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Background: To compare the diagnostic performance of radiomics models with

that of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) perfusion

parameters for the preoperative prediction of extramural venous invasion (EMVI) in rectal

cancer patients and to develop a preoperative nomogram for predicting the EMVI status.

Methods: In total, 106 rectal cancer patients were enrolled in our study. All

patients under went preoperative rectal high-resolution MRI and DCE-MRI. We built

five models based on the perfusion parameters of DCE-MRI (quantitative model), the

radiomics of T2-weighted (T2W) CUBE imaging (R1 model), DCE-MRI (R2 model), clinical

features (clinical model), and clinical-radiomics features. The predictive efficacy of the

radiomics signature was assessed and internally verified. The area under the receiver

operating curve (AUC) was used to compare the diagnostic performance of different

radiomics models and DCE-MRI quantitative parameters. The radiomics score and

clinical-pathologic risk factors were incorporated into an easy-to-use nomogram.

Results: The quantitative parameters Ktrans and Ve were significantly higher in the

EMVI-positive group than in the EMVI-negative group (both P =0.02). Ktrans combined

with Ve showed a fair degree of accuracy (AUC 0.680 in the training cohort and AUC

0.715 in the validation cohort) compared with Ktrans or Ve alone. The AUCs of the

R1 and R2 models were 0.826, 0.715 and 0.872, 0.812 in the training and validation

cohorts, respectively. In addition, the R2-C model yielded an AUC of 0.904 in the training

cohort and 0.812 in the validation cohort. The nomogram was presented based on the

clinical-radiomics model. The calibration curves showed good agreement.
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Conclusion: The radiomics nomogram that incorporates the radiomics score,

histopathological grade and T stage demonstrated better diagnostic accuracy than the

DCE-MRI quantitative parameters and may have significant clinical implications for the

preoperative individualized prediction of EMVI in rectal cancer patients.

Keywords: rectal cancer, extramural venous invasion, radiomics, dynamic contrast-enhancedmagnetic resonance

imaging, quantitative parameters, prediction

INTRODUCTION

Rectal cancer is the third most common malignant cause of
morbidity and mortality globally (1). Local recurrence and
metastasis are the major causes of death in patients with
rectal cancer. Extramural venous invasion (EMVI), defined as
“the presence of tumor cells within blood vessels beyond the
muscularis propria” (2), which is present in 31% of patients
with rectal cancer (3), is one of the main factors that affect
the risk of recurrence (4) and an independent indicator for a
poor prognosis (5–7). Therefore, the identification of EMVI is
critical for accurate preoperative risk stratification and influences
decision-making (8, 9).

Traditionally, postoperative pathology diagnosis is considered
the gold standard for EMVI. Recently, high spatial and contrast
resolution with magnetic resonance imaging (MRI) has been
shown to provide moderate to high specificity and accuracy
for the preoperative assessment of EMVI. However, there are
still many problems associated with human assessment based
on MRI, such as heterogeneity with image quality, methods
and diagnostic accuracy (10) and very small (≤3mm) tumor
deposits within vessels that are beyond the resolution limits of
MRI (11). Furthermore, the inflammation, edema, and fibrosis
caused by neoadjuvant chemoradiotherapy (CRT) may also
affect the human assessment of EMVI on MRI (10, 12, 13).
Additionally, some studies have reported a relatively low and
wide range of sensitivity (28.2–62%) of EMVI evaluation on
conventional MRI (6, 14, 15). Therefore, an accurate, objective
and non-invasive preoperative method for EMVI evaluation is
still needed.

Dynamic contrast-enhanced magnetic resonance imaging
(DCE-MRI) is a non-invasive functional imaging technique
used to reflect the attributes of tumor microcirculation that
integrates morphology and changes in hemodynamics (16). Since
DCE-MRI has the ability to quantify parameters related to
tumor micro angiogenesis, perfusion, and permeability (17, 18),
it has been widely used for rectal cancer detection, staging,
prediction, assessment of responses to neoadjuvant treatment,
tumor angiogenesis, biologic aggressiveness, and molecular
markers (19–22). To our knowledge, there are few studies on
DCE-MRI for the evaluation of EMVI in rectal cancer. Recently,
Chen et al. reported an association between MRI-detected
EMVI and DCE-MRI parameters in rectal adenocarcinoma and
demonstrated that mrEMVI-positive patients had significantly
lower Kep and higher Ve values than mrEMVI-negative patients
(23). However, the diagnostic efficacy of DCE-MRI quantitative
parameters is still unclear.

Radiomics, an emerging field in radiology that quantifies
imaging data and involves the high-throughput extraction of
a large number of quantitative features from medical images,
has recently attracted growing attention, providing non-visual
information related to tumor heterogeneity that can be used
in personalized treatment (24, 25). Regarding rectal cancer, the
potential application of radiomics mainly involves the prediction
of the response after CRT, survival, and other pathological
features, such as T stage, lymph node metastasis, and perineural
invasion (26–30). However, to our knowledge there is no study
that has determined whether a radiomics signature could enable
the prediction of EMVI.

