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Specific types of nephroblastoma (Wilms’ tumor, WT) are known to associate with poor

overall survival. Emerging experimental evidence has demonstrated that competitive

endogenous RNA (ceRNA) networks have important roles in regulating cancer

occurrence, but the roles of ceRNAs in regulating the WT progression and the patient

outcomes remain unclear. Using the multi-omics data of 132 WT patients collected from

TARGET database, an integration analysis pipeline was performed to construct a highly

reliable ceRNA network. As results, a total of 147 nodes (116 mRNAs, 15 miRNAs,

and 16 lncRNAs) were identified and used to explore the underlying mechanism for WT

progression. WGCNA analysis further identified several prognostic molecules, including

hsa-mir-93, LINC00087 and RP5-1086K13, that significantly associated with the overall

survival rate. And, enrichment analysis verified the participation of these molecules in

tumor-related pathways, such as those controlling autophagy and cadherin-mediated

adhesion. Importantly, the WT patients were classified into three categories according to

the ceRNA network, which significantly correlated with the overall survival. In conclusion,

the ceRNA network could be a promising tool to further validate the prognostic

biomarkers and categories of patients diagnosed with WT.

Keywords: nephroblastoma, competitive endogenous RNA, tumor progression, prognostic marker, tumor

categories

INTRODUCTION

Nephroblastoma, also known as Wilms’ tumor (WT), is a complex childhood tumor of the kidney
and the most prevalent type of kidney cancer in children (1). It is the underlying cause of 6–14%
of children with tumors and up to 95% of all kidney cancers in children, affecting approximately
one child per 10,000 worldwide under 15 years of age (2). Multiple effective treatments have been
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developed, and the overall survival rate of WT has reached
90% within the past several decades (3). However, recurrence
still occurs in ∼15% of WT patients with favorable pathological
findings and practically 50% of anaplastic WT patients. Relapsed
patients, as well as those with bilateral or unilateral high-risk
tumors, who are at great risk for significant late effects of therapy,
continue to have poor event free survival rates (4–6). Therefore,
to develop novel and effective therapeutic approaches, it is
important to understand the eventual downturn in the disease
state that many WT patients will undergo.

Carcinogenesis is a complex process driven by abnormal gene
combinations which may vary greatly between patients. WT is
a genetically heterogeneous disease. Several gene alterations in
predisposing loci have been well-identified, including mutations
in Wilms’ tumor gene 1 (WT1), catenin beta 1 (CTNNB1),
insulin-like growth factor-2 (IGF2) and Wilms’ tumor gene on
the X chromosome (WTX) (7–9). The multifaceted regulation
across multiple genes is important for the development of this
disease. Numerous studies have reported that non-coding RNAs,
including microRNAs (miRNAs) and long non-coding RNAs
(lncRNAs), may play a critical role in cancer development (10,
11). Approximately 15% of patients diagnosed with WT have
mutations in the miRNA-processing genes (12). Gong et al.
analyzed the miRNA expression profiles of WT patients and
identified 5 potential prognosis biomarker (13). Another study
using microarrays to perform miRNA and gene expression
profiles of WT patients and found the relationship between
abnormally expressed miRNA and tumor progress (14). Previous
studies have focus on the single omics and research on
transcriptome has been largely limited to mRNA. As previously
discussed, a single factor cannot explain the development of
cancer. However, computational analysis provides a good way to
understand the interactions between different factors that may
contribute to cancer development.

Recent studies have demonstrated another layer of miRNA-
mediated regulation that involves direct interactions between
RNAmolecules and common miRNAs. These RNAs, which were
first presented in 2011 by Rubio-Somoza et al. (15), are known as
competing endogenous RNAs (ceRNAs). The ceRNA hypothesis
states that the pool of mRNAs, lncRNAs and other ncRNAs
shares common microRNA response elements (MREs) with
miRNAs, which can inhibit normal miRNA functions through
competitive binding, thereby participating in the regulation of
cell behavior (16). A recent bioinformatics study revealed that
AFA-P1-AS1 acts as a ceRNA, competitively binding with miR-
423-5p and directly regulating genes in the Rho/Rac pathway,
thereby enhancing nasopharyngeal carcinoma cell migration and
invasion (17). Another study characterized a ceRNA network
that could distinguish the mesenchymal subtype from other
glioblastoma subtypes (18). Taken collectively, these findings
support the usefulness of the ceRNA network in understanding
the development of this disease.

