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Malignant pleural mesothelioma (MPM) is a rare and aggressive cancer, which originates

from the mesothelial cells of the pleura and is associated with asbestos exposure. In

light of its aggressive nature, late diagnosis and dismal prognosis, there is an urgent

need for identification of biomarkers in easily accessible samples (such as blood) for early

diagnosis of MPM. In the last 10 years, epigenetic markers, such as DNAmethylation and

microRNAs (miRNAs), have gained popularity as possible early diagnostic and prognostic

biomarkers in cancer research. The aim of this review is to provide a critical analysis of the

current evidences on circulating epigenetic biomarkers for MPM and on their translational

potential to the clinical practice for early diagnosis and for prognosis.
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INTRODUCTION

Malignant Mesothelioma is a rare cancer originating from the mesothelial cells of pleura (i.e.,
Malignant Pleural Mesothelioma, MPM; 80–90%), peritoneum (10–15%), and pericardium (<5%).
It is characterized by a long latency period (≥30–60 years) and non-specific symptoms, and thus
often implicate late diagnosis and poor survival (1).

MPM presents with heterogeneous histological features, and can be classified in three main
histological subtypes, depending on cellular morphology and biological markers: epithelioid
mesothelioma represents the most common form (50–70% of cases) and shows polygonal, oval,
or cuboidal cells similar to carcinomas; fibrous or sarcomatoid type (10–20%) is characterized by
spindle cell morphology similar to those of sarcomas; the mixed or biphasic subtype (30%) presents
both the epithelioid and sarcomatoid components, in different proportions (2). High levels of
cytokeratin 5 are expressed in most mesotheliomas regardless of subtype; epithelioid mesothelioma
expresses high levels of calretinin, while sarcomatoid mesothelioma does not (3). If compared to
sarcomatoid mesothelioma, the epithelioid subtype is less aggressive, highly sensitive, and more
responsive to chemotherapy, thus resulting in a longer survival (4, 5).

Although MPM is considered a rare malignancy (prevalence 1–9/100,000), about 40,000 deaths
have been estimated to occur each year globally for asbestos-related exposures (6, 7). Asbestos
refers to a group of naturally occurring mineral silicate fibers classified into two main families,
the serpentines and the amphiboles (1). The serpentines consist of chrysotile with characteristic
short and curly fibers, also called “white asbestos,” and account for 95% of asbestos in commercial
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use. The amphiboles, with straight and longer fibers, include
crocidolite or “blue asbestos,” amosite, tremolite, actinolite, and
anthophyllite (1, 8). The World Health Organization estimates
that 125 million people annually around the world are exposed
to asbestos. The International Agency for Research on Cancer
confirmed that all fibrous forms of asbestos are carcinogenic to
humans, causing mesothelioma, cancer of the lung, larynx, and
ovary. Evidences are limited in humans for pharynx, stomach,
and colorectal cancers (9).

Exposure to asbestos other than in the occupational setting
affects also the families of asbestos-workers, people living close to
places where asbestos is mined or processed, and the populations
exposed to the fragmentation of asbestos artefacts (10–13).

The observation that mesothelioma develops in a minority
of asbestos-exposed individuals (14) suggests a sort of hyper-
susceptibility to asbestos carcinogenic potential, probably due
to the combination of environmental exposures and genetic
susceptibility (15). Various studies have shown an association
between MPM and the oncogenic simian virus 40 [SV40; (16,
17)], suggesting a transforming synergic action of asbestos
and SV40 (18, 19) however the evidence supporting this
association is still controversial (20, 21). Exposure to ionizing
radiations seems to play a strong role in the development of
mesothelioma (22, 23). Other environmental exposures reported
as risk factors for MPM are erionite in Turkey and fluoro-
edenite in Italy (24). On the other hand, a recent breakthrough
in the study of mesothelioma susceptibility has emerged.
Indeed, germline mutations in different genes mainly involved
in DNA damage repair confer moderate-to-high genetic risk
of MPM development (25). The BAP1-tumor predisposition
syndrome is the most studied genetic condition associated
with MPM development and is caused by mutations in the
BRCA1-associated protein 1 (BAP1) gene (14, 26–32). This
new evidence should be taken into account together with
environmental/occupational exposures, as it may lead to a
different risk stratification.

Although the etiology of MPM is well consolidated, patients
are usually diagnosed in an advanced phase, when radical surgery
cannot be performed, and the current available chemotherapy is
not effective, thus leading to poor survival (6, 33).

