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For stage-I lung adenocarcinoma, the 5-years disease-free survival (DFS) rates of

non-invasive adenocarcinoma (non-IA) is different with invasive adenocarcinoma (IA).

This study aims to develop CT image based artificial intelligence (AI) schemes to

classify between non-IA and IA nodules, and incorporate deep learning (DL) and

radiomics features to improve the classification performance. We collect 373 surgical

pathological confirmed ground-glass nodules (GGNs) from 323 patients in two centers.

It involves 205 non-IA (including 107 adenocarcinoma in situ and 98 minimally invasive

adenocarcinoma), and 168 IA. We first propose a recurrent residual convolutional neural

network based on U-Net to segment the GGNs. Then, we build two schemes to classify

between non-IA and IA namely, DL scheme and radiomics scheme, respectively. Third,

to improve the classification performance, we fuse the prediction scores of two schemes

by applying an information fusion method. Finally, we conduct an observer study to

compare our scheme performance with two radiologists by testing on an independent

dataset. Comparing with DL scheme and radiomics scheme (the area under a receiver

operating characteristic curve (AUC): 0.83 ± 0.05, 0.87 ± 0.04), our new fusion scheme

(AUC: 0.90 ± 0.03) significant improves the risk classification performance (p < 0.05).

In a comparison with two radiologists, our new model yields higher accuracy of 80.3%.

The kappa value for inter-radiologist agreement is 0.6. It demonstrates that applying AI

method is an effective way to improve the invasiveness risk prediction performance of

GGNs. In future, fusion of DL and radiomics features may have a potential to handle the

classification task with limited dataset in medical imaging.
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INTRODUCTION

As the most common histologic subtype of lung cancer, lung adenocarcinomas accounts for
almost half of lung cancers. The persistent presence of ground-glass nodules (GGN) in computed
tomography (CT) image usually serves as an indicator of the presence of lung adenocarcinoma
or its precursors (1). According to the guideline of the 2011 International Association for the
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Study of Lung Cancer/American Thoracic Society/European
Respiratory Society International (IASLC/ATS/ERS)
classification, lung adenocarcinoma includes atypical
adenomatous hyperplasia (AAH), adenocarcinoma in situ
(AIS), and minimally invasive adenocarcinoma (MIA) and
invasive adenocarcinoma (IA) (2). Previous reported studies has
depicted that the different subtypes of lung adenocarcinoma
have different 3-years and 5-years disease-free survival (DFS)
rates (3). For stage-I lung adenocarcinoma, the 5-years DFS of
AIS and MIA is 100%, but IA is only 38–86% (4, 5). Meanwhile,
the standard surgical treatment for lung adenocarcinoma is still
lobectomy, but non-IA patients may be candidates for limited
surgical resection (6). Thus, it is important to discriminate
between IA and non-IA (including AIS and MIA) by using
non-invasive CT image.

In order to classify between non-IA and IA GGNs,
investigators and researchers have proposed two kinds of
computer-aided diagnosis (CADx) schemes including CT
radiomics feature analysis method and deep learning (DL)
architecture based scheme (7). The radiomics feature analysis
approachmainly includes tumor segmentation, radiomics feature
extraction and selection (8), and machine-learning classifier
training/testing process, respectively (9–11). The related studies
usually compute a large number of handcrafted imaging features
to decode the different tumor phenotypes (6, 12–14). Unlike
radiomics feature analysis scheme, DL based scheme use the
convolutional neural network (CNN) to build an end-to-
end classification model by learning a hierarchy of internal
representations (15–17). Although DL scheme can improve the
classification performance and reduce the workload of hand-craft
feature engineering (i.e., tumor boundary delimitation), it needs
to be trained with larger dataset than radiomics feature based
scheme (18, 19). However, under common medical diagnosis
conditions, collecting, and building a large uniform image dataset
is very difficult because of the inconformity of CT screening
standard and lacking surgical pathological confirmed GGNs.
Thus, how to improve the CADx performance with a limited
dataset is a challenge task.