Most recent studies on the ceRNA network consider miRNAs
to be gene regulators that act alone, and they ignore the influence
of other regulatory factors on the ceRNA network, such as
epigenetic factors, transcription factors and gene copy number
variation factors (19). Losing sight of these critical factors may
lead to spuriousmiRNA–gene interactions, whichmay cause false

positive results in the ceRNA network. The recently proposed
Cancerin algorithm overcomes this problem by integrating
muti-omic data (20). Another problem, however, involves the
identification and characterization of suitable candidate nodes to
expand the ceRNA network. Most studies have used differential
expression patterns as a screening standard. However, due to
the inherent characteristics of transcriptomic data, there is
usually severe noise in the differentially expressed genes (21).
In addition, the genes with the greatest variations are not
necessarily the genes responsible for the phenotypic changes
because of the complex hierarchical relationships within the
biological regulatory network. Therefore, it is critical to identify
the transcripts most associated with cancer progression and to
define them as nodes in the expansion of the ceRNA network.
Weighted Gene Co-expression Network Analysis (WGCNA)
solves this problem well (22). This method has been widely
used to screen the gene co-expression module and the key node,
collectively known as the hub node, which is most closely related
to phenotypic changes.

A fundamental approach to study the heterogeneity of WT is
to stratify the patients according to the molecular characteristics.
Thus, tumors can be divided into clinically and biologically
meaningful subtypes (23, 24), with each subtype associating with
similar molecular markers. Previously, many attempts have been
made to stratify various cancers using high quality transcriptomic
signatures, and some molecular subtypes in breast cancer have
now been clinically validated such asMammaprint and Oncotype
Dx (25). Since the endogenous RNA network integrates multiple
layers of information, we hypothesized that the classification of
patients using the ceRNA network would be useful.

In this study, we obtained RNA-seq, copy number and
methylation data from the TARGETDatabase of 132WT patients
at different stages of the disease. The candidate miRNAs, mRNAs
and lncRNAs related to tumor progression were identified by
co-expression analysis. Furthermore, multi-omics data (genome,
transcriptome, and epigenome) were integrated, and different
methods were adopted to build a high-confidence ceRNA
network. As a result, several key lncRNAs, which could predict
patient prognosis, were identified and further investigated.
According to these results, six lncRNAs could be used as reliable
indicators of patient prognosis. In addition, we stratified patients
using the condense cluster method and divided them into
subtypes with significant clinical significance based on the ceRNA
network (Figure S1). In summary, the ceRNA network obtained
from this multi-group study represents an effective approach
to study the stratification of patients, as well as to identify the
mechanism responsible for the progression of WT.

MATERIALS AND METHODS

Patients and TARGET Data Retrieval
The clinical data of 132 WT patients were obtained from
TARGET (Therapeutically Applicable Research To Generate
Effective Treatments) database. The survival and stage
information were included in this database. The RNA-seq,
miRNA-seq, DNA methylation and DNA copy number
information were also downloaded. Patients with incomplete
clinical information were filtered out, and 132 WT patients were
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retained. The study is in accordance with publication guidelines
provided by TARGET (https://ocg.cancer.gov/programs/target/
target-publication-guidelines). Since the data comes from the
TARGET database, no further approval was required from the
Ethics Committee.

RNA Sequence Data Processing
The RNA FPKM (fragments per kilobase of exon per million
fragments mapped) and miRNA expression data of 128 WT
patients were obtained from TARGET database. All data from
the samples were derived from the Illumina Hi-Seq platform and
freely available to download. Furthermore, “annotable” package
based on the R environment was used to distinguish the lncRNA
and coding RNA. Finally, 20,347 mRNA, 5983 lncRNA and 1870
miRNA were identified.

Copy Number Alteration
Mean copy numbers of chromosomal segments in the whole
genome were provided by level 3 copy number alteration
data from TARGET. Using the genomic location information
of protein coding genes provided by GENCODE Release 26
(GRCh37), the R Bioconductor package CNTools were applied to
transform the segmented CNA data into a gene-level data matrix
where each entry represented copy number value of a gene in a
definite sample.