Currently, diagnosis is invasive and relies mainly on
morphological analysis, with malignant growths characterized
by deep stromal invasion with dense cells and complex growth
patterns (2). Although immunohistochemical markers have
improved in recent years, the lack of biomarkers able to
discriminate between the different subtypes continues to hamper
the diagnosis of MPM (34). Recently, high-throughput analyses
have uncovered key genomic and epigenomic alterations driving
MPM (35, 36).

In this context, epigenetic markers such as DNA methylation
and microRNAs (miRNAs) are emerging as promising
biomarkers for several cancer types, including MPM. While
genetic biomarkers may differ from case to case in most cancer
patients (i.e., each patient may carry a different mutation
within the same gene), different subjects show variable levels
of epigenetic biomarkers in a specific target depending on
health/disease status (37, 38).

All the above supports the need for identification of
appropriate biomarkers that can be easily evaluated in accessible
tissues, in order to detect the disease at earlier stages and
improve prognosis. High-throughput molecular profiling of
tumors, blood, and pleural fluids is currently shedding light on
novel candidate biomarkers for early diagnosis, and revealing
potential new therapeutic targets for improved treatment.

The purpose of this review is to provide a critical analysis
of the available evidence on circulating epigenetic biomarkers
for MPM and on their effective validity for early diagnosis
or prognosis.

WHAT ARE CIRCULATING
EPIGENETIC BIOMARKERS?

The development of non-invasive methods to diagnose and
monitor tumors is a major challenge in oncology. The analysis
of liquid samples such as plasma, serum, urine, or cerebrospinal
fluid (also known as liquid biopsy) is a suitable approach for
the characterization of markers related to cancer progression, as
these biological fluids are easy to collect (39–41).

An ideal biomarker for cancer detection should be easily
and cheaply measurable and should allow to identify the
disease at an early stage (42). Circulating biomarkers can be
released into the bloodstream by cells of different origins [e.g.,
Peripheral Blood Mononuclear Cells (PBMCs), and cancer cells]
through various mechanisms, such as necrosis, apoptosis, or
release of Extracellular vesicles (EVs) (43). While circulating
biomarkers derived from cancer cells could potentially allow the
identification of a pathological condition with high specificity,
those deriving from PBMCs may show higher sensitivity in
pointing out the global response of the organism toward a
detrimental condition.

Besides numerous protein markers largely investigated in
MPM [mesothelin, osteopontin, fibulin, HMGB1 protein, etc.;
(44–48)] also DNA, mRNA, and miRNA are released by cells
and circulate in the blood of cancer patients. In this context,
the unique properties of epigenetic biomarkers, expecially DNA
methylation and miRNA expression, make them well suited as
promising diagnostic and prognostic tools. DNA methylation
is stable for a long time and miRNAs are particularly resistant
to RNase-degradation. Moreover, aberrant peripheral epigenetic
modifications have been frequently observed in early-stage
cancer patients (38, 43, 49, 50). Thus, circulating epigenetic
biomarkers are promising and dynamic markers for early cancer
detection, progression, and response to therapy.

DNA METHYLATION

DNA methylation involves the addition of a methyl group
to the fifth carbon of the cytosine base, forming a 5-methyl-
cytosine (51). DNA methylation occurring in gene promoters
can directly alter gene expression, by inhibiting the access
to DNA of the transcriptional machinery function. This
methylation is often referred to as “gene-specific methylation”
(52). On the other hand, methylation taking place in repetitive
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transposable elements (e.g., Alu, LINE-1, etc.) favors compaction
of the chromatin structure, thus increasing DNA resistance to
toxicants (53).

The patterns of DNA methylation are defined early
during development, with two critical waves of methylation
and demethylation occurring during embryogenesis (54).
Differentiated cells develop a stable and uniqueDNAmethylation
pattern that regulates tissue-specific gene transcription, and only
cytosine followed by guanine can be efficiently methylated by
DNA-methyltransferase (55). Although DNA methylation is
stable, it can be modified throughout life by several factors such
as ageing, lifestyle, environmental exposures, and diseases. It
thus represents an adaptive phenomenon linking environmental
factors and the development of pathologic phenotypes such
as cancers (56). DNA methylation changes are considered to
possibly play a role also in MPM development and progression,
and have therefore been suggested as a potential tool for early
diagnosis as well as for prognosis (57).

