes as shown in Figure 5,
shown by the red/blue arrows with different widths. Specifically,
the flux first goes downwards along the first column, and then
travels to the second column via the ST6GALNAC4/5-catalyzed
reactionsmore than the typical ST3GAL5 reactions. The flux then
travels upwards along the second column; and from the second
to the third column, the flux is relatively weak via the moderately
expressed ST8SIA1.

We have then examined the total expression level of the
influx enzymes for each ganglioside (i.e., those that produce
the ganglioside) vs. that of the efflux enzymes (i.e., those that
utilize the ganglioside); and predict that a ganglioside will have
cellular accumulation if its influx rate is higher than its efflux
rate, otherwise the ganglioside will not be accumulated. Note that
such accumulation of a ganglioside should be proportional to the
level of its deployment inside the plasma membrane. The reason
we do this simplified qualitative network flux analyses, instead
of the detailed kinetics-based Michaelis-Menten analyses is: we
do not have the kinetic rate constants, Kcat and KM, for multiple
enzymes under consideration.

This analysis has revealed that advanced-stage cancer tissues
generally have high accumulations of GM2 and GD2, followed
by GM3 and GD3 (Table 1). These results are highly consistent
with the published results.

A key discovery made in our previous work on cancer
metabolic reprogramming is: cancer tends to produce as
many protons as possible in each reprogrammed pathway;
and the altered ganglioside synthesis processes is one of the
reprogrammed metabolisms studied (8). Hence, we hypothesize:
cancer may select specific ganglioside types that maximize the
total number of protons produced per cell plasma membrane.

To examine if this is the case, we have examined the packing
densities of GM2 and GM1. It has been reported that 451 GM2
molecules pack into a cluster with head (cross-section) radius
66.0 Å and 301 GM1 form a cluster with head radius 58.7 Å
(22), hence the ratio between the head areas per GM1 and GM2
is 58.72/301: 662/451, namely 11.45: 9.66. Therefore, for a fixed
area, the ratio between the numbers of GM1 and GM2 that can
pack into is: 9.66: 11.45.

Note that the normal pathways for synthesizing GM1 and
GM2 produce 3 and 2 net protons (the numbers next to the
red arrows along the pathway), respectively, but the altered
pathways each produce 4 protons. In addition, the synthesis of
each ganglioside requires the synthesis of some SAs, each of
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FIGURE 5 | Metabolic pathway of ganglioside synthesis and metabolism, where the name in bold is the name of the ganglioside above it; and the name next each

arrow represents the gene encoding the enzyme that catalyzes the reaction represented by the arrow [adapted from Yu et al. (21)]. The width of each red/blue arrow

represents roughly the relative expression level of the corresponding gene, and color red is for reactions that each produce one net proton and blue for pH neutral

reactions while reactions without such arrows are for those without expressions.

which produces two net protons. Figure 5 shows the number
of SAs attached to each ganglioside. Hence for the same area in
plasmamembrane, the ratio between the numbers of protons that
the syntheses of GM1 and GM2 each produce is: 9.66 x (4 + 2):
11.45 x (4+ 2), namely 9.66: 11.45, respectively. Therefore, more
protons are produced by the synthesis and utilization of GM2
than that of GM1.

Considering that no published data regarding the packing
densities in the same setting for the other gangliosides are
publicly available (to the best of our knowledge), we extrapolate
that GM3 and GM2 have a similar relationship to that between
GM2 and GM1 presented above. Hence we predict that
maximizing the proton production is a key determinant in a

cancer’s selection of utilization frequencies of GM3, GM2, and
GM1 as observed above.

