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Cancer stem cells (CSCs) are able to promote initiation, survival and maintenance

of tumor growth and have been involved in gastrointestinal cancers (GICs) such as

esophageal, gastric and colorectal. It is well known that blood supply facilitates cancer

progression, recurrence, and metastasis. In this regard, tumor-induced angiogenesis

begins with expression of pro-angiogenic molecules such as vascular endothelial growth

factor (VEGF), which in turn lead to neovascularization and thus to tumor growth. Another

pattern of blood supply is called vasculogenic mimicry (VM). It is a reminiscent of the

embryonic vascular network and is carried out by CSCs that have the capability of

transdifferentiate and form vascular-tube structures in absence of endothelial cells. In this

review, we discuss the role of CSCs in angiogenesis and VM, since these mechanisms

represent a source of tumor nutrition, oxygenation, metabolic interchange and facilitate

metastasis. Identification of CSCs mechanisms involved in angiogenesis and VM could

help to address therapeutics for GICs.
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INTRODUCTION

Gastrointestinal cancers (GICs) are among the most common malignancies worldwide that
mainly include gastric, esophageal and colorectal cancers (1). Treatments for GICs commonly
are chemotherapy, radiotherapy, surgery and most recently anti-angiogenic therapy. However, the
efficiency of these treatments depends on multiple factors such as cancer staging and resistance to
treatment and relapse, which are related to Cancer Stem Cells (CSCs) (2).

In normal and tumoral tissues, vasculature supply the nutrients and oxygen required tomaintain
homeostasis. Blood vessel formation in the embryo occurs by vasculogenesis, a process that
involve de novo production of endothelial cells (ECs) (3). On the other hand, the process through
which new blood vessels are formed by sprouting and splitting from pre-existing ones is called
angiogenesis (4), which is an important cancer hallmark.

Self-renewal of CSCs and initiation of tumor is accompanied by the promotion of angiogenesis,
through the secretion of proangiogenic factors such as Vascular Endothelial Growth Factor (VEGF)
(5). However, angiogenesis is not the unique source of nutrients and oxygen for tumors (6), given
that CSCs are able to transdifferentiate into endothelial-like cells enhancing neovascularization
(7). This process, called vasculogenic mimicry (VM), is present in different types of cancers and
is responsible of providing a sufficient blood supply to tumor tissues (8). Interestingly, CD133
positive glioma cells express that express VEGF are able to increase vascular density (9) and higher
recruitment of endothelial progenitor cells (EPCs) is observed in tumors enriched with CSCs (10).
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The aim of this review is to compile recent knowledge
of gastrointestinal CSCs and their participation in VM and
angiogenesis in order to understand the underlying mechanisms
that lead to the development of more effective therapies.

GASTROINTESTINAL CSCs

Tumors are characterized by cell heterogeneity, according to
CSCs theory, which hypothesizes that tumors are driven by a
small cell subpopulation with stem cell properties, such as self-
renewal and differentiation capacity (11, 12). Also, CSCs promote
tumor initiation, growth and proliferation, leading to aberrant
growth and slow cycle cell replacement, making them resistant
to therapies (13) and are able to move outside of the primary site
and metastasize (14).

CSCs were first isolated (CD34+CD38−) from Acute Myeloid
Leukemia (AML) patient samples in late 90s. This small
population, was capable to transfer AML from human patients
to NOD/SCID mice (15). Since then, surface markers have
been used to identify and isolate CSCs in several types of
cancers, for instance, CD24, CD44, CD90, CD133, and CD166
for Gastrointestinal CSC, and it was demonstrated that they are
generally tissue specific (Table 1) (2).

Regarding to Esophageal Cancer Stem Cells (ECSCs), they
were first isolated from Esophageal Squamous carcinoma cell
line (ESCC) using colony morphology criteria (27). Nevertheless,
isolation of ECSCs now is performed using CD44 and ALDH1
(19, 28).