Several studies have been performed to evaluate alterations of
DNA methylation in mesothelioma tumor samples (36, 50, 57),
but very few have focused on alteration of DNA methylation in
blood as circulating marker.

Fischer et al. (58) examined the methylation of nine gene
specific promoters by two-stage methylation specific PCR in
serum DNA of 43 patients with malignant mesothelioma
(both pleural and peritoneal). Although the analysis of single
gene methylation did not influence prognosis, the combined
hypermethylation of the tumor-suppressors RARβ , DAPK, and
RASSF1A was associated with shorter overall survival.

In the Arginine Deiminase and Mesothelioma (ADAM) study
(a phase 2 randomized clinical trial), the role of “pegylated
arginine deiminase” (ADI-PEG20), an arginine-lowering agent,
was assessed in MPM patients. Indeed, arginine deprivation is
synthetically lethal in cancers, such as mesothelioma, that are
argininosuccinate synthetase 1 (ASS1)-negative. Among several
molecular and biochemical parameters evaluated in plasma,
promoter, and gene-body methylation of ASS1 was also assessed
by methylation array. The authors reported that differential
ASS1 gene-body methylation correlated with ASS1 protein levels,
and longer arginine deprivation was associated with increased
progression-free survival (59).

Guarrera et al. (60) evaluated DNA methylation levels in the
whole blood as potential diagnostic markers for MPM. The study
was conducted on asbestos exposed subjects, 163 MPM cases,
and 137 non-MPM controls. Genome-wide methylation array
allowed identifying differential methylation mainly in immune
system–related genes. The top hypomethylated single-CpG
island was detected in FOXK1 gene, an interactor of BAP1,
which was found mutated in MPM tissue and constitutionally
mutated in familial MPM, as described above. The analysis
allowed to identify signatures of differential methylation in
DNA from whole blood, between asbestos exposed MPM cases
and controls.

The very few studies performed so far make it difficult
to synthetically evaluate circulating DNA methylation as a
potential biomarker for MPM. In addition, some biological
factors must be taken into account. First, the amount of

tumor-derived DNA fraction in blood is known to change
according to the dimension and the state of the tumor
(61). For instance, the lung cancer-derived DNA fraction
is very low in patients with relatively large tumors (e.g.,
100 cm3) and it is generally undetectable in patients with
smaller tumors, which is even more critical (62). Second,
DNA methylation in the cellular blood fraction might be only
partially correlated to the methylation pattern of cancer cells,
but rather represent a nonspecific marker related to the immune
response toward the tumor. These factors greatly limit the use of
circulating DNA methylation as diagnostic marker. Its possible
role as prognostic marker needs to be further evaluated in
larger populations.

miRNAs

miRNAs are short RNA molecules of about 22 nucleotides
in length. miRNAs regulate gene expression at a post-
transcriptional level, by silencing protein expression through
cleavage and degradation of themRNA transcript or by inhibiting
translation (63). A single miRNA is able to bind multiple
mRNA targets (more than 100), in a sequence-specific manner,
and a single mRNA target can thus be regulated by different
miRNAs (64). miRNAs play crucial roles in several physiological
and pathological processes such as cell growth, differentiation,
proliferation and metabolism, angiogenesis, stress response,
tissue remodeling, disease, and malignancy development (65).
Unique miRNA expression profiles are associated with different
cancer types (66–68), and it is noteworthy that about 50% of
miRNA genes in the human genome are found in genomic
regions associated with cancer susceptibility (69, 70). miRNAs
are involved also in cell-to-cell communications, as they can be
released by active secretion in EVs, or more rarely by energy-free
passive leakage of cellular miRNAs from disrupted cells (71).

The possibility of considering circulating miRNAs as potential
diagnostic and/or prognostic biomarkers for MPM has been
explored for almost ten years. The main studies evaluating
miRNAs are summarized in Table 1.

Santarelli et al. (72) showed a reduced miR-126 expression
in serum samples of MPM patients in comparison with either
asbestos exposed subjects or unexposed healthy controls. The
discrimination power among groups was however moderate
(Sensitivity = 60%, Specificity = 74%, and Sensitivity =

73%, Specificity = 74%, respectively). A subsequent study
by Tomasetti et al. (73) confirmed miR-126 downregulation
in serum from both 45 MPM and 20 Non-Small-Cell Lung
Carcinoma (NSCLC) patients when compared to 56 healthy
controls. Furthermore, low levels of miR-126 were strongly
associated with worse prognosis in MPM patients.

miR-103 was reported to be significantly down-regulated in
the blood cell fraction of 23 patients with MPM, compared
to 17 subjects formerly exposed to asbestos, and 25 controls
from the general population. The observed differential expression
levels allowed discriminating between mesothelioma patients
and asbestos-exposed controls with a sensitivity of 83% and a
specificity of 71%. Sensitivity and specificity for discrimination
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TABLE 1 | Studies evaluating miRNA expression levels in serum or plasma.