A Sialic Acid-Based Model for Cancer
Metastasis
Under the TNM scheme, a cancer tissue is classified into stage
N0, N1, N2, N3, or M, where Ni is for tissues with i nearby
lymph node(s), 0 ≤ i ≤ 3, being metastasized and M is for
distant metastasis. In the following, N4 represents M for the
simplicity of presentation. Our goal is to demonstrate that for
each cancer type, the average SA accumulation level in stage Ni,
0 ≤ i ≤ 4, can be calculated as Ci+ Ci, where Ci denotes
the SA level accumulated solely in stage Ni and Ci is a fixed
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positive value denoting the SA level accumulated in the previous
i-1 stages for i ≥ 1 and C0 = 0. Furthermore, Ci is a function
of the rates of SA synthesis, degradation and transfer to cell-
surface glycan, respectively, and the duration of stage Ni, which
can be estimated based on the expression data of seven genes:
CMAS for SA synthesis, NEU1 for its degradation, ST3GAL1, 2,
5 and B4GALNT1 for its transfer onto cell-surface glycan, and
POLDIP2 (a DNA polymerase gene) for the rate of cell cycle
whose inverse is a proportional to the duration of one cell cycle.
Mathematically, this problem can be formulated as: for each
cancer type, search for an unknown function F(): R7 → {Ni}

TABLE 1 | Estimated accumulation level of gangliosides across different stages of

cancer metastasis.

Cancer type Early stage (N0) Mid stages (N1,

2,3)

Late stage (M)

BLCA GM2 (high), GM3

and GD3

(moderate)

GM2 (high), GD3

(moderate)

GM2, GD2 (high),

GM3, GM1

(moderate)

BRCA GM2 (high), GD3,

GD2, GD1

(moderate)

GM2 (high), GD3,

GD2, GD1

(moderate)

GM2 (high), GD3,

GD2 (moderate)

COAD GM2, GD2 (high) GM2, GD2 (high) GM2, GD2 (high)

HNSC GD3 (high), GM2,

GD2 (moderate)

GD3 (high), GM2,

GD2 (moderate)

GD3 (high), GM2,

GM1, GD2

(moderate)

LUAD GM3, GM2, GM1

(high), GD3, GD2,

GD1 (moderate)

GM3, GM2, GM1

(high), GD3, GD2,

GD1 (moderate)

GM3, GM2, GD1

(high), GM1, GD3

(moderate)

LUSC GM2 (high), GD3,

GD2 (moderate)

GM2 (high), GD3,

GD2 (moderate)

GM2 (high), GM1,

GD3, GD2

(moderate)

STAD GM2, GD1 (high),

GD2 (moderate)

GM2, GD1 (high),

GD2 (moderate)

GM2, GD1 (high),

GD2 (moderate)

PAAD GM2, GD1 (high),

GM1B, GD2

(moderate)

GM2, GD1 (high),

GD2 (moderate)

GM2 (high), GD2,

GD1 (moderate)

and an unknown fixed positive value Ci, with Ni being set to the
following values: Nc = 0, N0 = 0, N1 = 1, N[2,3] = 2,N4 = 3 so

min
F,Ci

∥

∥Ni − F(E(CMAS), E(NEU1), E(STA3GAL1),

E(STA3GAL2), E(STA3GAL5), E(B4GALNT1),

E(POLDIP2), Ci)
∥

∥

over all samples in stage Ni, i = C, 0, 1, [2,3], 4, where Nc is for
control samples; N[2,3] is the union of samples in N2 and N3,
each of which tends to be too small, hence combined; and E(X) is
the expression value of gene X in a sample under consideration.

This problem is solved as a multi-classification and a
regression problem using two separate neural networks, each
with two-hidden layers, one for evaluating the performance of
multi-classification model, and on this basis, the other for solving
the Ci values and finding the F() function, respectively. Figure 6
shows the two neural network architectures. In the left panel of
Figure 6, for each cancer type and each stage Ni, 70% samples
are randomly selected as training data and the remaining as the
testing data, and this process is repeated for 10 times. Table 2A
shows the prediction results for each stage Ni and each cancer
type, measured using the macro F1 score, defined as:

F1 = 2
MR ×MP

MR+MP

where MP =
∑n

i
TPi

TPi+FPi
, MR =

∑n
i

TPi
TPi+FNi

, TPi, FPi, and
FNi are rates of true positive, false positive and false negative for
predicting the samples of the ith stage, respectively.

In the right panel of Figure 6, the loss function of the neuron
network is min

∑n
i=1 (y− ŷ)2,where ŷ is the predicted c value.

When the maximum number of iterations reached 1,000,000 or
the loss is less than 0.1, the training process is done. Table 2B
summarizes the predicted Ci values for each cancer type, which
increase monotonically over stage, hence logically meaningful.