Therefore, our study aimed to construct and validate different
radiomics models for the preoperative prediction of EMVI
in patients with rectal cancer and to compare the diagnostic
performance of these models with perfusion parameters based on
DCE-MRI, developing a radiomics nomogram for the accurate
preoperative risk stratification and selection of adjuvant therapy
or individualized treatment.

MATERIALS AND METHODS

Patients
This retrospective study was approved by the Medical Ethics
Committee of the Second Affiliated Hospital of Chongqing
Medical University, and all patients provided written consent for
the DCE-MRI examination.

A total of 230 consecutive patients with pathologically
confirmed rectal cancer by biopsy or surgery from November
2016 to May 2019 were included in this study. All patients
underwent preoperative rectal high-resolution MRI and DCE-
MRI. The inclusion criteria were as follows: (1) histologically
confirmed rectal adenocarcinoma and (2) no history of pelvic
surgery. Patients were excluded from the analysis for the
following reasons: (1) patients did not undergo surgery (n
= 37), (2) insufficient MRI quality for measurements (n =

16), (3) incomplete scanning sequence for MRI (n = 19), (4)
lesions were too small to be accurately measured (n = 20),
(5) proven special histopathological type, including mucinous
adenocarcinoma, signet ring cell carcinoma, and sarcomatous
carcinoma (n = 9),and (6) lesions with obvious irregular vessel
contour or nodular expansion of vessel with definite tumor signal
that scored 4, based on the five-point grading system suggested by
Smith et al. (31) (n= 23) (Supplementary Figure A1).

Ultimately, 106 patients were enrolled in the study. Baseline
clinical-pathological prognostic factors, including age, sex, tumor
location, tumor size, histological grade, histological tumor stage,
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lymph node stage, carcinoembryonic antigen (CEA) level, and
Ki-67, were derived from the patients’ electronic medical records.

Histopathologic Evaluation
Histopathological information, including T stage, N stage,
histological grade, and the presence of EMVI, was obtained from
pathology reports and confirmed by a pathologist with 5 years
of experience in pathology. Lymph node stage was categorized as
negative (no metastasis in regional nodes) or positive (including
N1, metastasis in 1–3 nodes; and N2, metastasis in four or
more nodes). Histological grade was categorized into three stages
(well, moderately, and poorly differentiated). The pathologic
definition of EMVI was the presence of a rounded mass of
tumor tissue within an endothelium-lined space beyond the
muscularis propriain H&E-stained slides. A pathologic result of
EMVI (present, absent) was obtained for each patient.

MRI Acquisition
MRI scanning was performed using a 1.5-T MR scanner (GE
HDXT2012, USA) with an eight-element pelvic phased-array
body coil. To reduce intestinal peristalsis or rectal spasm, 20mg
of hydrochloride hyoscine butylbromide (raceanisodamine,
Hangzhou Minsheng Pharmaceutical Co., Ltd., China)
was injected intramuscularly 10–15min before MRI unless
contraindicated. Patients were instructed to fast for 12 h before
the examination and to empty the contents of the intestine.

Non-enhanced MRI, including routine oblique axial T1-
weighted (T1W) imaging, fat-saturated respiratory-triggered
fast recovery fast spin-echo (FRFSE) T2W imaging, oblique
axial T2W CUBE imaging, and sagittal high-resolution turbo
spin-echo (TSE) T2W imagingwere obtained. DCE-MRI was
performed following non-enhanced sequences. Before injection
of the contrast agent, the same oblique axial 3D liver acceleration
volume acquisition (LAVA) gradient-echo T1W sequence with
five different flip angles (2, 5, 8, 12, and 15◦) was used to obtain
T1 mapping images. Then, the contrast agent, gadolinium-diethyl
enetriaminepentacetate (Gd-DTPA, Omniscan GE Healthcare
Life Science; 0.2 mmoL/kg) was injected through the cubital vein
at 2.5 mL/s using high-pressure syringes (Spectris MR Injector
System; Medrad) followed by 20mL of normal saline flush at the
same rate in the third period of the dynamic scan. The DCE-MRI
scanned 52 slices during each phase, and a total of 32 periods of
uninterrupted scanning were performed. The scanning time was
5min and 10 s. The parameters of all MRI protocols are shown in
Table 1.

Image Post-processing and Analysis
DCE-MRI

Image assessment was performed for each patient by a
consensus of two abdominal radiologists with at least 5 years
of experience in pelvic MRI images, blinded to the clinical and
pathologic outcomes.

For the measurement of DCE-MRI parameters, a
pharmacokinetic analysis was carried out using Omni kinetics
software (OK, GE Healthcare, China) with the two-compartment
extended Tofts model. T1 maps were generated using five
different flip angles (2, 5, 8, 12, and 15◦). The arterial input

function (AIF) was derived from the left external iliac artery.
Then, the time-concentration curve was calculated.

Two radiologists independently assessed the images and
manually drew tumor regions of interest (ROIs) along the
edges of the tumor slice by slice for the entire tumor while
avoiding visible blood vessels, peripheral fat, areas of necrosis,
or hemorrhage, and the intestinal lumen as far as possible
(Figure 1). Then, all ROIs were merged for the whole tumor
volume ROI.