To address this issue, we have fused the DL and radiomics
features to build a new AI scheme to classify between non-IA and
IA GGNs. We first collected 373 surgical pathological confirmed
GGNs from 323 patients in two centers. To segment the GGNs
in CT images, we trained a recurrent residual convolutional
neural network (RRCNN) based on U-Net model. Then, we
respectively built a DL model and radiomics feature analysis
mode to classify between IA and non-IA GGNs. Finally, we
applied an information fusion method to fuse the prediction
scores generated by the two models. In order to evaluate the
performance of our new scheme, we used an independent dataset
to conduct an observer study by comparing our prediction score
with two radiologists (an experienced senior radiologist S.P.
Wang and a junior radiologist W. Hao).

MATERIALS AND METHODS

Image Dataset
In this study, we respectively collected 373 surgical pathological
confirmed GGNs from two centers. For the cases with multifocal

ground-glass nodules (multi-GGNs), we treated each GGN as
an independent primary lesion (20). The inclusion criteria were:
(1) diagnosed with stage-I lung adenocarcinoma cancer; (2)
histopathologically confirmed AIS, MIA and IA pulmonary
nodules; (3) available CT examination within 1 month before
surgery; and (4) the tumor manifesting as GGN on CT with a
maximum diameter of (3mm, 30mm). The exclusion criteria
were: (1) preoperative systemic therapy; (2) lacking CT images
before surgery; (3) histopathologically described GGN not
identifiable on CT; and (4) artifacts appeared in CT images. We
only collected the latest CT examination images of each patient
before surgery. The time interval between chest CT examination
and operation was 1–30 days (mean, 8.3 days). The institutional
review board of two centers approves this retrospective study,
and written informed consents were waived from all patients. The
details of GGNs in the two centers were depicted as follows.

In the first dataset, we collected 246 GGNs from 229 patients
(involving 82 males and 147 females) in Taizhou Municipal
Hospital (Zhejiang, China). Among these nodules, 55 GGNs
were AIS, 64 GGNs were MIA, and 127 GGNs were IA. All the
CT scans were reconstructed by using the standard convolution
kernel, and each slice was reconstructed with a matrix 512× 512
pixels (GE scanner). CT parameters were as follows: 120 kVp tube
voltage, and 100–250mA tube current. The pixel spacing of CT
scan ranged from 0.684 to 0.703mm, and the slice thickness was
1.25 or 5 mm.

The other 127 GGNs were collected from 94 patients
(involving 35 males and 59 females) in Fudan University
Shanghai Cancer Center (Shanghai, China). In this dataset, 52
AIS GGNs, 34 MIA GGNs, and 41 IA GGNs were involved. The
CT examinations were performed with a fixed tube voltage of 120
kVp and a tube current of 200mA. The pixel spacing of CT image
ranged from 0.684 to 0.748mm, and the slice thickness was 1 or
1.5mm. Each slice was reconstructed with an imagematrix of 512
× 512 pixels.

In order to train and test our proposed schemes, we divided
the GGNs into two parts. We used 246 GGNs in the first dataset
to build a training and validation dataset to train our scheme.
Meanwhile, to evaluate our new scheme performance, we selected
the 127 GGNs in the second part to build an independent testing
dataset. The details of our dataset were listed in Table 1.

Methods
In this study, we first built a DL based model and a radiomics
feature based model, respectively. Then, to improve the scheme
performance, we used an information-fusion method to fuse the
prediction scores of the two schemes. The framework of our
proposed scheme was illustrated in Figure 1.

Before building the scheme, we first used a series of
preprocessing technique to process the initial CT images. To
avoid the biases caused by the variant spacing of CT scans in
our dataset, we applied a cubic spline interpolation algorithm to
resample CT images to a new spacing of 1mm × 1mm × 1mm.
Then, we used an intensity window range of [−1,200, 600] to
scale the resampled axial CT images to an intensity range of 0–
255. After normalized all the CT images, we cropped the GGN
into a 3D cubes with a patch of 64 × 64× 64mm. During this
process, we used the position of GGN center point in Cartesian
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TABLE 1 | Demographic characteristics of 323 patients with 373 GGNs in two datasets.