Study miRNA ↑/↓* MPM Controls Analytical method Normalization

strategy

AUC AUC_95%CI Sensitivity Specificity

Santarelli et al. (72) 126 ↓ 44 196 AES

50 AUS

TaqMan MicroRNA

assay

RNU6 0.73 0.74

Tomasetti et al.

(73)

126 ↓ 45 20 LC

56 AUS

TaqMan MicroRNA

assay

RNU6 0.75

0.89

(0.62–0.89)

(0.82–0.97)

Santarelli et al. (74) 126+Met–

TM+SMSRPs

45 99 AES

44 AUS

TaqMan MicroRNA

assay; circulating

methylated TM DNA

assay, ELISA

RNU6, cel-miR-39

Weber et al. (75) 103 ↓ 23 17 AES

25 AUS

miRNA Microarray,

TaqMan microRNA

assay

miR-125a 0.76 (0.59–0.93) 0.83 0.71

Weber et al. (76) 103a−3p+Mesothelin 43 52 AES TaqMan MicroRNA

assay

miR-125a 0.90 0.86 0.85

Cavalleri et al. (77) 103a−3p+30e−3p ↓ 23 19AES OpenArray qRT-PCR,

Custom TaqMan Low

Density Array

RNU48, average of

miR-99a, miR638,

miR-720, miR-1274a

0.94 (0.87–1.00) 0.95 0.80

Weber et al. (78) 132–3p ↓ 22 44 AES TaqMan Low Density

Array Human

MicroRNA Card A v2.0;

TaqMan microRNA

assays

miR-20b, miR-28-3p,

and miR-146b-5p

0.75 (0.63–0.88) 0.86 0.61

Weber et al. (78) 132–3p+126 ↓ 22 44 AES TaqMan microRNA

assays

miR-20b, miR-28-3p,

and miR-146b-5p

0.77 0.86

Mozzoni et al. (79) 16, 17, 126, 486 ↓ 32 14 ASB

15 NPD

TaqMan MicroRNA

assay

miR-146 for plasma

Matboli et al. (80) 548a−3p+20a ↑ 60 20 ASB

20 AUS

RT-PCR SYBR Green

PCR

RNU6B 1.00 0.87

Bononi et al. (81) 197–3p, 1281,

32–3p

↑ 20 10 AES

10 AUS

miRNA Microarray;

RT-PCR SYBR Green

PCR

miR-3665

Kirschner et al.

(82)

625–3p ↑ 30 14 AUS

10 ASB

miRNA Microarray;

TaqMan microRNA

assay

miR-16 0.82

0.79

(0.67–0.98)

(0.66–0.93)

0.73

0.70

0.79

0.90

Kresoja-Rakic

et al. (83)

625–3p+lncRNA

GAS5

32 RT-PCR SYBR Green

Assay

miR16-5p, beta-Actin

Lamberti et al. (84) 101, 25, 26b, 335,

433

↑ 14 10 AUS TaqMan microfluidic

cards; TaqMan

microRNA assay

miR-16

Matboli et al. (85) 2053+

lncRNARP1–

86D1.3+

DRAM1+ ARSA

60 20 AES

20 AUS

RT-PCR SYBR Green

Assay

ACTB, RNU6 0.94 1.00 0.85

*Increase (↑) or decrease (↓) in miRNA expression.

MPM, Malignant mesothelioma; AES, Asbestos exposed subjects; AUS, Asbestos unexposed subjects; ASB, asbestosis; NPD, Noncancerous pulmonary diseases; LC, Lung cancer.
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between mesothelioma patients and healthy unexposed controls
were 78 and 76%, respectively (75).