CD44 was the first marker used to identify Gastric Cancer
(GC) Stem Cells (GCSCs) (29). Moreover, the embryonic
markers OCT-4, SOX2, NANOG and the surface maker
CD133/Prom1 are highly expressed in GCSCs (30). Interestingly,
CD44+/CD24+ GCSCs subpopulation has shown stem cell
properties in vivo and in vitro (16). Also, EpCAM+/CD44+

phenotype present stem cell characteristics in GC tissues (18)
Besides, isolated CD44+/CD54+ GCSCs from tumors and
peripheral blood, are able to generate tumors both in vitro and
in vivo (17). However, other molecules, such as, CD90, CD71,
ABCB1, ABCG2, CD133, ALDH1, and Lgr5 are also considered
as potential markers to GCSCs isolation (31–35).

Finally, Colorectal Cancer (CRC) Stem Cells (CRCSCs)
were first isolated by CD133 expression, showing tumorigenic
capabilities in mice (25, 36). Nevertheless, molecules such
as EpCAM+/CD44+/CD166+, ALDH+, EphB2+, LGR5+, and
CD44v6+ are commonly used to CRCSCs isolation from cell lines
(23, 24, 37–39), despite these markers are shared with normal
mesenchymal stem cells (MSCs). In this regard, it has been
recently reported that Dclk1 discriminates between cancer and
normal stem cells in the intestine (40).

CSCs in Vascular Niche
Vascular niches are key for maintaining the stem phenotype,
such as, self-renewal, undifferentiated state and dormancy in
normal stem cells (41). In cancer context, neo-vascularization
plays an important role during carcinogenesis and metastasis.
This process was first described by Scherer in glioblastoma, where
the cancer cells growth is possible by the proximity of surrounded

TABLE 1 | Surface markers of gastrointestinal cancers stem cells.

Tumor type Surface marker Reference

Gastric cancer CD44+/CD24+ (16)

CD44+/CD54+ (17)

EpCAM+/CD44+ (18)

Esophageal cancer CD44+ (19)

CD44+/CD24− (20)

CD44+/ALDH1high (21)

CD44+/ICAM1+ (22)

Colon cancer EpCAM+/CD44+/CD166+ (23)

CD44v6+ (24)

CD133+/CD44+/ALDH1+ (25)

CD44+/CD24+ (26)

blood vessels, now called “cancer vascular niche” (42). Normal
stem cells and CSCs primordially growth in vascular niches, due
to a perivascular microenvironment. However, cancer vascular
niche is rich in abnormal blood vessels, connected and organized
with each other in a different pattern from normal vessels (43,
44). These abnormalities are induced by hypoxia, low pH and
high interstitial hostile fluid pressure, making a selection of
hostile cells that can escape from the tumor through aberrant
blood vessels to metastasize (45). Angiogenesis within the
tumor mass harbors a variety of host-derived cells, regulated by
monocytes Tie-2 expression, fibroblasts, ECs, as well as, innate
and adaptive immune cells (46, 47).

PROMOTION OF ANGIOGENESIS BY
GASTROINTESTINAL CSCs

Angiogenesis can be divided in two types: sprouting and
intussusceptive (48–50). In the first one, ECs proliferate and
sprout toward an angiogenic stimulator (e.g., VEGF), forming
flat structures called filopodia, producing proteolytic enzymes
to enhance angiogenic process (51). On the other hand,
intussusceptive angiogenesis is independent of ECs, where
an existing vessel is divided into two new vessels only by
cellular reorganization (52). Interestingly, neovascularization is
an important process to support tumor growth and metastasis;
usually, tumors reach a size of ∼2mm in diameter when
not fed by neovascularization (53). In this regard, CSCs
are able to modify tumoral microenvironment by expressing
angiogenic factors in order to enhance tumor neovascularization,
contributing finally in their maintenance and proliferation (5).