The estimated kinetic model quantitative parameters were
as follows: volume transfer constant between the blood plasma
and the extracellular extravascular space (Ktrans), extracellular
extravascular space (EES) volume fraction (Ve), plasma volume
fraction (Vp), and rate constant of contrast agent escape from the
EES into the plasma compartment (Kep). The semiquantitative
parameters, including the initial area under the enhancement
curve (iAUC), time to peak (TTP), max slope and max
concentration, were calculated from concentration-time curves
derived from the entire ROI for each patient.

MRI Radiomics

Image segmentation and radiomics feature extraction
Volumes of interest (VOIs) were manually segmented on T2W
CUBE imaging and during the fifth phase of DCE imaging (60 s
after injection of the contrast agent) via a free open source
software package (ITK-SNAP, version 3.6.0, covering the whole
tumor were delineated along the border of the tumor and
excluding the intestinal lumen. All tumor segmentations were
confirmed by a senior radiologist with 10 years of experience
in pelvic imaging. Next, the segmented tumor VOI files were
imported into in-house software (Artificial Intelligence Kit,
AK, version 3.2.2, GE Healthcare) for texture analysis. Image
registration for MR image was also performed on the AK
software, and every MR image was resampled to a uniform pixel
dimension of 1.0× 1.0× 1.0 mm3 before feature extraction. The
delineation of the workflow is shown in Figure 1.

Radiomics features were calculated automatically with AK
software. In total, 792 features were extracted for each patient:
396 features each from T2W and DCE imaging. These radiomics
features were divided into five groups: (1) intensity histogram
features; (2) morphological features; (3) gray-level co-occurrence
matrix (GLCM) features; (4) gray-level run-length matrix (RLM)
features; and (5) gray-level size zone matrix (GLSZM) features.

Feature selection and radiomics signature building
Spearman correlation (r threshold of 0.9) and least absolute
shrinkage and selection operator (LASSO) analyses were used to
reduce the redundancy or selection bias of the features in the
training cohort. When two features are highly correlated, the
feature of greater contribution was retained. A 10-fold cross-
validation was applied with the regularization parameter (λ) of
the LASSO method and was selected when the deviance was
minimal (Figure 2). Backward stepwise selection was applied,
and the stopping rule was the likelihood ratio test with Akaike’s
information criterion. Finally, the most significant features
for the prediction of EMVI were investigated to construct
the radiomics model on the basis of logistic regression. The
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TABLE 1 | MRI sequences and parameters.

Parameter T1W T2W FRFSE Sagittal T2W Oblique axis T2W CUBE DCE

Repetition time (ms) 780 4,140 4,240 2,000 3.9

Echo time (ms) 8.6 72.5 102 103 1.3

Flip angle (degrees) n/a n/a n/a n/a 15

Field of view (mm) 260 × 260 260 × 260 260 × 260 260 × 260 400 × 320

Slice thickness (mm) 6 6 5 2 5

Slice gap (mm) 1 1 1 0 0

Fat saturation No Yes No No Yes

Base matrix 320 × 192 288 × 192 320 × 192 224 × 224 224 × 160

T1W, T1-weighted; T2W FRFSE, T2-weighted fat-saturated respiratory-triggered fast spin-echo; T2W CUBE, T2-weighted CUBE; DCE, dynamic contrast-enhanced.

FIGURE 1 | Flowchart of this study. First, after the VOIs/ROIs of the tumor were manually segmented, 396 features were first extracted each from T2W imaging and

DCE imaging. For the measurement of DCE-MRI parameters, a pharmacokinetic analysis was carried out using OK software with the two-compartment extended

Tofts model. Second, LASSO analysis was used to reduce the redundancy or selection bias of the features. Then, the Rad-score was calculated for each patient using

a linear combination of selected features that were weighted by their respective coefficients. Thereafter, the most significant features for the prediction of EMVI were

investigated to construct the radiomics model on the basis of logistic regression; clinical-pathologic risk factors were compared via univariate and multivariate analyses;

the quantitative features in DCE-MRI were selected by the Mann–Whitney U/t-test; Finally, different models were constructed and compared. A radiomics nomogram

based on the clinical-radiomics model was constructed. Calibration curves and the Hosmer-Lemeshow test were used to graphically investigate the performance

characteristics of the radiomics nomogram that were tested in the validation cohort. GLCM, gray-level co-occurrence matrix; RLM, run-length matrix; Ktrans, volume

transfer constant between the blood plasma and the extracellular extravascular space; Ve, extracellular extravascular space volume fraction; R1 model, radiomics

models based on T2W CUBE; R2 model, radiomics models based on DCE; R2-C model, the combined model based on DCE and clinical-pathological factors.

radiomics score (Rad-score) was calculated for each patient using
a linear combination of selected features that were weighted by
their respective coefficients.