From the table, we conclude that for each cancer stage, the
seven genes can statistically well explain the metastasis stage,

FIGURE 6 | A neural net based model for predicting the stage of metastasis using SA synthesis, degradation and deployment genes and cell cycle-related gene:

CMAS, NEU1, ST3GAL1, 2, 5, B4GALNT1, and POLDIP2.
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TABLE 2 | Prediction accuracy of metastasis stage.

(A) Macro average F1 score of multi-classification for each cancer.

Cancer type Macro average F1 score

BLCA 0.744

BRCA 0.555

COAD 0.765

HNSC 0.649

LUAD 0.638

LUSC 0.739

PAAD 0.794

STAD 0.772

(B) Estimation of the SA accumulation level prior to stage Ni.

Cancer type C0 C1 C[2,3] C4

BLCA 16.340 18.090 26.847 58.350

BRCA 18.862 21.054 25.988 54.064

COAD 13.218 22.007 33.283 51.469

HNSC 16.701 19.715 23.493 59.880

LUAD 14.238 19.516 32.094 54.725

LUSC 14.042 19.488 26.718 59.526

PAAD 15.532 24.576 NA 60.030

STAD 11.895 17.719 30.342 59.992

TABLE 3 | Marker genes for processes related to cancer cell migration.

Migration related process Marker genes

Mechanical stress CASP3, DSG1, DSG2, DSG3

Cell-cell adhesion CDH11, CDH13, CDH1, CDH2, CDH3, CDH5,

CDH24, CTNNBL1, CTNND1, CTNNB1

Cell contraction PTK2B, PDCD10, KCTD13, ITGB1, PHACTR1,

CUL3, SRC, SRF, ARRB1, RHOA, SORBS1,

TNFAIP1, ZYX, ITGB5

Protrusion CENPB, RAB13, ZEB1, ANP32B, CORO1A, PINK1,

DCC, VLDLR, FSCN1, TIAM1, MAP1B, LRP8,

RELN, DCX, DCLK1, GAP43, FEZ1, CXCR4, DBN1,

CTTN, ARP2, ARP3, CFL1, CFL2, LIMK1, LIMK2,

WASF1, WASF2

Motion and migration AMOT, FGF2, GPLD1, GPR124, KDR, NRP1,

PTK2B, SCARB1, TDGF1, VEGFA

hence strongly suggesting that the SA accumulation level on
cancer cell surface is a key factor in dictating the level of
metastasis of a cancer tissue.

Supporting Evidence
To provide further evidence that the SA accumulation on
cancer cell surface can strongly influence the level of metastasis
of a cancer, we have examined the statistical relationships
between the above seven genes and a range of characteristics
uniquely associated with cancer migration, each of which is
reflected by a set of marker genes given in Table 3. For
a given set of marker genes {g1, . . . , gk} over n samples,

let X = (x1, . . . , xn)T be the solution that minimizes the
following function:
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where Ei
(

gj
)

is the expression level of gene gj in sample I,
and X represents the feature vector of {g1, . . . , gk} over the
n samples, which is used to calculate the co-expression level
with the SA related genes. This problem is solved as a linear
regression problem.

a. Mechanical compression marker genes and SA related
genes: We have examined co-expression levels between
the above SA related genes and known marker genes of
compressive stress. Figure 7A shows that compressive stress
marker genes strongly correlate with the SA genes. We
have then conducted a regression analysis of the marker
genes against the SA genes, with regression results shown
in Table 4.

b. Cell-cell adhesion genes and SA related genes: It has
been known that cancer cells tend to alter their cell-cell
adhesion genes as cancer cells start to migrate. The co-
expression data and regression results are given in Figure 7B

and Table 4.
c. Cell contractile genes and SA related genes: The co-

expression data and regression results are given in Figure 7C

and Table 4.
d. Protrusion genes and SA related genes: The co-expression data

and regression results are given in Figure 7D and Table 4.
e. Motion marker genes and SA related genes: The co-

expression data and regression results are given in Figure 7E

and Table 4.