Characteristic Training and validation dataset

(N = 246)

Testing dataset

(N = 127)

Non-IA IA P Non-IA IA P

119 127 86 41

Sex Male 40 42 0.15 19 16 0.15

Female 73 74 43 16

Age (mean ± SD, year) 56.5 ± 11.8 59.7 ± 10.3 0.03 51.8 ± 12.1 58.1 ± 8.6 0.03

Location RUL 48 (19.5%) 52 (21.1%) 0.64 28 (22.0%) 18 (14.2%) 0.13

RML 6 (2.4%) 9 (3.7%) 6 (4.7%) 3 (2.4%)

RLL 17 (6.9%) 19 (7.7%) 15 (11.8%) 7 (5.5%)

LUL 34 (13.8%) 32 (13.0%) 25 (19.7%) 7 (5.5%)

LLL 14 (5.7%) 15 (6.1%) 12 (9.4%) 6 (4.7%)

Diameter (mm) (3, 10) 72 (29.3%) 42 (17.1%) 0.004 67 (52.8%) 8 (6.3%) <0.0001

(10, 20) 39 (15.9%) 68 (27.6%) 19 (15.0%) 22 (17.3%)

(20, 30) 8 (3.3%) 17 (6.9%) 0 (0%) 11 (8.7%)

Type pGGN 88 (35.8%) 65 (26.4%) 0.0002 78 (61.4%) 18 (14.2%) <0.0001

sGGN 31 (12.6%) 62 (25.2%) 8 (6.3%) 23 (18.1%)

IA, invasive adenocarcinoma; pGGO, pure ground glass nodule; sGGN, part-solid ground glass nodule.

FIGURE 1 | Flowchart of the proposed scheme.

coordinates drawn by radiologist to locate each GGN in CT
image. Last, in order to reduce the computational cost of our
model, we normalized the intensity of cropped GGN cubes to an
intensity range of 0–1.

Second, we built a 3D RRCNN based on U-Net model to
segment the GNNs in CT images. The architecture of our
segmentation DL model were showed in Figure 2. The inputs
of 3D RRCNN model were our cropped GGN patches, and
the outputs were the segmented 3D masks. For each layer of
the 3D RRCNN, we used a RRCNN block with a 3 × 3 × 3

convolutional layer, a batch normalization layer and a standard
rectified linear unit (ReLU). In each convolutional layer, we
also embedded a residual unit and a recurrent unit into the
block (21). To build the segmentation model, we used the
257 GGNs in the lung image database consortium and image
database resource initiative (LIDC-IDRI) to train our proposed
RRCNN model (22). Four radiologists delineated the boundaries
of nodules in LIDC-IDRI database. We used the boundary voted
by three or more radiologists as the “ground-truth” of each
nodule. To generate the training GGNs for RRCNN model, we
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FIGURE 2 | Segmentation results of a GGN. From top to bottom: original CT images, heat map of CNN features, and segment masks of the GGN.

applied some data augmentation techniques (i.e., rotation of
image by 90◦ increments, left-right flipping, up-down flipping)
to augment the dataset. Moreover, we applied the Dice similarity
coefficient (DSC) of nodule to define the loss function of our
segmentation model (23). Figure 2 shows an example of GGN
segmentation results.

Third, we used a transfer learning method to build a
DL based invasiveness risk prediction model. In this model,
we fixed the parameters in CNN-pooling processes of the
segmentation model. To build a classification model, we added
two fully connected (FC) layers into the DL model, and
used deep features generated by the CNN-pooling layers of
segmentation model to feed into the FC layers. Then, we

used the GGNs in our training and validation dataset to
fine-tune our classification CNN model. In this process, we
selected the cross entropy to calculate the loss, and used
an Adam optimizer with a weight decay of 1e-4 to update
the parameters. Figure 3 shows the architectures of our proposed
DL model.

Fourth, we built a radiomics feature analysis model to classify
between non-IA and IA GGNs. For each CT scan in our dataset,
we used the RRCNN model to segment 3D GGNs. Then, we
computed 1,218 radiomics features to quantify each GGN. These
imaging features involved: 430 LoG features, 688 wavelet features,
18 histogram features, 14 shape features, and 68 texture features.
The LoG features and wavelet features were computed by using
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FIGURE 3 | The architectures of Recurrent Residual Convolutional Neural Network (RRCNN) based on U-Net model and the transfer learning method based risk

prediction model.