Development and validation of the prediction model
Clinical-pathologic risk factors were compared via a
univariate analysis; variables with P < 0.05 were included
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FIGURE 2 | Feature selection using LASSO logistic regression of T2W CUBE (A,B) and DCE (C,D) imaging. LASSO coefficient analysis of the 792 radiomics features.

A 10-fold cross-validation was applied with the regularization parameter (λ) of the LASSO regression model and selected when the deviance was minimal (A,C).

Coefficients are plotted against the log (λ) sequence. Ultimately, four nonzero coefficients were selected (B,D). LASSO, least absolute shrinkage and selection

operation.

in the clinical model. The quantitative parameters in
DCE-MRI were selected by the Mann–Whitney U-test
(variables with non-normal distribution) or the t-test
(variables with normal distribution). The most significant
parameters were used to build the quantitative model.
In addition, three different radiomics models, individual
T2W CUBE (R1 model), DCE (R2 model) and clinical-
radiomics were built using a multivariable logistic
regression analysis.

Construction and validation of the radiomics nomogram
The comparisons of predictive performance were evaluated
using the DeLong test. To offer an individual and visual
tool for predicting the probability of EMVI, we constructed a
radiomics nomogram based on the clinical-radiomics model.
Calibration curves and the Hosmer–Lemeshow test were used
to graphically investigate the calibration characteristics of the
radiomics nomogram, which were tested in the validation cohort.

Statistical Analysis
The Shapiro–Wilk test was used to determine whether
the variables were normally distributed. The t-test or the
Mann–Whitney U-test was performed to compare continuous
variables, while a chi-squared test or Fisher’s exact test was used
to classify variables between groups. Univariate and multivariate
logistic regression analyses were used to identify independent
predictors of EMVI. The discrimination performance of
the radiomics models was quantified by the area under the
receiver operating curve (AUC) value in the training cohort
and internally validated in the independent validation cohort.
The diagnostic efficacy of the clinical, quantitative, and
radiomics models was compared based on the AUC, sensitivity,
and specificity.

Interobserver agreement for DCE-MRI quantitative perfusion
parameter measurements between the two radiologists was
analyzed by calculating the intraclass correlation coefficient
(ICC) with the 95% confidence interval (CI).
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Statistical analyses were performed with R software (version
3.6.0, http://www.Rproject.org). Two-sided P < 0.05 were
considered statistically significant.

RESULTS

Clinical-Pathologic Characteristics
All 106 patients (male: 68, female: 38; mean age, 62.42 ± 10.22
years) were randomly divided into the training cohort (n = 74)
and the validation cohort (n = 32) (the ratio of the training to
validation cohort was 7:3). The positive rates of EMVIwere 28.4%
(21/74) and 28.1% (9/32) in the training and validation cohorts,
respectively (Supplementary Figure A2).

There were no significant differences (P> 0.05) in the clinical-
pathologic characteristics between patients in the training and
validation cohorts (Table 2). As shown in Table 3, except for
pathological T stage and histological grade, there were no
statistically significant differences in other variables between
the EMVI-positive and -negative groups (P = 0.13–0.838), the
EMVI-positive group was significantly more frequent in higher
pathological T stage (T3-4) and was associated with increased
histological grade when compared with EMVI-negative group.

Comparison of DCE-MRI Parameters
Between the EMVI-Positive and -Negative
Groups
The inter-observer agreement for the quantitative parameters
of DCE-MRI measured was good; the ICCs of Ktrans, Kep,
Ve, Vp, iAUC, TTP, max slope, and max concentration were
0.80, 0.85, 0.88, 0.87, 0.90, 0.83, 0.77, and 0.80, respectively. A
comparison of the DCE-MRI parameters between the EMVI-
positive and -negative groups is shown in Table 4. The Ktrans and
Ve values in the EMVI-positive group were significantly higher
than those in the EMVI-negative group (both P = 0.02). There
was no significant difference in Kep, Vp, or semiquantitative
parameters between the EMVI-positive and -negative groups
(P = 0.128–0.99).

Feature Selection and Construction of the
Radiomics Signature
A total of 792 radiomics features were extracted fromT2WCUBE
and DCE images. Then, these features were reduced to four
potential predictors with nonzero coefficients using spearman
correlation and LASSO logistic regression analyses, including1
intensity histogram feature, 1 morphological feature, 1 GLCM
feature and 1 RLM feature. The Rad-score was calculated for each
patient (Figure 3).

Rad-score = −1.73451-0.67785 ∗ MaxIntensity + 1.81795
∗ ClusterProminence_AllDirection_offset7_SD + 1.39861
∗ HaralickCOrrelation_AllDirection_offset4 + 1.81083
∗ LongRunHighGreyLevelEmphasis_angle0_offset4. The
representation of the equation and the meaning of each
parameter was presented in the Supplementary Materials.