Esophageal Cancer
Positive cells to Placental growth factor (PLGF), appear to be
CSCs in esophageal cancer and have the capability to release
PLGF, promoting cancer metastasis by the activation of MMP9
(54). Besides, CSCs that express PLGF are important due to the
promotion (55) or inhibition of tumor angiogenesis depending
on its interaction with VEGF (56).
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Gastric Cancer
Bone marrow mesenchymal stem cells (BM-MSCs) are
implicated in the promotion of tumor angiogenesis in gastric
cancer (GC) since SGC-7901 cells in both, in vitro and in
vivo models, increases VEGF release from tumor cells by the
activation ERK1/2 and p38 MAPK pathways, resulting in
angiogenesis promotion (57). Moreover, gastric cancer-derived
MSCs (GC-MSCs) are also able to promote angiogenesis when
interact with BGC-823 and MKN-28 GC cell lines, inducing
overexpression of pro-angiogenic factors, such as, VEGF, MIP-2,
TGF-β1, IL-6, and IL-8 favoring tube formation (58).

Recently, the Leucine-rich repeat and immunoglobulin-
like domain-containing Nogo receptor-interacting protein 2
(LINGO2) a novel gastric cancer stem cell-related marker has
been associated with cancer progression (59). In this regard,
gastric tumor tissues overexpressing LINGO2 shows elevated
expression of the angiogenic marker pVEGFR2 and a blood
vessel marker CD34, meanwhile the silencing of LINGO2 in
Human Umbilical Vein Endothelial Cells (HUVEC) cells results
in inhibition of tube formation, suggesting the involvement of
positive-LINGO2 CSCs in angiogenesis (59).

Colorectal Cancer
CRCSCs are able to initiate vascularization via pericytes by
growth promotion (5, 60). Thus, lack of pericytes recruitment
impacts negatively in tumor size owing to poor vascular
structure (61). This is also correlated to worst prognosis, due
to leaky vessels that produces elevated local pressure, enhancing
progression and metastasis. Nevertheless, higher vascular density
has been associated with recurrence, metastasis and patient
mortality (5, 62).

Co-cultivation of CRCSCs and SW620 cells enhances its
stemness properties. Also, transplantation of SW48 and MSCs
support angiogenesis in vivo (63). Additionally, conditioned
media (CM) from SW480 cells pre-treated with CRCSCs
CM enhances HUVEC tube formation and higher levels of
VEGFA expression (63). Besides, BM-MSCs are able to induce
angiogenesis, when treated with IFN-γ and TNF-α, by VEGF
expression via the HIF-1α signaling pathway (64), meanwhile,
IL-8 allows tumor angiogenesis (65).

Participation of CRCSCs in tumor neovascularization has
been demonstrated in tumor tissues by CD31/CD133/Lgr5 co-
expression (10). Besides, CRC cell lines HCT116 and HT29
spheroid-derived cells are able to co-act with endothelial
progenitor cells (EPCs) in order to promote migration and tube
formation by secreting VEGF. Meanwhile, EPCs also increases
tumorigenesis of CRC cells through angiogenesis (10).

SIGNALING PATHWAYS OF CSCs IN
ANGIOGENESIS

Little is known about cellular and molecular mechanistic
features of CSCs roles in angiogenesis (Figure 1). For instance,
Bone Morphogenic Protein 4 (BMP-4) plays a crucial role
in angiogenesis by mediating vascular integrity. Besides,
VEGF suppression is strongly regulated through BMP-9/ALK1.

Conversely, TGFβ1/ALK5 pathway enhances angiogenesis by
VEGF expression (66), being a critical signaling molecule
for angiogenesis in CSCs (67). Moreover, VEGF-A/NRP-1
interaction promotes stemness properties in breast cancer (BC)
cell lines by activation of Wnt/β-catenin pathway, since its
inhibition relies in the attenuation of HUVEC-tube formation
induced by co-culturing with extracts from Breast Cancer
Stem Cells (BCSCs) (60). Moreover, glioblastoma stem-like cells
(GSCs) produce VEGF-A, which is secreted in extracellular
vesicles promoting permeability and angiogenesis in brain (68).
Additionally, angiogenesis promotion can be stimulated by GSC-
derived exosomes (GSC-EXs) trough miR-21/VEGF/VEGFR2
axis (69).