Methylation Data Pretreatment
The genome-wide methylation level of ∼450,000 CpG sites
needed to be measured in level 3 DNA methylation data from
TARGET samples. The ratio of methylated probe intensity of the
overall intensity (sum of methylated and unmethylated probe
intensities) was defined as the methylation level of each CpG
site (i.e., β value). Thus, β ranges between 0 and 1, with 0 being
hypomethylated and 1 being hypermethylated. Previous research
indicated that the methylation of CpG sites in the promoter
regions resulted in gene expression change. Therefore, only
considered β values of CpG sites are in genes’ promoter regions.
Thus, Bioconductor annotation package AnnotationHub was
used to identify the probes positioned at the upstream 200–
1,500 base pairs from the gene transcription start site. Gene’s
methylation level was estimated as the mean of its associated
upstream probes’ β values.

Identification of Differentially Expressed
Genes, miRNAs and lncRNAs
To identify mRNA, lncRNA, and miRNA which was associated
with tumor progression, we divided the tumor samples into
2 groups (early stage and advanced stage) and used LIMMA
package (R version 3.4.1) to analyze differences in the expression
levels between the two tumor groups. As the raw transcriptomic
data may be noisy, several filtering processes were performed
to improve the quality of the expression profile. Firstly, we
removed RNAs with low-expression values in more than 70% of
the WT patients. Then, we calculated the coefficient of variation
(CV) in gene expression for each RNA, and remove the 20%
of RNAs with the lowest CV values. In addition, for multiple
ensemble gene ids corresponded to the same gene symbol, the

genes with maximum CV was retained to represent that gene.
The differentially expressed mRNAs, lncRNAs and miRNAs were
identified based on the same thresholds (absolute log 2 FC > 2.0
or p < 0.05).

For immunologic gene sets, we first captured relevant
microarray datasets published in the immunology literature
that has raw data deposited to Gene Expression Omnibus
(GEO) with accession number GSE37301, GSE37605, GSE6259,
and GSE2405. These studies included both human and
mice data. However, it is proved that the characteristics of
the activation of lymphocytes and differentiation of bone
marrow cells were highly conserved between human and
mouse cells (26). More importantly, instead of focusing on
the changes of individual genes, we used the enrichment
analysis to determine the overall coincidence degree of
WT deterioration related genes and immune-related gene
sets, which helped us identify the biological significance
of different genes. For each published study, the relevant
comparisons were identified (e.g., WT vs. KO; pre- vs.
post-treatment etc.) and brief, biologically meaningful
descriptions were created. All data were processed and
normalized the same way to identify the gene sets, which
correspond to the top or bottom genes (FDR < 0.02 or
maximum of 200 genes) ranked by mutual information for each
assigned comparison.

Screening of Candidate Genes
Based on the previously identified mRNA, lncRNA, and
miRNA, WGCNA was carried out to acquire candidate mRNA,
lncRNA, and miRNA which is relative to clinical stages
of the disease. The correlation of gene expression profile
with module eigengenes (Mes) was defined as the module
membership (MM) and the correlation between gene and
external traits was defined as gene significance (GS) measure.
The genes with |GS+ MM| ranked above the top 10%
were selected as candidate gene together with genes in the
core module.

Functional Enrichment Analysis of Core
Module Gene
For a deeper understanding of the biological effects and
pathways of the aberrantly expression core module gene, Gene
Ontology (GO) Biological Process, Kyoto Encyclopedia of Genes,
and Genomes (KEGG) pathway analyses were constructed
using the R/Bioconductor package of Clusteprofiler. Functional
enrichment analysis was based on the threshold of P < 0.05.
The predicted function of lncRNA is based on the function
of the gene with the highest correlation with lncRNA in
ceRNA network.