the Laplacian of Gaussian (LoG) filter and wavelet filter to filter
the initial image, respectively. The LoG image was obtained
by convolving the original image with the second derivative
of a Gaussian kernel. Five sigma values including 1, 2, 3, 4,
and 5 were used to calculate the LoG features. In Among the
68 texture features, 22 were gray level co-occurrence matrix
texture features (GLCM), 14 were gray level dependence matrix
texture features (GLDM), 16 were gray level run length matrix
texture features (GLRLM), and 16 were gray level size zone
matrix texture features (GLSZM). After extracting the radiomics
features, we scaled each feature to [0, 1] by using a feature
normalization technique. To reduce the dimensionality of initial
features, we applied the univariate feature selection method
with ANOVA F-value to select the best features and remove
the redundant features (24). After feature selection processing,
we used these selected imaging features to train a support
vector machine (SVM) classifier and build a radiomics feature
based model.

Finally, we used an information-fusion method to fuse
the prediction scores of two classification models. In brief,
the information-fusion strategies includes the maximum,
minimum, and weighting average fusion. For maximum and
minimum strategy, we compared two prediction scores of each
GGN, and selected the maximum or minimum value as the
fusion prediction score. For weighting average strategy, we
systematically increased the weighting factor of prediction score
generated by DL based scheme from 0.1 to 0.9 (or 0.9–0.1 for the
prediction score generated by radiomics feature based scheme)
to compute the fusion prediction score. A similar method was
applied in our previously reported literature (25).

Performance Evaluation
After obtaining the prediction scores, we generated the receiver
operating characteristic (ROC) curves and computed the
area under a ROC curve to evaluate the performance of
our proposed models. In order to compare the new scheme
performance with radiologists, we conducted an observer study
by testing on an independent testing dataset. Two radiologists

(a junior radiologist: Wen Hao with 5-years experience; a
senior radiologist: Shengping Wang with 14-years experience
in CT interpretation) were independently to diagnose all the
GGNs in testing dataset by blinding to the histopathologic
results and clinical data. Since two radiologists only provided
a binary result for each case, we calculated some additional
metrics to assess and compare the prediction performance.
The evaluation indexes were accuracy (ACC), F1 score,
weighted average F1 score, and Matthews correlation coefficient
(MCC = TP×TN−FP×FN√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
), respectively. The

equation of F1 score was defined as follows.

F1 =
2× Precision× Recall

Precision+ Recall

where TP, FP, TN, FN denoted true positive, false positive, true
negative, and false negative, respectively. Precision denoted the
precision value (Precision = TP

TP+FP ), and Recall denoted the

recall value (Recall = TP
TP+FN ).

In this study, we implemented the above model building
and performance evaluation processes on the Python 3.6 by
using a computer with Intel Core i7-8700 CPU 3.2 GHz ×
2, 16 GB RAM and a NVIDIA GeForce GTX 1,070 graphics
processing unit. To build the DL and radiomics feature
based scheme, we applied some publicly available Python
packages, i.e., SimpleITK, pyradiomics (26), Pytorch, scikit-
learn, scikit-feature, scipy. We used the default configuration
of performance evaluation functions. Thus, the scheme
performance can be easily compared and evaluated in
future studies.

All the codes of our proposed models were open
source available at https://github.com/GongJingUSST/DL_
Radiomics_Fusion.

RESULTS

Table 1 listed the detailed demographic characteristics of the
patients in two datasets. A total of 323 patients [117 (36.2%)
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FIGURE 4 | Boxplots of the mean CT value of IA and non-IA GGNs in our dataset. (A) Illustrates boxplot of the training and validation dataset. (B) Shows boxplot of

the testing dataset.

FIGURE 5 | Heat map of the 20 imaging features selected in the radiomics based model.

males, and 206 (63.8%) females, P > 0.05] with 373 GGNs
were involved in our dataset. Among these GGNs, 107 were AIS
(28.7%), 98 were MIA (26.3%), and 168 were IA (45%). Of all 373
GGNs, 228 (61.1%) were located in right lobe, and 145 (38.9%)
were located in left lobe (P > 0.05). In the dataset, the diameters
of 189 (50.7%) GGNs were smaller than 10mm, the diameters of
148 (39.7%) GGNs were in a range of (10mm, 20mm), and the
diameters of 36 (9.6%) GGNs were larger than 20mm (P < 0.05).
Of 373 GGNs, 249 nodules (66.8%) showed pure GGNs without

solid components, and 124 nodules (33.2%) showed part-solid
GGNs on CT images. Figure 4 illustrates the boxplots of GGN
mean CT values in training and testing dataset. In training and
validation dataset, the mean CT value of IA and non-IA GGNs
were −439 ± 138 and −533 ± 116, respectively. Meanwhile, in
the testing dataset, the mean CT value of IA and non-IA were
−381± 182 and−553± 142.