From these figures and tables, we can see that each of the
key migration-related characteristics can be well explained
statistically by the SA genes, hence providing further
evidence to that SA accumulation plays key roles in driving
cancer migration.

Regulation of Key Genes Leading to
Cancer Migration
We have conducted an integrated analysis of genomic,
epigenomic, and transcriptomic data to estimate how the
key SA genes, namely CMAS, ST3GAL1, ST3GAL5, and NEU1,
are regulated across different cancer types. For each gene, we
assess the level of contribution to its transcription regulation by
transcription factors vs. DNA methylation using a regression
analysis (see section Methods).

Table 6 shows the detailed regression results for all four genes.
From the table, we can see (1) more DNAmethylation utilization
in cancer samples than in normal samples; and (2) while the level
of contribution to transcription regulation by DNA methylation
varies across different genes and different cancer types, DNA
methylation in general makes substantial contributions to the
regulation of the key SA genes.
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FIGURE 7 | Co-expressions between SA related genes (CMAS, ST3GAL1, ST3GAL2, ST3GAL5, B4GALNT1) and marker genes (as shown in Table 3) for multiple

aspects of cancer metastasis: (A) Mechanical compression genes, (B) Cell-cell adhesion genes, (C) Cell contraction genes, (D) Protrusion genes, and (E)

Motion/migration genes across eight cancer types. In the heatmaps, the red represent positive correlation, the green represent negative correlation and the white

represent insignificant correlation respectively.

DISCUSSION

Our prediction for linking overproduction and gradual
accumulation of sialic acids to cancer migration is based
on identified connections, statistical or physical, among
seemingly unrelated molecular species and cellular activities.
It is the multiplicity of such chains of simple and subtle
associations, which are otherwise do not exist, that give us the
statistical confidence about our prediction. Some of the detected
associations are only useful for making our overall prediction
while others, such as the 7-gene signature for predicting the
status of cancer metastasis, could be used independently as
novel markers for cancer metastasis. In addition, our prediction

confidence also comes from the previous work that causally
connects mechanical forces to cancer migration.

Tse et al. (11) presented an elegant study that shows
external mechanical compression on cancer cells can lead
to their deformation, which can give rise to enhanced cell-
cell adhesion, actomyosin contraction, filopodial protrusion,
ultimately collective migration by clusters of cells. This model
provides strong support to our prediction that SA accumulation
on cancer cell surface will generate increasingly stronger
electrostatic repulsion due to the increased densities of electric
charges from SAs, leading to enhanced cell-cell adhesion,
actomyosin contraction, protrusion as well as migration as
established above. Compared to previous studies on SAs and
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TABLE 4 | Regression results of migration-related characteristics against SA related genes.

BLCA BRCA COAD HNSC LUAD LUSC PAAD STAD

Cell-cell adhesion 0.562 0.495 0.797 0.754 0.581 0.529 0.578 0.299

Polarity 0.464 0.261 0.667 0.425 0.192 0.368 0.358 0.271

Mechanical stress 0.508 0.365 0.199 0.173 0.368 0.367 0.437 0.471

Protrusion 0.730 0.697 0.792 0.775 0.666 0.532 0.638 0.566

Cell contraction 0.555 0.513 0.720 0.631 0.444 0.705 0.623 0.412

Motion and migration 0.553 0.557 0.810 0.759 0.464 0.646 0.536 0.667

p-values of the calculated R2 values

Cell-cell adhesion 6.28E-33 7.62E-66 4.51E-61 1.60E-93 2.38E-45 4.96E-35 2.33E-15 3.33E-05

Polarity 4.02E-21 1.05E-16 1.50E-35 3.99E-22 1.18E-04 1.08E-15 1.39E-05 2.20E-04

Mechanical stress 5.63E-26 1.34E-33 4.12E-03 5.82E-04 3.76E-16 1.23E-15 2.96E-08 7.56E-13

Protrusion 2.72E-66 2.59E-156 1.25E-59 6.75E-102 1.68E-64 1.30E-35 1.24E-19 1.68E-19

Cell contraction 5.93E-32 1.27E-71 3.18E-44 2.92E-56 3.33E-24 1.29E-73 1.73E-18 1.15E-09

Motion and migration 9.10E-32 2.14E-87 2.21E-64 3.26E-95 1.05E-26 7.82E-58 6.81E-13 1.41E-29

TABLE 5 | Cancer types and their transcriptomic data used in this study.