Construction of ceRNA Network
In order to get a reliable ceRNA network, the candidate
mRNA, miRNA and lncRNA which was selected in part 6
was invoked as nodes. Cancerin and GDCRNATools were
utilized to construct the tumor deterioration-related ceRNA
network. Cancerin integrated multidimensional cancer genomics
data in order to infer cancer-associated ceRNA interaction
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networks which could identify the miRNAs contributed to
the differential expression of RNA’s. The newly developed
GDCRNATools is used for deciphering the lncRNA-mRNA
related ceRNA regulatory network as well as many routine
analysis including functional enrichment analysis, DEG analysis
and survival analysis in cancers. The code provided by Cancerin
was used to integrate transcriptome, DNA methylation and copy
number information to predict ceRNA network. Furthermore,
ceRNA network was also predicted with GDCRNATools.
Finally, union of the two ceRNA networks was used as the
ceRNA network.

Patient Stratification
In order to affirm patient stratification based on ceRNA network,
a patient similarity matrix was constructed. Each element in the
matrix represents the correlation coefficient based on ceRNA
network. Then, the ConsensusClusterPlus package was used to
reclassify patients. Furthermore, the similarity between samples
was calculated by Pearson’s correlation. Samples were distributed
in k clusters by the PAM algorithm. The best number of clusters
was determined by relative change in area under the CDF
(Consensus Cumulative Distribution Function) curve compared
k and k-1 (27).

Survival Analysis
Survival analysis for all RNAs in the ceRNA network was carried
out by using the R survival package (https://CRAN.R-project.
org/package=survival, Version: 2.41-3). The log-rank test was
carried out to identify whether the expression of lncRNAs,
mRNAs and miRNAs was correlated with overall survival. For
the overall survival rates, we use the log-rank test to compare
the significant differences in univariate analysis between each
subgroup. Unless otherwise specified, a P < 0.05 is considered
as statistically significant.

Data Availability
The datasets analyzed during the current study are available
in the TARGET repository (https://ocg.cancer.gov/programs/
target/data-matrix). All relevant data are within the paper and
its Supporting Information files.

RESULTS

Gene Expression Patterns in WT Patients
at Different Stages of the Disease
The clinical data of 132 WT patients at different stages of the
disease were downloaded from the TARGET Database, including

FIGURE 1 | Clinical and gene expression patterns of WT patients at different stages of the disease. (A) Kaplan-Meier curve analysis of the Disease-Free survival rate in

WT patients at different stages. (B) Kaplan-Meier curve analysis of the overall survival rate in WT patients at different stages. (C) Principle-component analysis of RNA

sequencing (RNA-seq) of WT patients at different stages, percentage of variance (% of var) indicated. (D) Kaplan-Meier curve analysis of the Disease-Free survival rate

in WT patients in different groups. (E) Kaplan-Meier curve analysis of the overall survival rate in WT patients in different groups. (F) Principle-component analysis of

RNA sequencing (RNA-seq) of WT patients in different groups, percentage of variance (% of var) indicated.
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progression-free survival, total survival, disease stage, and the
corresponding RNA-seq data. The relationship between patient
survival and disease stage, which was first examined in our
study, indicated that the traditional stage significantly correlated
with the patient disease-free survival and overall survival rates
(Figures 1A,B). Surprisingly, the worst disease-free survival rate
was not observed in patients at the latest stage of the disease. For
example, we found by disease-free survival analysis that patients
at stage II were better than those at stage I, and similar results
were observed by overall survival analysis. The most likely cause
of this result is that there are a few samples of this tumor and
fewer clinical samples have been collected, resulting in some
deviations in survival statistics. Another possibility is that due
to the difficulty in early diagnosis of cancer, some patients were
found in stage I, and in fact the tumor development was very
close to stage II, and even worse than the normal stage II patients
in terms of partial molecular expression. Principal component
analysis (PCA) was used to reduce the dimensionality of the
gene expression data and to visualize two components on the
scatter plot. The gene expression data of patients at different
stages of the disease did not significantly cluster (Figure 1C). This
may have been due to the fact that conventional disease stages
tend to focus on phenotypes, such as tumor size and metastasis,
while ignoring genotypes andmolecular mechanisms, whichmay
underlie ineffective treatments. Considering the contradiction
between the survival rate of patients and the early stages of
the disease, and the difficulty in discerning the survival rate
and the late stages of the disease, we first classified phase
I and II patients as “early,” whereas the remaining patients
were classified as “advanced” to obtain information on the
key biomolecules involved in cancer progression. According to
results from survival analysis, “early’ patients were far superior
to “advanced” patients (Figures 1D,E) in both the disease-free
progression survival rate and the total survival rate. More
importantly, PCA analysis showed that patients at an “early”
stage presented different patterns of gene expression than those
at an “advanced” stage (Figure 1F), suggesting that several key
molecules are involved in the progression of renal myoblastoma.
These results lay the foundation for the search of biomarkers
associated with progression.