Figure 5 shows the heat map of the 20 selected imaging
features in the radiomics feature based scheme. In Figure 5,
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TABLE 2 | AUC values and the corresponding 95% CI generated by different

methods with 127 GGNs in testing dataset.

Method AUC 95% CI

Deep learning based scheme 0.83 ± 0.05 [0.75, 0.90]

Radiomics feature based scheme 0.87 ± 0.04 [0.80, 0.93]

Minimum 0.83 ± 0.05 [0.75, 0.90]

Maximum 0.90 ± 0.03 [0.84, 0.95]

0.1 × Radiomicsa+0.9×DLb 0.85 ± 0.04 [0.77, 0.91]

0.2 × Radiomics+0.8×DL 0.86 ± 0.04 [0.78, 0.92]

0.3 × Radiomics+0.7×DL 0.87 ± 0.04 [0.80, 0.93]

0.4 × Radiomics+0.6×DL 0.88 ± 0.04 [0.81, 0.94]

0.5 × Radiomics+0.5×DL 0.89 ± 0.04 [0.83, 0.95]

0.6 × Radiomics+0.4×DL 0.90 ± 0.04 [0.83, 0.95]

0.7 × Radiomics+0.3×DL 0.90 ± 0.04 [0.83, 0.90]

0.8 × Radiomics+0.2×DL 0.90 ± 0.04 [0.83, 0.88]

0.9 × Radiomics+0.1×DL 0.89 ± 0.03 [0.83, 0.94]

a Radiomics: prediction scores generated by radiomics feature based scheme.
b DL: prediction scores generated by deep learning based scheme.

these 20 imaging features selected from the initial feature pool
were LoG image based features. It can be seen that LoG features
play an important role in building the radiomics feature based
classification model. Most of the selected imaging features have a
different distribution between non-IA and IA GGNs. It indicated
that most of these selected features have a potential to differ
non-IA from IA GGNs.

Table 2 listed the AUC values and the corresponding 95%
confidence interval (CI) of the models proposed in this study.
Testing on the independent testing dataset, the DL based scheme
and radiomics feature based scheme yielded an AUC value of
0.83 ± 0.05 and 0.87 ± 0.04, respectively. When we applied the
information-fusion method, the scheme performance changed
with the different fusion strategy. By using a maximum fusion
strategy, our scheme yielded a highest AUC value of 0.90 ± 0.03.
Comparing with the performance generated individually, the
fusion scheme significantly improved the scheme performance (P
< 0.05). Meanwhile, there is no significant difference between DL
based scheme and radiomics feature based scheme (P = 0.09).

Figure 6 shows performance comparisons of three models
and radiologists. Figure 6A shows scatter plot of prediction
score distributions of non-IA and IA nodules, and Figure 6B

shows ROC curves of the three models and the prediction scores
of two radiologists. Figure 6A showed that a large number of
prediction scores generated by DL and radiomics based models
were scattered and inconsistent in both non-IA and IA nodules.
It indicated DL model and radiomics model might provide
different information in classifying between non-IA and IA
nodules. ROC curves also showed the trend that fusing the scores
of DL based scheme and radiomics feature based scheme can
improved the scheme performance. In a comparison with two
radiologists, the fusion scheme yielded higher performance. In
order to further compare the fusion scheme performance with
two radiologists, Table 3 illustrated and compared the accuracy,
F1 score, weighted average F1 score, and Matthews correlation

FIGURE 6 | Performance comparisons of three models and radiologists. (A)

Shows scatter plots of prediction score distributions of non-IA and IA nodules.

Left to right: prediction scores generated by DL and radiomics models for

non-IA and IA nodules in testing dataset, respectively. (B) Shows ROC curves

of the three models and the prediction scores of two radiologists.

coefficient of each scheme. Evaluating the results showed in
Table 3, our fusion scheme yielded higher performance than two
radiologists in terms of each index. It indicated that our CADx
scheme matched or even outperformed radiologist in classifying
between non-IA an IA GGNs. To test the interrater reliability
of the results of two radiologists, we also calculated the Cohen’s
kappa value to measure their agreement (27). The Cohen’s kappa
value of two radiologists was 0.6. It indicated that two radiologists
had a moderate agreement in predicting the invasiveness risk
of GGN.