Cancer type #Tumor

samples

#Control

samples

Bladder urothelial carcinoma (BLCA) 414 19

Breast invasive carcinoma (BRCA) 1,109 113

Colon adenocarcinoma (COAD) 480 41

Head and Neck squamous cell carcinoma (HNSC) 502 44

Lung adenocarcinoma (LUAD) 535 59

Lung squamous cell carcinoma (LUSC) 502 49

Stomach adenocarcinoma (STAD) 375 32

Pancreatic adenocarcinoma (PAAD) 178 4

cancer migration, our study provides a fundamentally novel
perspective regarding the roles of SA in cancer migration, namely
it is their physical property rather than the signaling functions
that may play the predominant role in driving cancer metastasis.

This model can answer a few long standing open questions
regarding cancer metastasis: (1) while SAs have long been
known to be associated with cancer metastasis, very little has
been established regarding why it generally takes years for
a cancer to become metastatic, knowing that the expression
levels of SA synthesis and transferase genes do not go up very
substantially (Figure 1). Our model, in conjunction with Tse
et al.’s model, suggests that the gradual accumulation of the
SA-associated negative charges on cell surface will activate the
migration program as discussed in Tse et al. (11) once their
electrostatic repulsion reaches a critical point; (2) very little has
been established in the literature regarding why certain cancer
types metastasize easily and early while other cancer types are
less likely to metastasize—our model suggests that it is the
combination of the rates of SA production, degradation and
transfer to cell surface glycan that determines when a cancer
starts to migrate; (3) gangliosides of certain types such as GM2
and GD2 have long been found to be associated with cancer
metastasis and the current literature suggests that it is their
signaling roles that may be relevant to migration (17); our model
suggests that two factors may contribute to the selection of

specific types of gangliosides, namely: (i) the number of SAs that
can be put on gangliosides per cell, which is determined by the
packing density of individual ganglioside types inside the plasma
membrane and the number of SAs that each ganglioside of the
type can harbor; and (ii) the number of protons produced by the
synthesis process of individual ganglioside types: more complex
gangliosides produce more protons through their synthesis
process per molecule but result in their lower packing densities
inside the plasmamembrane, hence possibly giving rise to a lower
number of total protons per cell. Hence we postulate that the
selected ganglioside types are the result of tradeoff between these
two factors, which ultimately enables the maximum number of
protons to be produced through this combination.

Clearly, our model is a statistical model. We plan to develop
a more physics-based model that will allow us to estimate the
actual density-level changes as a cancer evolves as well as to
calculate the level of electrostatic repulsion in a realistic media
environment, hence enabling us to accurately estimate the shield
effect of the electrons.

METHODS

Data
Cancer survival data: The data given in Table 5 are collected
from the NCI TCGA website (https://portal.gdc.cancer.gov),
which provide clear and detailed clinical information of each
cancer patient.

Transcriptomics data: We have used all the transcriptomic
data of eight cancer types: BLCA, BRCA, COAD, HNSC,
LUAD, LUSC, STAD, and PAAD in the TCGA database. Table 6
summarizes the relevant information. Here we used eight cancer
types instead of the 14 cancer types we typically use in our recent
studies (8, 9, 23) is that we have used TNM staging scheme rather
than the more traditional staging approach: stage 1, 2, 3, and 4
since a focus of the study is on the stage of metastasis. For this
the TNM staging is clearly more appropriate.

Genomics data: Somatic mutation and copy number variation
data in TCGA were collected for each of the four SA genes from

Frontiers in Oncology | www.frontiersin.org 10 March 2020 | Volume 10 | Article 401

https://portal.gdc.cancer.gov
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Sun et al. Sialic Acids in Cancer Migration

TABLE 6 | Regression results for the regulation of key SA genes by transcription factors (TF) and DNA methylation (MT).