Clinical Relevant Candidate Nodes
Identification
To identify candidate molecules associating with the
eventual downturn and poor prognosis of nephroblastoma,
WGCNA was used to analyze the co-expression network
of mRNA-miRNA-lncRNA. First of all, a differentially
expressed gene was defined as a gene whose log2 value
of the fold change of the expression (logFC) was >2 and
the P < 0.05. We identified 4,285 differentially expressed
mRNAs and 246 differentially expressed lncRNAs using
the LIMMA R Package. The differentially expressed RNAs
are listed in Table S1. We used a similar procedure and
identical criteria to screen the differentially expressed
miRNAs and identified 259 differentially expressed miRNAs
(Table S2).

Based on these differentially expressed mRNAs, miRNAs
and lncRNAs, we analyzed their co-expression networks using
WGCNA to identify the most relevant molecular modules
associating with clinical decline. Soft-threshold beta was selected
as a suitable weighted parameter of the adjacency function
before constructing the weighted co-expression network. After
performing the calculation, we selected the correlation coefficient
closest to 0.8 (soft-threshold catcher = 4) to construct the gene
modules using WGCNA (Figures 2A,B). After determining the
soft threshold, all differentially expressed molecules (mRNAs,
miRNAs and lncRNAs) were used to construct the weighted
gene co-expression network. We found that the degree of node
conformed to the power law distribution (Figures 2C,D).

Furthermore, 15 modules were identified through business
linkage hierarchical clustering (Figure 3A). The red module was
found to have the highest association with tumor progression
(R2 = 0.42, P < 0.01) (Figure 3B), and this module was
selected as a clinically significant gene set for further analysis.
To avoid missing other key genes related to tumor progression,
highly expressed molecules of module membership (MM) and
gene significance (GS) were added to the candidate node
collection. We selected mRNAs, miRNAs and lncRNAs with cut-
off criteria (|MM+GS| ranked above top 10%). After integrating
the molecules in the previously established core modules, we

FIGURE 2 | Determination of soft-thresholding power by WGCNA. (A)

Analysis of the scale-free fit (i.e., p(k) ∼ k−γ ) index for various soft-thresholding

powers (β). (B) Analysis of the mean connectivity for various soft-thresholding

powers. (C) Histogram of connectivity distribution when β = 4. (D) Checking

the scale free topology when β = 4.
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FIGURE 3 | Identification of the modules associating with the clinical traits of WT patients. (A) Dendrogram of all differentially expressed RNAs clustered based on a

dissimilarity measure (1-TOM). (B) Heatmap of the correlation between module eigengenes and clinical traits of WT patients. “Event” is binary value indicating the

death statue of each patient (0 for alive and 1 for dead), and “Group” represents the progression status of each patient (0 for early and 1 for advance).

obtained 458 mNRAs, 26 miNRAs, and 33 lncNRAs as the final
molecule nodes to build the ceRNA network. The complete list of
candidate molecules is presented in Table S3.

To explore the biological relevance between the candidate
genes and clinical decline, Gene Ontology (GO) function and
pathway enrichment analyses were performed using the R
clusterProfiler Package (28) (Table S4). The results showed that
the functions of the candidate genes mainly concentrated in
areas of cell adhesion and cell fate specification (Figure 4A),
which may ultimately contribute to cancer progression. As the
immune regulation controls clinical development, we obtain
immunologic gene sets from microarray gene expression data
from immunologic studies and investigate whether our candidate
genes are related to the innate immune system (Figure S2). In
addition, we found that many immune-based mechanisms were
related to the poor prognosis of WT, including the up-regulation
of B cell–T cell interactions and foxp3 fusion (Figure S3).