Comparison of the Performance of
Different Parameters and Prediction
Models
The comparisons of predictive performance were evaluated using
the DeLong test. There were significant differences amongthe
clinical model, quantitative model and R2 model in the training
and validation cohorts (P = 0.0234, clinical model vs. R2 mode
and P = 0.03, quantitative model vs. R2 model, respectively).
Although there were no significant differences between the
R1 and R2 models (P = 0.4807), the predictive performance
of the R2 model was better than that of the R1 model;
therefore, the combined model based on DCE with clinical-
pathological factors (R2-C model) was constructed, and the
predictive performance of the R2-C model was better than those
of the radiomics signature in the validation cohort. There were
no significant differences between the R2 and R2-C models
(P = 0.3992).

The receiver operating curve (ROC) analysis was used to
evaluate the diagnostic performance of each parameter or model
for EMVI. Ktrans combined with Ve showed a fair degree of
accuracy (AUC: 0.680 95% CI, 0.561–0.784) compared with
Ktrans (AUC: 0.678 95% CI, 0.56–0.782) or Ve (0.670 95%
CI, 0.55–0.775) alone, which was validated in the validation
cohort (Table 5). Then, Ktrans and Ve values were combined
to build the quantitative model. As shown in Table 5, the
radiomics models (R1 and R2 models) demonstrated a better
diagnostic performance than the clinical and quantitativemodels.
The R2-C model exhibited a favorable performance (AUC:
0.904; 95% CI: 0.813–0.96 in the training cohort and AUC:
0.812; 95% CI: 0.635–0.927 in the validation cohort, with a
sensitivity of 90.5 and 88.9%, and a specificity of 79.2 and
78.3%, respectively, in both cohorts) and was deemed the
optimal model among all the models. ROC curves for the
diagnostic performances of the different prediction models were
summarized in Figure 4.

Construction of the Radiomics Nomogram
The radiomics nomogram was constructed by integrating the
optimal radiomics model from DCE with clinical-pathologic
features, including histopathological grade and T stage, in
the training cohort. The calibration curve for the radiomics
nomogram was tested by the Hosmer–Lemeshow test and
showed no significant difference (P = 0.497 and P = 0.107
in the training and validation cohorts, respectively) between
the calibration curves and a perfect fit for predicting EMVI
(Figure 5).

Clinical Use
The decision curve analysis for the radiomics nomogram, the
clinical model, and the quantitative model is presented in
Figure 6. Decision curve analysis indicates that if the threshold
probability of a patient is >10%, using the radiomics nomogram
in the current study to predict EMVI adds more benefit
than the treat-all-patients scheme or the treat-none scheme.
In addition, the clinical-radiomics combined model had the
largest overall net benefit compared with the clinical model
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TABLE 2 | Clinical and histologic characteristics of patients in the training and validation cohorts.

Characteristic Training cohort

(n = 74)

Validation cohort

(n = 32)

P-value

EMVI(+) EMVI(–) EMVI(+) EMVI(–)

(n = 21) (n = 53) (n = 9) (n = 23)

Age, years 0.608

≥60 12 (16.2%) 35 (47.3%) 6 (18.7%) 16 (50%)

<60 9 (12.2%) 18 (24.3%) 3 (9.4%) 7 (21.9%)

Sex 0.818

Male 14 (18.9%) 34 (45.9%) 4 (12.5%) 16 (50%)

Female 7 (9.5%) 19 (25.7%) 5 (15.6%) 7 (21.9%)

Tumor location 0.169

Upper>10 cm 8 (10.8%) 10 (13.5%) 6 (18.7%) 5 (15.6%)

Middle 5–10 cm 1 (1.4%) 19 (25.7%) 1 (3.1%) 9 (28.2%)

Lower<5 cm 12 (16.2%) 24 (32.4%) 2 (6.2%) 9 (28.2%)

Tumor size (cm), median

(range)

3.9 (2.4–11) 4.6 (2.7–9.5) 5.1 (2.8–7) 5.6 (2.9–10) 0.141

Histological grade 0.219

Well differentiated 1 (1.4%) 8 (10.8%) 1 (3.1%) 2 (6.3%)

Moderately differentiated 12 (16.2%) 38 (51.3%) 7 (21.9%) 17 (53.1%)

Poorly differentiated 8 (10.8%) 7 (9.5%) 1 (3.1%) 4 (12.5%)

Histologic tumor stage 0.979

pT0-pT2 1 (1.4%) 33 (44.6%) 1 (3.1%) 8 (25.0%)

pT3-pT4 20 (27.0%) 20 (27.0%) 8 (25.0%) 15 (46.9%)

Pathologic lymph node 0.962

N0 9 (12.2%) 33 (44.6%) 2 (6.2%) 16 (50%)

N1-2 12 (16.2%) 20 (27%) 7 (21.9%) 7 (21.9%)

CEA level 0.405

<5 ng/mL 12 (16.2%) 36 (48.6%) 3 (9.4%) 15 (46.9%)

≥5 ng/mL 9 (12.2%) 17 (23%) 6 (18.7%) 8 (25%)

Ki-67 0.974

<40% 1 (1.4%) 5 (6.8%) 0 (0) 5 (15.6%)

≥40% 18 (24.3%) 38 (51.3%) 6 (18.7%) 12 (40.6%)

N/A 2 (2.7%) 10 (13.5%) 3 (9.4%) 6 (18.7%)

EMVI, extramural venous invasion; CEA, carcinoembryonic antigen.

and the quantitative model across the full range of reasonable
threshold probabilities.