Cancer type Stage NEU1 ST3GAL1 ST3GAL5 CMAS

R2 MT TF R2 MT TF R2 MT TF R2 MT TF

BLCA Normal 0.98 0.0% 100.0% 0.66 0.0% 100.0% 1.00 79.6% 20.4% – – –

BLCA Stage II 0.51 12.7% 87.3% 0.77 48.0% 52.0% 0.89 46.3% 53.7% 0.85 10.7% 89.3%

BLCA Stage III 0.72 44.5% 55.5% 0.70 51.0% 49.0% 0.72 39.2% 60.8% 0.75 32.6% 67.4%

BLCA Stage IV 0.92 33.9% 66.1% 0.88 52.1% 47.9% 0.65 33.8% 66.2% 0.79 36.5% 63.5%

BRCA Normal 0.80 0.0% 100.0% 0.96 28.9% 71.1% 0.71 0.0% 100.0% 0.92 1.2% 98.8%

BRCA Stage I 0.76 48.1% 51.9% 0.83 74.4% 25.6% 0.64 13.5% 86.5% 0.47 0.0% 100.0%

BRCA Stage II 0.48 21.0% 79.0% 0.63 62.3% 37.7% 0.40 40.1% 59.9% 0.60 37.4% 62.6%

BRCA Stage III 0.37 44.8% 55.2% 0.70 61.0% 39.0% 0.63 19.9% 80.1% 0.68 13.3% 86.7%

COAD Normal 0.91 47.6% 52.4% 0.76 0.0% 100.0% 1.00 14.1% 85.9% 0.96 21.8% 78.2%

COAD Stage I 0.87 58.1% 41.9% 0.72 86.8% 13.2% 0.88 13.9% 86.1% 0.78 49.2% 50.8%

COAD Stage II 0.69 52.9% 47.1% 0.73 64.4% 35.6% 0.77 30.5% 69.5% 0.82 21.4% 78.6%

COAD Stage III 0.95 32.9% 67.1% 0.78 48.8% 51.2% 0.69 26.4% 73.6% 0.60 28.7% 71.3%

COAD Stage IV 0.98 38.0% 62.0% 0.37 100.0% 0.0% 0.85 26.0% 74.0% – – –

HNSC Normal 1.00 53.1% 46.9% 0.96 89.6% 10.4% 0.96 46.4% 53.6% 0.84 24.9% 75.1%

HNSC Stage I 1.00 85.9% 14.1% 0.88 68.1% 31.9% 0.96 30.8% 69.2% 0.24 100.0% 0.0%

HNSC Stage II 0.43 57.9% 42.1% 0.66 49.2% 50.8% 0.91 39.4% 60.6% 0.84 32.4% 67.6%

HNSC Stage III 0.84 80.3% 19.7% 0.73 37.9% 62.1% 0.84 30.7% 69.3% 0.27 100.0% 0.0%

HNSC Stage IV 0.73 15.2% 84.8% 0.83 57.9% 42.1% 0.58 26.5% 73.5% 0.83 33.1% 66.9%

LUAD Normal 1.00 61.5% 38.5% 1.00 43.1% 56.9% 1.00 13.7% 86.3% 0.84 0.0% 100.0%

LUAD Stage I 0.82 42.2% 57.8% 0.76 61.5% 38.5% 0.68 33.7% 66.3% 0.67 18.5% 81.5%

LUAD Stage II 0.88 38.4% 61.6% 0.57 41.7% 58.3% 0.67 34.9% 65.1% 0.82 15.7% 84.3%

LUAD Stage III 0.75 82.2% 17.8% 0.90 67.8% 32.2% 0.84 34.8% 65.2% 1.00 25.3% 74.7%

LUAD Stage IV – – – 1.00 73.0% 27.0% 0.97 84.1% 15.9% 0.49 0.0% 100.0%

LUSC Normal – – – 0.95 0.0% 100.0% 1.00 0.0% 100.0% 1.00 0.0% 100.0%

LUSC Stage I 0.84 37.5% 62.5% 0.75 59.5% 40.5% 0.79 27.6% 72.4% 0.86 13.8% 86.2%

LUSC Stage II 0.26 37.8% 62.2% 0.73 38.3% 61.7% 0.54 59.5% 40.5% 0.52 30.1% 69.9%