Construction of High Confidence ceRNA
Competition Network
To obtain a comprehensive and highly reliable ceRNA
competitive network, we combined the results of two newly
published ceRNA network prediction methods, namely,
Cancerin and GDCRNAtools. Cancerin incorporates multi-
omics information from patients, including epigenetic, genomic
and transcriptomic information, to increase the reliability of the
network. In this study, miRNA–mRNA and miRNA–lncRNA
relations with media confidence < 0 were selected as the
interactive relations of the ceRNA network. The parameter

“media confidence” is derived from the Cancerin to filter the
high reliable miRNA–mRNA and miRNA–lncRNA associations.
Briefly, Cancerin estimated the confidence intervals of the
correlation coefficient between one miRNA and each of its
targets using LASSO regression for 500 time, and the median
of the mid-point points of the 500 confidence intervals was
defined as media confidence. And, “media confidence < 0”
reflects reliable negative correlation relationship between the
expression of a miRNA and its target. According to this method,
122 miRNA-target interactions and 64 nodes, including 39
mRNAs, 20 miNRAs and 5 lncRNAs, were selected (Table S5).
In addition, we predicted 103 nodes and 330 edges in the ceRNA
network using GDCRNA tools (Table S6). After combining
these two sets of results, we constructed the endogenous
competitive network of mRNA–miRNA–lncRNA (Figure 5,
Table S7). This network contained 15 miRNAs, 16 lncRNAs,
116 mRNAs, and 407 interactions. The topological properties
of the nodes in the network were further analyzed, and we
found that hsa-miR-93 had the highest degree (degree = 58),
which represents the number of targets it interacts with. We
investigated the relationship between this miRNA and patient
survival (Figure 6A) and confirmed the significant correlation
between has-mir-93 and the overall survival (p < 0.05). In
addition, we investigated the relationship between other nodes
in the network and patient survival, and found that 39.46% of
the nodes correlated with patient survival (p < 0.05, Table S3).

LncRNAs regulate the expression of mRNAs through
their interactions with miRNAs in the ceRNA network.
Thus, the functions of lncRNAs can be reflected through the
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FIGURE 4 | Functional enrichment analysis of the candidate genes. The GO terms with the most significant p-values. The x-axis represents the number or gene ratio

of core module mRNAs involved in the enrichment terms.

mRNAs regulated by them. In this study, two prognostic
lncRNAs, LINC00087 and RP5-1086K13, were chosen for
enrichment validation. We conducted GO enrichment
analysis (GO_BP: biological processes, GO_CC: cellular
component and GO_MF: molecular function) of their regulated
mRNAs, and found that LINC00087 was mainly involved in
autophagy and cadherin binding (Figure 7). RP5-1086K13
was involved in autophagosome dynamics and MAPKKK
activity (Figure 8).

Patient Stratification Based on the
Clinically Relevant ceRNA Network
These results revealed that the ceRNA network was useful in
the identification of the prognostic biomarkers for WT. They
also implied a correlation between the ceRNA network and the
patient’s clinical prognosis. Therefore, the subtypes of the patients
based on this ceRNA network were further investigated. We first
extracted the expression information for each node involved in
the ceRNA network of each patient. Partitioning aroundmethods
(PAM)-based consensus clustering, followed by cluster reliability
analysis (Methods), was used to investigate the case of dividing
patients into k (k = 2, 3, 4, 5, 6). Figure 9B shows the relative
change in the area under the consensus cumulative distribution
function (CDF) curve by comparing k with k-1. According to
these results, we found that the patients were classified into three
categories using optimal classification standards, and the patients
presented a relatively obvious clustering pattern (Figures 9A,B).
To confirm whether our classification had clinical significance,
the relationship between the new staging and the total survival
were calculated. We found that there was a significant correlation
between the staging of patients based on the ceRNA network and
the total survival (Figure 9C, p < 0.05).

DISCUSSION

The identification of genes and molecules that are related
to tumor staging and progression is important for our
understanding and control of the disease. WT is responsible
for ∼95% of kidney tumors in children. Although improved
therapies and prognosis methods have greatly increased the
survival rate, additional effort is still needed to deal with the
disease since 50% of children who relapse go on to die (29). In this
study, a multidimensional network was constructed to provide
new insights on the mechanism underlying the progression
of WT.