Our research group was the first to investigate miRNA
expression in plasmatic EVs. EVs are membrane-surrounded
structures released by all cell types under both physiological
and pathological conditions. EVs facilitate intercellular
communication processes, as they are able to transfer biologically
active molecules such as DNA, RNA, miRNAs, proteins, and
lipids (86, 87). We investigated 23 MPM patients and 19
cancer-free subjects with past asbestos exposure, and found a
two miRNA (miR-103a-3p and miR-30e-3p) signature able to
discriminate the two groups with high sensitivity (95.5%) and
specificity (80%) (77).

The expression of miR-625-3p was significantly higher in
plasma/serum of 30 MPM patients and allowed to discriminate
between cases and controls (the latter consisting of 14 healthy
subjects and 10 subjects with asbestosis), in both the original
and in an independent series of patients. miR-625-3p was also
found upregulated in tumor samples from 18 MPM patients vs.
nonmalignant pleura samples, suggesting a potential connection
between circulating miRNAs and the tissue of origin (82).

Weber et al. (78) found reduced miR-132-3p expression levels
in the plasma of 22 MPM patients compared to 44 asbestos-
exposed controls, with a sensitivity of 86% and a specificity of
61%. In order to improve the marker performance, they also
measured two miRNAs (miR-126 and miR625-3p) previously
reported as possible biomarkers for MPM (72, 73). Only miR-
126 was significantly differentially expressed between the two
groups. The combination of miR-132-3p and miR-126 improved
the diagnostic performance.

Mozzoni et al. (79) quantified miRNA-16, miRNA-17,
miRNA-126, and miRNA-486 in the plasma of 32 MPM patients,
14 subjects with asbestosis, and 15 subjects with other non-
neoplastic pulmonary diseases. In addition, miRNA expression
was evaluated in 24 formalin-fixed, paraffin-embedded tissues
(FFPE) of the MPM subjects. All investigated miRNAs were
downregulated in the plasma of subjects with MPM or asbestosis
compared to the healthy subjects. Furthermore, the expression of
miRNA-16 in both plasma and tissue was positively related with
cumulative survival.

Serum miR-548a-3p and miR-20a levels were assessed in
60 newly diagnosed MPM patients, 20 asbestos exposed
subjects without MPM and 20 healthy subjects. Significant
overexpression of miR-548a-3p and miR-20a was observed in
MPM compared with asbestos exposed and healthy control
groups, and the combined serum miRNAs showed good
sensitivity and specificity (80).

Bononi et al. (81) conducted a small study on 10 MPM
patients, 10 past exposed workers, and 10 healthy controls. They
found upregulated miR-197-3p, miR-1281, and miR-32-3p in the
sera of patients withMPM compared to those of healthy controls,
upregulated miR-197-3p and miR-32-3p in MPM compared to
past-exposed workers, and upregulated miR-1281 in both MPM
and exposed workers compared to healthy subjects.

Lamberti et al. (84) evaluated miRNA expression in the serum
of 14 MPM patients, and 10 control subjects with non-neoplastic
pleural effusions. Five miRNAs (miR-101, miR-25, miR-26b,

miR-335, and miR-433) were upregulated, while two (miR-
191, miR-223) were downregulated. miR-29a and miR-516 were
expressed exclusively in MPM patients. Based on these findings,
the authors proposed two miRNA signatures characterized by
different combinations of down- and up-regulated miRNAs
predicting histotype and survival, but the small sample size
prevents firm conclusions.

Despite the intense research activity, the translation of these
results from research to clinical practice is still problematic
(88). First of all, most studies were cross-sectional and involved
late stage patients, leaving open the real role of miRNAs
as early diagnostic markers. Moreover, other factors hamper
the reproducibility of the results, such as the limited sample
sizes and the different selection criteria of controls (unexposed
healthy subjects, asbestos exposed subjects with benign diseases,
other cancer patients, etc.). Further inconsistencies derive from
the lack of standardization in laboratory methods, techniques
(types of platform, standardization procedures, and validation)
and the still poor knowledge of the factors that influence
miRNAs (hemolysis, age, sex, BMI, etc.). In particular, the
studies previously described took advantage of different types
of analytical methods and platforms (Table 1). Moreover, each
study adopted different normalization strategies, thus curbing
the translational potential of the obtained results (Table 1). The
majority of the cited studies used a single gene as normalizer.
However, single reference miRNA is not sufficient to obtain
reliable data, and the combination of several normalizers may
be more appropriate (89). For instance, some studies normalized
data by using the small nucleolar RNA RNU6 (72, 73), generally
expressed at low and variable levels in blood and known to be
altered in chronic inflammation (89–91). Two studies used miR-
16 as normalizer (82, 84), although its expression is known to
be dependent on the hemolysis of samples (82). In order to
overcome the biases due to normalization, various methods have
been proposed. The so-called miRNA ratio approach is based
on the ratio between up- and down-regulated miRNAs within
the same sample (91). Another normalization strategy named
“Global Mean Normalization” uses the average expression level
of all miRNAs detected in a sample as a normalization factor
(92). For a more detailed analysis of normalization strategies in
circulatingmiRNAs, we refer to other reviews specifically focused
on the topic (92, 93).