LUSC Stage III 0.64 65.4% 34.6% 0.62 73.3% 26.7% 0.84 41.3% 58.7% – – –

PAAD Normal 0.98 0.0% 100.0% 1.00 100.0% 0.0% 1.00 0.0% 100.0% 1.00 0.0% 100.0%

PAAD Stage I 0.78 83.8% 16.2% 0.98 75.1% 24.9% – – – 0.96 3.2% 96.8%

PAAD Stage II 0.73 48.1% 51.9% 0.78 36.4% 63.6% 0.61 32.6% 67.4% 0.79 8.3% 91.7%

STAD Stage I 0.44 0.0% 100.0% 0.57 59.1% 40.9% 0.79 34.6% 65.4% 0.47 78.0% 22.0%

STAD Stage II 0.92 82.8% 17.2% 0.58 49.5% 50.5% 0.86 38.4% 61.6% 0.86 9.6% 90.4%

STAD Stage III 0.90 58.3% 41.7% 0.54 81.7% 18.3% 0.77 9.2% 90.8% 0.76 62.9% 37.1%

STAD Stage IV 1.00 78.0% 22.0% 0.84 69.4% 30.6% 0.98 51.3% 48.7% 0.99 13.2% 86.8%

Groups with fewer than 20 samples were dropped and marked using “–”. The percentage shown in columns MT and TF are relative sum of squares (see section Methods).

the UCSC Xena platform (24). Gene-level non-silent mutations
calls and copy number variation estimates are used in our study.

DNA methylation data: The beta values of the Illumina
Human Methylation 450K platform were collected from the
UCSC Xena platform. Probes in the gene body, first exon, UTRs
or within 1,500 bp upstream the transcription start site for each
of the four SA genes were used.

Transcription factor data: ChIP-Seq validated transcription
factor-target gene pairs for each of the four SA genes were
collected from the ENCODE database (25), TRRUST database
(26), and Marbach et al. (27).

Prediction of Regulatory Mechanisms via
Regression Analysis
For each of the four SA genes, samples with somatic mutations
or copy number variations in the gene were filtered out as we’re

interested in how the relevant transcription factors and DNA
methylation co-regulate the expression of the gene.

TPM values for gene expression and M values for DNA
methylation were first centered and scaled to have mean 0.0 and
standard deviation 1.0. For each target gene g, our goal is to
find real values: µ, {αi} and {βj} so that the following function
is minimized



g−



µ +

p
∑

i=1

αixei +

q
∑

j=1

βjxmj









2

where g is the expression level of the target gene g, xe1, · · · , xepare
the expression levels of the transcription factors that regulate g,
and xm1, · · · , xmq are the DNA methylation levels of the probes
in or around g in the genome. The least squares method was used
to solve the optimization problem with Lasso penalty using the R
package glmnet (28).
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The analysis of variance table was then computed using
ANOVA to get the sum of squares (SS) for each parameter. The
SS for groups xe and xm were then summed up to get SSTF
and SSMT for contributions by transcription factors and DNA
methylations, respectively. SSMT

SSTF+SSMT
is used to estimate the level

of contribution to transcription regulation by DNA methylation
of target gene g.

Prediction of Concentrations of
Gangliosides Based on Gene-Expression
Data
We have predicted the relative concentrations of all the
gangliosides based on gene expression levels of the relevant

enzymes. A key simplifying assumption is: the Kcat values for all
the enzymes involved in this metabolism are approximately the
same since we do not have these values. For each metabolite G,
we calculate its total influx and efflux as

∑

j
Gi
j × E(gj) and

∑

k
Go
k × E(gk)

where Gi
j -> G is the jth influx reaction and G -> Go

k
is the kth

efflux reaction of G; and E(gj) is the expression level of gene gj
whose enzyme catalyzes the jth reaction. An iterative procedure
is employed to estimate these two quantities till the system
converges on {Gi,o

j } values. Then we predict G is intracellularly

accumulated if
∑

j G
i
j×E(gj) is significantly higher than

∑

k G
o
k
×

E
(

gk
)

, hence used in the plasma membrane. Two levels of
“significance” is used: high and moderate in Table 1.
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