The relationship between the survival rate and the
histopathological grades was the first consideration in our study,
and the general trend is that higher grades were significantly
associated with a lower overall survival rate. However, according
to the result of PCA, no distinct RNA expression patterns
were observed in different grades (Figure 1C), indicating that
the histological grades in this cohort may not be sufficient
to represent patients with subtypes for further deciphering
the molecular mechanism of WT progression. Taking these
contradictions into consideration, we divided WT patients into
“early” and “advanced” stages, and identified the different gene
expression patterns between the two stages (Figures 1D–F).
Because the progression-free survival and overall survival rates
of “early” patients were far superior to those of “advanced”
patients, it is possible that key biomolecules exist to influence
the clinical decline of patients diagnosed with WT. To confirm
the candidate molecules related to this process, WGCNA was
carried out to construct a weighted co-expression network
(Figures 2A,B). Recent research by Meng et al. which employed
WGCNA, identified major genes that mediate immune cell
activation and mitosis (30). Another WGCNA study by Guo
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FIGURE 5 | CeRNA regulatory network in WT. The nodes highlighted in red indicate candidate miRNAs, the nodes highlighted in blue indicate candidate lncRNAs,

and the nodes highlighted in green indicate candidate mRNAs. The size of the point represents the connectivity of the node, that is, the number of other points

connected. Edge represents an interaction between two nodes.

et al. disclosed key genes with aberrant expression levels that
may participate in the pathogenesis of head and neck squamous
cell carcinoma (31). WGCNA has also been used to identify
potential prognostic markers for uveal melanoma, Glioblastoma
Multiforme, lung cancer, bladder cancer and so on (32–35).
While for WT, WGCNA analysis has been used in one research
to identify hub genes associated with high-risk pathogenesis (36).
These results indicate that this method can be used to identify
new candidate nodes in the ceRNA network. After constructing
this co-expression network, we found that it was a scale-free
network, which conforms to conventional biological network
features (Figures 2C,D). Furthermore, molecules with high MM
and GS were considered as node molecules, as well as previously
identified modules. The network, which was constructed based

on all the nodes, played an important role in the understanding
the mechanism underlying the clinical decline of WT patients.

To further understand the relationship between these
candidate molecules andWT progression, functional enrichment
analysis was performed, and the results indicated that the
functions mainly concentrated in areas such as cell adhesion,
the ERK pathway and necrosis (Figure 4). As previously
described, cell adhesion plays a major role in tumor biology.
Research carried out by Liu et al. showed that the high
expression of the focal adhesion protein kindlin-2 in solid
tumors, as a prognostic biomarker, may indicate poor outcome
in patients (37). Cellular glycosylation, which participates in
cell–cell recognition, communication and adhesion, has a
major impact on the acquisition of malignant characteristics
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FIGURE 6 | Kaplan–Meier curve analysis of the disease progression involving miRNAs (A–D) has-mir-93, has-let-7i, has-mir-125a, has-let-7b, lncRNAs (E–H)

lncRNA-RP11-576D8.4, lncRNA-LINC00087, lncRNA-LINC00407, lncRNA-RP5-1086K13.1, and mRNAs (I–L) SPRY1, COG1, UXS1, SNRNP40 in WT patients.

of gastric carcinoma (38). On the other hand, the cell
surface CD56 glycoprotein, which controls cell adhesion
and signaling, acts as a key biomarker in WT stem and
progenitor cells (39). Another study demonstrated that ERK
signaling may contribute to WT development (40). These
results clearly support the reliability of our network analysis.
Because interactions between the tumor and the immune
system are also known to influence tumor progression, we
analyzed the relationships between candidate genes and the
immune system. We found that most genes were enriched
in the innate immune system. We further explored the
detailed immune-based functions, and found an up-regulation
in Treg activity by our candidate genes (Figure 4C). An
immunosuppressive microenvironment is essential for tumor
progression, and Treg is an important supporter of this
environment (41). Interestingly, a more pronounced Treg-
induced cytokine response was observed in WT patients,
according to previous studies. To reverse the Treg activation
induced by the candidate biomolecules may prevent the clinical
decline of WT patients.