Notch signaling pathway is also required for stem cell survival
and vascular development and it is a crucial angiogenesis
stimulator (70). Interestingly, inhibition of self-renewal
capabilities and angiogenesis are orchestrated by Notch signaling
repression in GSCs, as well as, reduction of vasculogenic markers,
such as, CD105, CD31 and von Willebrand factor (vWF) (71).

VASCULOGENIC MIMICRY FORMATION
BY CSCs IN GASTROINTESTINAL
CANCERS

The generation of vascular channels (VC) without ECs or
fibroblasts was first identified in aggressive and metastatic
melanoma in 1999, and was termed vasculogenic mimicry (6). In
this specific case, the relationship between aggressive melanoma
cells that co-expressed Vimentin and epithelial (keratin 8,18)
intermediate filaments was particularly interesting, since these
cells, where able to be aligned along the external walls of
microvascular channels conducing red blood cells, without
ECs (72).

Channels formed by VM are composed of a basement
membrane and tumor cells that facilitatemicrocirculation plasma
and blood supply from host normal vessels (73). VM can be
classified in classical patterns in matrix type (6) and the tubular
type (74). Besides, it has been described that VM is composed by
matrix proteins such as Laminin, Heparan sulfate proteoglycan,
and Collagens IV and VI (75).

VC network may be an independent angiogenesis mechanism
for blood source, since angiogenesis inhibitors induce
extracellular matrix-rich tubular network formation in vitro and
are not able to suppress VM in several types of cancers, showing
that VM works as an alternative mechanism for blood cells
supply (76). Besides, VM is associated with tumor size, short
overall survival (OS), high tumor grade, clinical staging, invasion
and metastasis (77–79).

Interestingly, tumor cells associated to VM structures acquire
an undifferentiated phenotype as well as ECs characteristics (80).
Nowadays, CSCs have been involved in VC formation in cancer
(81–87). For instance, in salivary adenoid cystic carcinoma
(ACC) specimens CD133 is positively associated with VM
formation. Besides, CD133+ ACC CSCs and xenograft tumors
of nude mice injected with these cells show overexpression
of VE-Cadherin and VM mediators (MMP-2, MMP-9) (86).
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FIGURE 1 | Angiogenic and vasculogenic mimicry promotion by CSCs is mainly triggered by VEGF among several types of cancer. There are different signaling

pathways acting in order to promote and sustain neovascularization. 1. Angiogenesis promotion is leaded by TGFβ/ALK5 via VEGF expression in CSCs. 2.

Wnt/β-catenin is activated by the interaction of VEGF-A/NRP-1 promoting tube formation. 3. CSCs are able to release VGEF-A by exosomes which in turn stimulates

angiogenesis by miR-21/VEGF/VEGFR2 activation. 4. Notch signaling conserves stemness and vasculogenic markers in glioblastoma. 5. VEGFR2 through

AKT/mTOR signaling pathway regulates transdifferentiation from poorly differentiated CRC cells into highly expressing CD31, CD34, and VE-cadherin ECs. 6.

NF-κB/STAT3 pathway promotes tubule formation and angiogenesis on cancer stem-like cells via CCL5-CCR1/CCR3/CCR5. 7. VM can be influenced by DKK1 by

EMT and CSCs behavior. 8. While FZD2 receptor can drive to EMT, thus enhancing stemness properties and VM capabilities.