DISCUSSION

In this study, we developed a CT image based CADx scheme
to classify between non-IA and IA GGNs by fusing DL and
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TABLE 3 | The comparison of classification performance tested on 127 GGNs in

independent testing dataset, in terms of accuracy (ACC), F1 score, weighted

average F1 score, and Matthews correlation coefficient (MCC), respectively.

ACC (%) F1 (%) F1weighted (%) MCC (%)

Senior radiologist 67.7 64.3 68.5 44.8

Junior radiologist 70.9 63.4 71.8 42.6

Our fusion model 80.3 75.2 80.9 62.8

TABLE 4 | Comparison of dataset, methods, and AUC values reported in different

studies.

Work Dataset Method AUC

Wang et al. (19) 1,545 nodules Deep learning 0.892

Zhao et al. (15) 651 nodules Deep learning 0.880

Gong et al. (28) 828 nodules Deep learning 0.92 ± 0.03

Our study 373 nodules Fusion of deep learning

and radiomics

0.90 ± 0.03

radiomics features. Our study has a number of characteristics.
First, we built an AI model to classify between non-IA and IA
GGNs by fusing DL and radiomics features. Since DL based
scheme and radiomics feature based scheme used different
imaging features to decode the phenotypes of GGN, our
fusion model integrated these quantitative and deep features to
character the CT features of tumor. Comparing with model built
with DL and radiomics features individually, the fusion model
has improved the scheme performance significantly (i.e., results
showed in Table 2 and Figure 6). It showed that deep feature and
radiomics feature may provide complementary information in
predicting the invasiveness risk of GGN. To build a robust model,
we used the surgery histopathological confirmed GGNs from
two centers to train and test the classification scheme. In order
to evaluate the performance of our scheme, we compared the
scheme prediction scores with two radiologists by testing on an
independent dataset. Comparing with two radiologists, our new
scheme yielded higher performance in classifying between non-
IA and IA GGNs (i.e., results showed in Figure 6 and Table 3).
Meanwhile, comparing with previously reported studies (15, 19,
28), our study can yield a rather high classification performance
by using a limited dataset (i.e., results showed in Table 4). If
the robustness of our model was confirmed with more diverse
and larger dataset in future studies, the proposed AI scheme
would have a high impact on assisting radiologists in their clinical
diagnosis of GGNs.

Second, we applied a transfer learning method to build a DL
based scheme by training with a limited dataset. Since the DL
based scheme was a data-driven model, we should train and
build a DL model with a large dataset. To address this issue,
we proposed a RRCNN model to segment GGNs, and then
used a transfer learning method to fine-tune the segmentation
DL model. In this process, our classification DL model shared
the same deep features with the segmentation model. As the
training images of two model was same, it was easily to transfer

the segmentation model to classification task. In a comparison
with radiomics feature based model, the DL based scheme
yielded equivalent performance (P > 0.05). It demonstrated that
transferring segmentation DL model to classification task was
feasible. Thus, our new scheme may provide a new way to build a
DL based classification model with limited dataset.

Third, we built a radiomics feature based scheme to predict the
invasiveness risk of GGN. To quantify the imaging phonotypes
of GGN, we initially computed 1,218 radiomics features. To
remove the redundant imaging features, we applied a univariate
feature selection method to select the robust features. Most of
the selected imaging features were LoG image based features. It
showed that LoG features were essential for classifying between
non-IA and IA GGNs. By observing the heat map of 20 selected
image features, we found that those features had a different
distributions in non-IA and IA group. It indicated that these
selected imaging features had a potential to classify between
non-IA and IA GGNs.