In this study, Cancerin and GDCRNAtools were combined
to construct a superior confidence ceRNA competitive
network (Figure 5). Among all nodes in this network, hsa-
miR-93 had the highest degree, and it was significantly
related to the overall survival of patients (Figure 6A).
Previous studies have already reported exosomal miR-
93 to be a novel biomarker for both the diagnosis and
prognosis of hepatocellular carcinoma and triple negative
breast cancer (42, 43). However, there were few studies
addressing its roles in WT patients. Our results indicated
that hsa-miR-93 may be defined as a prognostic biomarker of
this disease.

In the ceRNA network, the competitive binding of mRNAs
and lncRNAs to miRNAs can regulate mRNA expression.
Therefore, we carried out enrichment analysis of mRNAs
regulated by lncRNAs to reflect the function of lncRNAs.
LINC00087 and RP5-1086K13 were selected as prognostic
biomarkers. LINC00087 is involved in autophagy and
cadherin binding, whereas RP5-1086K13 is mainly involved in
autophagosome dynamics and MAPKKK activity (Figures 7,
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FIGURE 7 | Gene ontology enrichment analysis of LINC00087-regulated genes. The x-axis represents the –log10 (P-value) of the enrichment analysis. Red, green

and blue represent the enrichment of Gene Ontology (GO) Biological Process, Cellular component, and Molecular function, respectively.

FIGURE 8 | Gene ontology enrichment analysis of RP5-1086K13-regulated genes. The x-axis represents the –log10 (P-value) of the enrichment analysis. Red, green

and blue represent the enrichment of Gene Ontology (GO) Biological Process, Cellular component and Molecular function, respectively.

8). Autophagy is crucial for aggressive tumor growth, and this
process is deregulated in WT patients (3, 44, 45). Cadherin
belongs to a transmembrane superfamily of proteins, and
E-cadherin is used for the diagnosis and prognosis of epithelial
cancers (46). Decreased E-cadherin expression has been
shown to correlate with a higher stage of WT (47, 48). On

the other hand, the MAPK pathway is involved in numerous
biological processes, including immunity, cell proliferation and
tumor-related events, and it plays an important role in the
progression of WT (49, 50). The participation of LINC00087
and RP5-1086K13 in these biological processes indicated that
they have key roles in the progression of WT. However, further
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FIGURE 9 | Patient stratification based on clinically relevant ceRNA network. (A) Consensus matrices represented as heatmaps for the chosen optimal cluster

number (k = 3) for the WT patients. Patient samples are both rows and columns, and consensus values range from 0 to 1. The dendrogram above the heatmap

illustrates the ordering of patient samples in 3 clusters. (B) Corresponding relative change in area under the cumulative distribution function (CDF) curves when cluster

number changing from k to k + 1. The range of k changed from 2 to 10, and the optimal k = 3. (C) Kaplan-Meier curve analysis of the overall survival rate in WT

patients at different clusters.

studies are needed to validate the precise mechanisms. The
identification of prognostic biomarkers in the ceRNA network
pointed to the potential relationship between the network and
the clinical outcome of patients. We classified the patients into
three categories based on this network (Figure 9). A remarkable
correlation was observed between the staging of patients
and survival.

Although we have integrated multiple omics data in this
study and tried to construct a reliable and clinically significant
ceRNA network for the study of prognosis and classification
of WT patients, some limitations are still worth noting. First
and foremost, as a rare tumor, WT has relatively scarce clinical
samples, which lead to fewer omics data for analysis, which may
to some extent improve the noise of omics data and reduce
the reliability of the whole analysis. In addition, the scarcity
of data will increase the difficulty of the found that clinical
samples potential rules and patterns, and makes the extracting
potentially meaningful and biologically relevant information
more difficult. Finally, this research mainly focuses on the use
of bioinformatics tools mining WT patients deterioration of
underlying mechanisms and biomarker, the results remain to
be further investigated in vitro and in vivo. There is reason to
believe that in the near future, along with the accumulation
of WT clinical and omics data, various experimental methods
to further improve, partly as a result will be confirmed in
this article, and may be directly used for clinical purposes.
In summary, our results showed that the ceRNA network
enhanced the molecular staging of cancer patients. Thus, it
may facilitate the development of accurate treatment strategies
for patients.
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