Very recently, Weber et al. (94) tried to overcome the
limitation related to the cross-sectional design by examining
blood samples collected before MPM diagnosis. They analyzed
three circulating miRNAs (miR-132-3p, miR-126-3p, and miR-
103a-3p), previously reported as differentially expressed among
MPMpatients and asbestos exposed subjects, using a nested case-
control approach. Seventeen mesothelioma cases were identified
in a German cohort of asbestos exposed workers [MoMAr cohort
(95)] for which plasma samples were available before the date
of diagnosis, with a median time between sample collection and
diagnosis of about 9 months. Each case was matched with two
cancer-free controls by age, gender, date of blood collection, and
smoking status. None of the analyzed miRNAs was differentially
expressed between the two groups, and no differences in miRNA
expression was detected when cases were stratified by time
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between sample collection and date of diagnosis. Moreover, when
using a high specificity cut-off (an important characteristic for
early diagnostic markers to avoid false positive results), none of
the cases was detected by the examined miRNAs.

These findings limit the use of miRNAs as early diagnostic
markers and leave open the debate on miRNAs as suitable
markers in clinical practice. Whether the detected miRNAs are
specific of MPM or rather indicative of a disease status of
the subjects remains an unsolved question. Just to make some
examples, alteration of circulating miR-126 expression has been
associated not only with MPM but also with other neoplastic
conditions [e.g., NSCLC (96) or colorectal carcinoma (97)], and
with non-neoplastic conditions such as diabetes (98); in addition,
altered expression of circulating miR-103a-3p was associated also
with prostate cancer (99).

Moreover, most of the miRNAs altered in MPM were
downregulated. The downregulation of circulating miRNAs
can be strongly influenced by the tumor growth rather than
representing an initial sign of the neoplastic lesion: this might
limit the utility of miRNA-based liquid biopsy in detecting the
presence of small cancer sites at early stages (100). On the
other hand, focusing on miRNAs which are unexpressed or low-
abundant in normal conditions but become highly expressed in
cancer cells could overcome this problem, allowing that even
a small tumor could generate enough of a rare miRNA to be
detected in blood (101).

Another puzzling issue is the concept of “circulating miRNA”
itself, as different protocols of miRNA extraction result in
a different selection of miRNA origins. Cell-free miRNAs
circulating in the bloodstream have been found to be either
associated with EVs or rather to exist in combination with a
variety of proteins (e.g., lipoproteins, Ago2 protein, or other RNA
binding proteins). While EV-associated miRNAs are in majority
the result of an active process, in which they are sorted and
packed with a functional role (either from cancer or immune
cells), protein-bound miRNAs might also be the result of an
uncontrolled cellular release (e.g., after cell necrosis) from any
tissue within the body. This functional difference reflects the
pattern of expression observed in the two components. The large
majority of the studies available to date has used whole plasma
or serum as a source of miRNAs: they therefore did not allow to
specifically investigate cancer tissue miRNAs, but rather a generic
response to tumor development.

Recently, it has been hypothesized that cancer-derived EVs
may be selectively captured, in order to extract miRNA signatures
representative of the cell of origin. This new perspective may be
superior to whole plasma/serum analysis as it would dramatically
increase the analytical specificity of the procedure and support its
application as an early diagnostic tool.

COMBINATION OF CIRCULATING
MOLECULAR BIOMARKERS

Taking into account the limitations mentioned above, many
authors (74, 83, 85, 94, 102) suggested to explore together
markers of different origin to overcome the poor sensitivity and

specificity of single markers. These studies combine proteins
(e.g., mesothelin, fibulin, and osteopontin concentration) and
different epigenetic biomarkers, including DNA methylation,
expression of miRNA, and also expression of long-noncoding
RNAs (lncRNAs), which are non-coding RNAs mostly involved
in transcriptional regulation (103).