Fourth, in order to evaluate the performance of our proposed
scheme, we conducted an observer study by comparing with
two radiologists. Senior radiologist obtained higher sensitivity
(90.2 vs. 78.1%) and false positive rate (43.0 vs. 32.6%) in
distinguishing between IA and non-IA GGNs. It indicated that
senior radiologist was more sensitive to the positive GGNs (i.e.,
IA GGNs). Meanwhile, the accuracy of senior radiologist was
lower than that of junior radiologist. Since the number of non-
IA GGNs is larger than that of IA GGNs in our testing dataset, it
indicated that the number of negative GGNs (i.e., non-IA GGNs)
miscategorized into IA class by senior radiologist was larger.
Thus, senior radiologist paid more attention to IA GGNs than
non-IA GGNs. Two radiologists had a moderate agreement on
diagnosing the invasiveness risk of GGNs. By validating on an
independent testing dataset, our AI scheme outperformed two
radiologists in classifying between non-IA and IA GGNs (i.e.,
results showed in Table 3 and Figure 6). It demonstrated that
CT image based AI scheme was an effective tool to distinguish
between non-IA and IA GGNs. Due to the different ways of
surgical management for GGNs with different subtypes of lung
adenocarcinoma, our AI scheme may have a potential to assist
both radiologists and thoracic surgeons in their decision-making.

Despite of the promising results, this study also had several
limitations. First, our dataset was small, and only a total of 373
GGNs were involved in this study. The diversity of GGNs in our
dataset cannot sufficiently represent the general GGN population
in clinical practice. Since the DLmodel was data-driven, it may be
under-fitting due to lack of training dataset. Thus, large diverse
dataset and cross-validation method should be used to validate
the reproducibility and generalization of our scheme. Due to the
different scanning parameters, the tube current, pixel spacing,
and slice thickness of CT image was variety. Whether and how
these scanning parameters affect the scheme performance have
not been investigated in this study (29).

Second, we only extracted and investigated two type CT
image features of lung adenocarcinoma namely, DL image
feature and radiomics feature, respectively. Although the scheme
performance has been improved by fusing two types of
imaging features, CT image features cannot decode the whole

Frontiers in Oncology | www.frontiersin.org 8 March 2020 | Volume 10 | Article 418

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Xia et al. Predict Invasiveness of Lung Adenocarcinomas

phenotypes of lung adenocarcinoma tumor. The clinical data,
such as smoking history, family history, carcinogenic exposure
history, chronic obstructive pulmonary disease, emphysema,
interstitial lung disease, etc., may also provide useful classification
information. In future studies, we should also apply and
combine other types of features (i.e., clinical information,
tumor biomarkers, gene feature) to improve the scheme
performance (30).

Third, to improve the scheme performance, we only applied a
simple information-fusion method to fuse the prediction scores
of DL and radiomics based scheme. Due to the limited dataset,
our proposed DL scheme and radiomics model may be over-
fitting during training process. By applying different weights to
the prediction scores of two models, fusion model can weak the
over-fitted model’s impacts. The over-fitting can be alleviated to
some degree by fusing the prediction scores generated by two
models. Although the scheme performance has been improved,
it may not be the optimal way to combine two types of image
features. Thus, we should investigate and develop new fusion
methods to fuse the different types of features in future studies.
The weak interpretation of DL based scheme is also a limitation
of this study. In addition, we used the positions delineated by
radiologist to crop GGN patches and generate the training and
testing images. The human intervention may also affect the
scheme performance.

Last, in our observer study, two radiologists read CT images
with time and information constraints, which is different
from real clinical situation. The insufficient diagnosis time
and clinical information may result in the low performance
of two radiologists. Moreover, this is an only technique
development study, and we need to conduct rigorous and valid
clinical evaluation before applying the proposed scheme into
clinical practice.

CONCLUSION

In this study, we developed an AI scheme to classify between
non-IA and IA GGNs in CT images. To improve the scheme
performance, we fused the prediction scores generated by DL
based scheme and radiomics feature based scheme, respectively.
The results shows that fusion of DL and radiomics features can
significantly improve the scheme performance. Comparing with
two radiologists, our new scheme achieves higher performance. It
demonstrates (1) fusing DL and radiomics features can improve
the classification performance in distinguishing between non-
IA and IA, (2) we can build classification DL model with the

limited dataset by transferring segmentation task to classification

task, (3) AI scheme matches or even outperform radiologists in
predicting invasiveness risk of GGNs. Therefore, to improve the
diagnosis performance of GGNs, one should focus on exploring
and computing robust imaging features, and developing optimal
method to fuse different types of features.
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