DISCUSSION

EMVI can be used to predict a poor prognosis in rectal
cancer, and its identification should be necessary either during
preoperative staging or after neoadjuvant treatment. The
addition of EMVI assessment to rectal cancer risk stratification
will contribute to individual decision-making for offering
adjuvant treatment. In this study, we developed radiomics
models for predicting EMVI in patients with rectal cancer
preoperatively and compared the predictive performance of these
models with that of DCE-MRI perfusion parameters. The results
showed that the R2-C model exhibited better diagnostic accuracy
than the DCE-MRI quantitative parameters. Furthermore, the
clinical-radiomics nomogramwas developed as an individualized

and visual tool to provide the estimated probability of EMVI for
rectal cancer patients.

According to previous studies, risk factors for EMVI include a
large tumor size, a high T stage and lymph node stage. In this
study, we confirmed that T stage and histological grade were
independent predictors of EMVI, which was partly in agreement
with the findings of previous studies (23, 32). However, the
tumor size and N stage did not correlate with EMVI in our
study. Regarding the N stage, this finding could be explained
by selection bias, and the tumor was drawn manually, so it
may be affected by individual factors. Therefore, these factors
alone should not be used for preoperative decision-making.
Chen et al. (33) indicated that the gross tumor volume on
DWI and T2W images could be used for the preoperative
evaluation of lymphovascular invasion (LVI) in rectal cancer
and showed favorable AUCs (0.899 and 0.877, respectively),
but the volumetric measurement and assessment would be time
consuming andmay not reflect the intratumoral nature of EMVI;
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TABLE 3 | Univariate and multivariate logistic regression analyses between EMVI-positive and –negative groups in the training cohort.

Variable Univariate analysis P-value Multivariate analysis P-value

β Odds ratio (95% CI) β Odds ratio (95% CI)

Age, year (mean ± SD) −0.377 0.69 (0.24, 1.93) 0.475

Sex 0.1112 1.12 (0.38, 3.25) 0.838

Tumor location 0.109 1.12 (0.6, 2.06) 0.727

Tumor size (cm) 0.1197 1.13 (0.87, 1.46) 0.362

Histological grade −0.196 0.3 (0.11, 0.82) 0.019* −0.9723 0.38 (0.13, 1.12) 0.08‘

Histologic tumor stage 2.495 12.12 (1.51, 97.37) 0.019* 2.2455 9.44 (1.15, 77.8) 0.0369*

Pathologic lymph node 0.7885 2.2 (0.79, 6.15) 0.13

CEA level 0.463 1.59 (0.56, 4.49) 0.383

Ki-67 −0.1987 0.82 (0.29, 2.34) 0.71

Significant variables with P < 0.05 in the univariate analysis were included in the multivariate logistic regression analysis. CI, confidence interval; β is the regression coefficient. *P< 0.05,

‘0.05 < P–value < 0.1.

TABLE 4 | Comparison of DCE-MRI parameters between the EMVI-positive and

EMVI-negative groups(x̄ ± s)in the training cohort.

EMVI+ (n = 21) EMVI– (n = 53) P-value

Ktrans/min−1 1.08 ± 0.946 0.542 ± 0.636 0.02*

Kep/min−1 1.23 ± 0.728 1.31 ± 0.986 0.99

Ve 0.63 ± 0.304 0.455 ± 0.297 0.02*

Vp 0.419 ± 0.365 0.288 ± 0.328 0.128

iAUC 7.27 ± 4.37 6.43 ± 3.08 0.525

TTP 3.17 ± 0.553 3.01 ± 0.786 0.328

Max slope 3.28 ± 1.72 3.4 ± 1.57 0.737

Max concentration 1.86 ± 1.05 1.79 ± 0.792 0.933

Ktrans, volume transfer constant between the blood plasma and the extracellular

extravascular space; Ve, extracellular extravascular space volume fraction; Vp, plasma

volume fraction; Kep, rate constant of contrast agent escape from the extracellular

extravascular space into the plasma compartment; iAUC, initial area under the

enhancement curve; TTP, time to peak. *P < 0.05.

the results also lacked validation. Ahn et al. (34) attempted to
assess the potential quantitative method of DWI for evaluating
EMVI in rectal cancer; however, the diagnostic performance
was not significantly improved when DWI was added for the
detection of EMVI.