Santarelli et al. (74) evaluated two epigenetically regulated
markers in MPM (miR-126 and methylated thrombomodulin
promoter, and Met-TM) together with Soluble Mesothelin-
Related Proteins (SMRPs) levels in blood serum of 45 MPM
patients, 99 asbestos-exposed subjects, and 44 unexposed
healthy controls. The combination of the three biomarkers only
slightly improved the diagnostic performance in comparison to
SMRPs alone.

Weber et al. (76) combined mesothelin and miR-103a-3p
expression levels. Mesothelin concentration was evaluated in
plasma, while miR-103a-3p in the cellular blood fraction. The
study was conducted in 43 patients with MPM and 52 health
individuals previously exposed to asbestos. The combination of
mesothelin and miR-103a-3p showed a good sensitivity of 95%
and a specificity of 81%.

Matboli et al. (85) measured a “MPM-specific RNA-based
biomarker panel” in the serum of 60 MPM newly diagnosed
patients, 20 healthy workers with past asbestos exposure, and 20
healthy subjects. The panel included the DNA damage regulated
autophagy modulator 1 (DRAM1) and arylsulfatase A (ARSA),
together with their epigenetic regulators: the microRNA (miR-
2053) and the lncRNA RP1-86D1.3. MPM patients showed a
higher expression of hsa-miRNA-2035 and lncRNA-RP1-86D1.3
and a lower expression of ARSA and DRAM1 (p < 0.001)
compared to asbestos-exposed subjects and healthy controls.
The diagnostic value of the combined expression analysis
showed 100% sensitivity, 85% specificity, and 94% accuracy.
Moreover, the authors reported that miR-2053 expression was an
independent prognostic factor for progression-free survival.

Kresoja-Rakic et al. (83) evaluated the prognostic value of
miR-625-3p together with the long-noncoding RNA GAS5 in
the plasma of 36 MPM patients before and after platinum
neo-adjuvant chemotherapy. The combination of increased
expression of miR-625-3p and decreased expression of GAS5 was
significantly associated with disease progression (p = 0.0393).
Moreover, decreased levels of GAS5 were associated with shorter
median overall and progression-free survival compared with that
of patients with increased levels of GAS5 (p= 0.0308).

CONCLUSION

Due to the insidious onset of MPM characterized by non-specific
symptoms, that often leads to a diagnosis in advanced stages and
consequent poor prognosis, a great amount of studies has focused
on the search for non-invasive biological indicators that might
allow to shorten the diagnostic delay and be applied in high-risk
subpopulations, such as those formerly exposed to asbestos.

The ideal marker (or a combination of several markers) should
have some important features such as minimal invasiveness
(i.e., it should be measurable in easily obtainable biological
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fluids such as blood), high specificity to avoid false positives
in healthy subjects, sufficient sensitivity to identify subjects
with MPM, and good ability to discriminate between MPM
and other diseases. As a matter of fact, if used in the
clinical setting for the purposes of diagnosis and differential
diagnosis (i.e., not for screening), a good marker should have an
excellent discriminating power between healthy and sick people
and between different pathologies when applied in addition
to imaging.

Notwithstanding the plethora of existing old and new
biomarkers, none of the current available markers is sufficiently
reliable to be used in the surveillance of subjects exposed to
asbestos or in the early diagnosis of MPM. As underlined by the
Helsinki 2014 Criteria, “At this point, no specific recommendations
can be made regarding these biomarkers for screening or other
purposes” (104). The rarity of the pathology even in cohorts
of subjects exposed to asbestos and the lack of clear evidence
about effective treatments that lead to improvements in survival
(reduction of mortality) in cases diagnosed earlier are other
factors that limit the use of the markers described so far and
make it problematic. Even their possible use as diagnostic
markers that can guide in the selection of subjects needing
further investigation to reach an early detection of the disease
remains controversial.

All the issues discussed above highlight the need for validation
studies on large populations, which focus onMPM in early stages,

applying shared and standardized criteria to study design, sample
collection and analysis, and laboratory methods. To this end,
joint research programs are needed not only at national but also
at transnational level, to integrate different (clinical, laboratory,
epidemiological) competences and avoid an ineffective use of
resources. Furthermore, taking into account the heterogeneity of
malignant mesothelioma, particularly relevant could be the study
of panels of markers of different biological significance, such as
“mesomiRNAs” (88, 102), miRNAs so far associated with MPM,
and other proteinmarkers along with their evaluation in repeated
measures that monitor symptomatic patients over time.
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