Furthermore, an holoclone CD133+ isolated fromMDA-MB-231
form VM and display MMP-2 and MMP-9 expression (87). In
addition, VEGF-silenced cells, attenuate growth and promotes
VM as adaptation mechanism associated to HIF-1α expression.
Furthermore, enrichment of CD133+/CD271+ Melanoma CSCs
is found in the perivascular niche in vivo (81).

Esophageal Cancer
It has been shown that epithelial–mesenchymal transition (EMT)
cells present stem phenotype, showing a remarkable relationship
between EMT and CSCs (88). For instances, Ginseng extract
showed a negative effect on EMT, as well as, VM in ESCC
lines (89). Besides, recombinant Endostatin (rh-Endo) protein
combined with radiotherapy downregulates EMT characteristics
and VC formation in ESCC through inactivation of AKT/GSK-3β
signaling pathway (90).

Gastric Cancer and Colorectal Cancer
In Gastric adenocarcinoma tissues, a positive relationship
between CD133/Lgr5 expression and VC formations, microvessel
density, tumor grade, lymph node metastasis and TNM staging
has been shown (85). In the case of CRC, the upregulation

of ZEB1 results in epithelial phenotype restoration, while, its
silencing results in VM inhibition and VE-Cadherin and Flk-1
downregulation in HCT116 cell line (91).

SIGNALING PATHWAYS OF CSCs IN VM

CSCs and VM are involved in cell plasticity, which is the
capability of an aberrant population to ECs transdifferentiation
(Figure 1) (92). VEGF receptors regulate expression of specific
marker for ECs, such as VE-Cadherin (93). In this regard, it
has been described that primary and established sarcoma cell
lines in contact with post-surgery fluids from Giant cell tumors
of bone patients can enrich CD44/CD117 cell population and
AKT/mTOR pathway activation. Moreover, it has been proved
that prolonged stimulation results in transdifferentiation of
tubule-like structures that express endothelial markers, such as,
VE-Cadherin and CD31 (94). Additionally, CSCs switch on NF-
κB and STAT3 signal pathways via CCL5-CCR1/CCR3/CCR5,
stimulating endothelial differentiation and tubule formation (95).

It has been demonstrated that DKK1 enhances VM formation
via EMT by developing CSC characteristics in not small cells lung
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carcinoma (NSCLC) (96). Besides, the Wnt signaling receptor
FZD2 drives EMT process, enhancing stem-like properties and
VM capacity in HCT116 cells (97). Interestingly, inhibition of IL-
8/CXCR2 signaling by Transgelin results in suppression of VM
with increased IL-8 levels due to IL-8 uptake inhibition in breast
cancer stem cells (BCSCs) (98).

In CRC, the poorly differentiated cell line HCT116
expresses endothelial markers and form tube-like structure
in vitro after endothelial-conditioned medium co-culture. In
addition, under hypoxic conditions cells exhibit higher levels
of VEGFR2/VEGFA, as well as, CD31, CD34 and VE-Cadherin
overexpression (99).

THERAPEUTICS STRATEGIES: NEW
PERSPECTIVES

Little is known about the role of CSCs promoting angiogenesis
and VM. It has been shown that abnormal blood vessels
are capable to obstruct immune response to the tumor,
as wells as, the transportation and distribution of oxygen
and chemotherapeutics. This hostile tumor microenvironment
can also lead to selection of cells resistant to radiotherapy
and chemotherapy (43). Altogether might suggest that anti-
angiogenic drugs often induce tumor hypoxia, allowing CSCs to
survive and propagate, thus driving tumor progression.

Nevertheless, some inhibitors of VM are potential molecules
to use in therapy of different types of cancers, such as LCS1269
that is capable of overcoming multidrug resistance for DNA-
damaging agents in melanoma by VM inhibition (100). In
addition, Hinokitiol, a tropolone-associated natural compound,
has an important effect over EGFR expression and VM in BCSCs
through proteasome-mediated EGFR degradation (101).