In the present study, we evaluated the association between
DCE-MRI parameters and EMVI in rectal cancer, and only
Ktrans and Ve showed significant differences between the EMVI-
positive and -negative groups. The results showed that the EMVI-
positive group with rectal cancer had significantly higher Ktrans

and Ve values than the EMVI-negative group, and these values
were positively correlated with EMVI, suggesting that these
two parameters may be closely related to vascular invasion of
tumors. Ve is the fractional volume of the EES. During tumor
progression, tumor cells secrete vascular endothelial factors
that increase the permeability of tumor blood vessels and loss
of function of cell-cell adhesion molecules, leading to a large
interstitial space and resulting in an enlarged EES (35, 36);
thus, it was not surprising that the Ve value was significantly
higher in the EMVI-positive group than in the EMVI-negative

FIGURE 3 | Distribution of scores calculated with the radiomics model from

DCE. Label 0 (green dots) represents EMVI-negative patients; Label 1 (yellow

dots) represents EMVI-positive patients. EMVI-positive patients generally

exhibited higher Rad-scores than EMVI-negative patients. DCE, dynamic

contrast-enhanced; EMVI, extramural venous invasion; Rad-scores, radiomics

scores.

group. This result was in agreement with those of Chen et al.
(23), who reported that MRI-detected EMVI-positive patients
exhibited an increased Ve value. Regarding the Ktrans value, our
finding was consistent with a recent study that showed that LVI
was correlated with a high Ktrans value in patients with rectal
cancer (35) but contrary to that of Chen et al. (23). This may be
explained by the different inclusion criteria between our studies.
In Chen et al.’s study, the investigation was based on MRI-
detected EMVI (rather than EMVI detected on histopathology,
as in our study), which may not fully reflect the actual status of
EMVI, especially the early stage of rectal carcinoma. In addition,
the Ktrans value is affected by blood perfusion, including cardiac
output, hypertension, and the circulatory system of an individual,
which can produce high individual variation. However, in our
study, the performances of these two parameters were mediocre,
and it is worth noting that when Ktrans was combined with
Ve, the diagnostic performance of EMVI was not significantly
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TABLE 5 | Diagnostic performance of the different parameters and models for predicting EMVI.

Methods Training cohort (n = 74) Validation cohort (n = 32)

AUC (95% CI) SEN SPE AUC (95% CI) SEN SPE

Histological grade 0.65 (0.531–0.758) 0.381 0.868 0.539 (0.354–0.716) 0.889 0.174

T stage 0.665 (0.546–0.77) 0.953 0.377 0.618 (0.43–0.784) 0.889 0.348

Clinical model 0.723 (0.607–0.821) 1.00 0.358 0.643 (0.454–0.803) 0.889 0.348

Ktrans 0.678 (0.56–0.782) 0.524 0.830 0.628 (0.44–0.791) 0.556 0.739

Ve 0.670 (0.55–0.775) 0.809 0.566 0.715 (0.529–0.86) 0.778 0.696

Quantitative model 0.680 (0.561–0.784) 0.524 0.811 0.715 (0.529–0.86) 0.778 0.652

R1 model 0.826 (0.720–0.904) 0.857 0.717 0.715 (0.529–0.860) 0.667 0.826

R2 model 0.872 (0.774–0.939) 0.667 0.925 0.812 (0.662–0.960) 1.000 0.609

R2-C model 0.904 (0.813–0.96) 0.905 0.792 0.812 (0.635–0.927) 0.889 0.783

The R1 model indicates the radiomics model based on T2W CUBE; the R2 model indicates the radiomics model based on DCE; the R2-C model indicates the combined model based

on DCE and clinical-pathological factors; the quantitative model indicates the model that combines the Ktrans and Ve values; SEN, sensitivity; SPE, specificity; AUC, area under the

curve; CI, confidence interval.

FIGURE 4 | Comparison of ROC curves between the clinical model, quantitative model, and three radiomics models in the training (A) and validation (B) cohorts.

ROC, receiver operating characteristic; R1 model indicates the radiomics model based on T2W CUBE; R2 model indicates the radiomics model based on DCE; R2-C

model indicates the combined model based on DCE and clinical-pathological factors.

improved compared with that of individual parameters. It is
speculated that Ktrans and Ve do not increase unlimitedly with
the increase in the malignant degree and invasion depth of
tumors; when the concentration of contrast agent in the EES
reaches a certain degree, the pressure difference inside and
outside microvessels decreases, affecting the diffusion rate of
contrast agent from microvessels to the EES, and the two may
be correlated and restricted.

We further investigated the radiomics features for the
prediction of EMVI. Recent studies have reported that
the radiomics signature could be used to preoperatively
predict microvascular invasion (MVI) in hepatocellular
carcinoma and LVI in breast cancer (37, 38). Similarly,
our study demonstrated that the radiomics signature was

significantly associated with the EMVI status in rectal cancer.
The radiomics features, MaxIntensity belongs to histogram
features, which indicate the distribution of voxel intensities
within the images, ClusterProminence AllDirection offset7_SD
belongs to texture feature, reflects the asymmetry of a given
distribution, HaralickCorrelation AllDirecion offset4 belongs
to GLCM feature, represents the local gray level correlation
(the greater its value, the greater the correlation), and the
LongRunHighGreyLeveEmphasis angle0_offset4 belongs to the
RLM features, which takes into account the length of consecutive
pixels or voxels with the same gray values in a specific direction.
All the 4 radiomics features were included in our prediction
model to build the radiomics signature, which may reflect
the different growing patterns and the tumor heterogeneity
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FIGURE 5 | The radiomics nomogram combines three items: the Rad-score, T stage, and histological grade (A). Calibration curves of the radiomics

nomogram-based prediction in the training (B) and validation (C) cohorts. The calibration curves represent the calibration of the nomogram based on agreement

between the predicted risk of EMVI and actual EMVI findings. A close fit between the dotted and solid lines indicates good predictive accuracy of the nomogram.