Molecules and signal pathways involved in angiogenesis and
VM supported by CSCs are novel targets of cancer therapeutics.
Nevertheless, information of GICs therapeutics in this matter is
limited. Has been described that anti-CD133 has a great potential
in treating CRC (96). Besides, targeting signaling pathways is
possible, for instance, BBI-608 drug targeting STAT3 could
be used for advanced CRC resistant to standard therapeutics
or in mixture with Paclitaxel for advanced GC (2, 97).
Moreover, Ginsenoside Rg3, a derived from ginseng, represses
growth cells and CSCs properties in CRC cells, as well as,
inhibits angiogenesis-related genes, suppressing vascularization
in xenograft tumors (98).

Several authors suggest that interfering on growth and
survival of tumoral ECs can be enough to inhibiting angiogenesis
and CSCs self-renewal (99). In this regard, VEGF secreted by
cancer cells is a well-recognized therapeutic target and several
angiogenic inhibitors have been developed with the capability
of also suppress self-renewal of CSCs leading to reduced tumor
growth. It has been shown that, Bevacizumab expands survival
time by targeting the perivascular niche by the inhibition of
VEGF (102). Additionally, bevacizumab reduces metastatic niche
formation in rectal carcinoma patients (103) and combined with
an anti hepatoma-derived growth factor antibody prevents tumor
relapse and progression in NSCLC by impairing CSCs (104).

Conversely, the administration of Bevacizumab combined to
Sunitinib (VEGF inhibitor) induces tumor hypoxia in BC cell
lines resulting in the augment of CSCs population (105).

CONCLUDING REMARKS

Recently, emerging evidence shows that tumors are
heterogeneous, being constituted by multiple subpopulations
such as CSCs that share self-renewal and differentiation
characteristics with normal stem cells. Also, they are able to
express specific surface markers that depend on the organ
of origin. For instance, CD44, ALDH1, EpCAM, and Lrg5
are characteristics markers of gastrointestinal CSCs, in EC,
GC, and CRC. Besides, vascular niches are important for
maintaining tumor progression, since CSCs prefer a perivascular
microenvironment, rich in blood vessels that often have an
abnormal structure and is supported by hostile conditions such
as, hypoxia, which in turn, enhances selection of more aggressive
cells, able to invade and metastasize. In this regard, CSCs can
be transdifferentiated into endothelial-like cells and pericytes,
important lineages for maintenance of cancer vascular niche.

Some signaling pathways have been implicated in
angiogenesis and VM. The most important molecules
and pathways are VEGF/VEGFR2, Notch, BMP9/ALK1,
PI3K/AKT/mTOR, NF-κB, and STAT3, that regulate different
pivotal processes involved in angiogenesis promotion, such as
permeability, endothelial and tubule-like transdifferentiation
and promotion of endothelial markers expression, stem cell
survival and vascular development.

Clinical relevance of angiogenesis in GICs is remarkable
as poor pericyte coverage is correlated with worst prognosis
due to leaky vessels that produce elevated local pressure and
enhances progression and metastasis. Besides, a higher vascular
density in the invasion front has been associated with recurrence,
metastasis and patient mortality in CRC. Importantly, Dclk1
can discriminates between cancer and normal stem cells in
the intestine.

CSCs are implicated in VM in different cancers, such as ACC,
breast cancer and melanoma. In addition, there is a remarkable
relationship between EMT and CSCs, due to EMT cells acquired
stem phenotype. Importantly, GICs show that the use of drugs,
certain proteins or radiotherapy that affect the EMT leads to
inhibition of VM. Finally, clinical relevance of VM relies on its
association with tumor size, short OS, high tumor grade, clinical
staging, invasion and metastasis.

On this front, several drugs have been tested, for instance,
Bevacizumab is able to expand survival time by targeting the
perivascular niche by the inhibition of VEGF with effect on
angiogenesis However, more studies are necessary in order to
elucidate CSCs participation on VM and angiogenesis since this
could help to address therapeutics for GICs.
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