Rad-score, radiomics score; EMVI, extramural venous invasion.

of rectal cancer. To the best of our knowledge, this is the
first time that radiomics was used to evaluate EMVI in rectal
cancer, and a nomogram that combines the Rad-score with
clinical-pathological factors was constructed to further improve
its predictive accuracy for EMVI.

In our study, we constructed radiomics models based on T2W
CUBE and DCE imaging and a clinical model based on clinical-
pathologic risk factors. Our results demonstrated that the R2

model performed better than the R1 model in both cohorts. On
the one hand, because EMVI is associated with angiogenesis, we
used the post-contrast images at 60 s, which provide improved
tissue contrast for tumor segmentation, considering that these
images probably contain more information on intratumoral
heterogeneity and allow us to acquire more features concerning
the blood supply than unenhanced images for predicting EMVI.
On the other hand, it is difficult to differentiate the fibrotic
response from the perirectal tumor on T2W imaging, whereas
DCE-MRI can clearly distinguish the high signal intensity of

the tumor or blood vessels from the low signal intensity of
the fibrotic response. In addition, the R2-C model further
improved its predictive performance for EMVI and exhibited
an excellent performance to identify high risks of EMVI.
The predictive accuracy of the clinical-radiomics model was
significantly improved compared with the clinical model alone,
indicating that the combined model may have greater value
in EMVI prediction than clinical-pathological features. Jiang
et al. (39) who also integrated CT-based radiomics features in
conjunction with clinical-pathological risk factors, demonstrated
a better performance than the use of clinical risk factors
alone in predicting lymph node metastasis in gastric cancer.
These findings support the idea that the use of different
aspects of factors is the most prospective way to assist clinical
management (40).

In addition, the combined prediction model developed
in our study was presented as an easy-to-use nomogram,
which can easily calculate the risk of EMVI tailored to
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FIGURE 6 | Decision curve analysis of the radiomics nomogram, clinical

model, and quantitative model. The y-axis indicates the net benefit. The red

line represents the radiomics nomogram. The blue line represents the clinical

model. The green line represents the quantitative model. The gray line

represents the assumption that all patients have EMVI, and the thin black line

represents the assumption that no patient has EMVI.

each individual patient and assist in clinical decision-
making. This proposed radiomics nomogram may assist
in risk stratification for patients and optimize treatment
decisions before an operation. Furthermore, even though
rectal cancer can be resected to discover early recurrence and
metastases, high-risk patients should be carefully monitored
postoperatively, and appropriate adjuvant or neoadjuvant
therapy is also required to prevent recurrence after resection in
these patients.

As mentioned above, all of the radiomics models
demonstrated an outperformed predictive performance
compared with the quantitative model, which extracted
multidimensional imaging features of the whole tumor, thus
better reflecting the biological behavior and intratumoral
heterogeneity, providing a more accurate, objective, and
convenient way to predict EMVI.

There were several limitations to this study worthmentioning.
First, we extracted the DCE-MRI parameters from the entire
volume of the rectal tumor and obtained the average value of
the parameters of the whole tumor. Therefore, the diagnostic
efficacy of the parameters may be lower than the actual diagnostic
ability of the parameters of the EMVI area. Second, the manual
segmentation of ROIs is time consuming and requires the
development of automated segmentation techniques when very
large databases are evaluated. Third, the sample size of our study
was really small (the exclusion of lesions that were too small
to be accurately measured, lesions that scored 4 based on the
five-point grading system, and the M stage was not considered).
Moreover, we selected only one contrast-enhanced phase for
tumor image segmentation and feature extraction, which may
not completely demonstrate tumor angiogenesis. Additionally,
our study lacks external validation for the model and requires
further multicentre validation. Finally, radiogenomics, as an
emerging field of cancer research, has attracted increasing

interest, and it will be interesting for us to explore whether
the construction of a radiogenomics model can exhibit a
better predictive performance than the radiomics model in
the future.

In conclusion, our study demonstrated that the Ktrans and Ve
values of DCE-MRI quantitative parameters were significantly
associated with EMVI, enabling DCE-MRI parameters to serve
as an additional tool for potentially predicting EMVI. However,
their moderate diagnostic performances may limit their clinical
application. The predictive performance of the R2-C model
was relatively higher than that of the quantitative parameters
and superior to that of all the other models. Even with a
limited training data set, the diagnostic accuracy of the R2-
C model seems to reach clinically acceptable levels, especially
for suspicious EMVI which scored 2–3 according to the five-
score EMVI grading system (31). Furthermore, the non-invasive
radiomics nomogram, which includes the Rad-score and clinical-
pathologic risk factors, exhibits good application potential in
clinical practice in terms of the preoperative individualized
prediction of EMVI.
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