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Metastasis is the main cause of cancer-related mortality. Although the actual process

of metastasis remains largely elusive, epithelial-mesenchymal transition (EMT) has been

considered as a major event in metastasis. Besides, hypoxia is common in solid cancers

and has been considered as an important factor for adverse treatment outcomes

including metastasis. Since EMT and hypoxia potentially share several signaling

pathways, many recent studies focused on investigate the issue of hypoxia-induced

EMT. Among all potential mediators of hypoxia-induced EMT, hypoxia-inducible factor-

1α (HIF-1α) has been studied extensively. Moreover, there are other potential mediators

that may also contribute to the process. This review aims to summarize the recent

reports on hypoxia-induced EMT by HIF-1α or other potential mediators and provide

insights for further investigations on this issue. Ultimately, better understanding of

hypoxia-induced EMT may allow us to develop anti-metastatic strategies and improve

treatment outcomes.
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INTRODUCTION

Metastasis is the major cause of cancer-associated deaths (1). It is a sequential event of uncontrolled
cell proliferation, angiogenesis, detachment, motility, invasion into bloodstream, settle in the
microvasculature, and finally extravasation from the blood vessel and proliferation in secondary
sites. It is a complicated process involving multiple genes and signaling pathways for each
step (2–4). Although much of the exact mechanism remains unknown, epithelial-mesenchymal
transition (EMT), which is a cellular process that enables a polarized epithelial cell to undergo
changes to be a mesenchymal cell phenotype, has been regarded as an important event for
metastasis (4). Apart from EMT, hypoxia, which is cell having a lower oxygen tension than
normal condition, is a common phenomenon in most solid tumors (5). Hypoxia could trigger
various signaling pathways which may lead to adverse clinical outcomes in cancer including higher
invasiveness and tendency to metastasize (5–7). Studies in the field of cancer biology have linked
these two important tumorigenesis events together when unraveling the process of metastasis (8).
Among different hypoxia-related pathways, hypoxia-inducible factor-1α (HIF-1α) has been studied
extensively (9). In this review, we summarize previous researches and recent findings of the effect
of hypoxia on EMT induction with emphasis in various hypoxia-related mediators.
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EMT IN CANCER

EMT is involved during the implantation of the embryo and
the initiation of placenta formation (Type 1), inflammation
and fibrosis (Type 2), and in the change of primary epithelial
cancer cell to invasive and metastatic mesenchymal cell (Type
3) (10). Type 3 EMT (hereby referred as EMT) comprises
activation of transcription factors, expression of specific cell
surface proteins, reorganization and expression of cytoskeletal
proteins, production of extracellular matrix (ECM)-degrading
enzymes and changes in the specific microRNA (miRNA)
expressions (10). This leads to increased invasiveness, migratory
capacity, production of ECM components and resistance to
apoptosis of cancer cells (10). Furthermore, EMT could affects
the immune cell functions in the tumor microenvironment and
promotes an immunosuppressive tumor microenvironment to
escape immune surveillance by immune cells (11).

Epithelial cells are held together by various cell adhesion
molecules including claudins and E-cadherin for attachment
to both the basement membrane and adjacent cells and
maintenance of epithelial phenotype. The loss of function
or expression of E-cadherin and tight junction proteins, and
also the increase of mesenchymal markers including vimentin,
fibronectin, and N-cadherin, have been considered as the main
molecular events of EMT (12). Cadherins are transmembrane
components of the adherens junction, which play important role
in cell-cell adhesion and actin cytoskeleton (13). E-cadherin is
pre-dominantly expressed by normal epithelial tissues. However,
many epithelial cancer cells have reduced E-cadherin expression
and the loss of E-cadherin is correlated to poor prognosis in a
variety of cancers (14). While N-cadherin is typically expressed
in mesenchymal cells, which are more spindle-shaped and less
polarized than epithelial cells (13). Hence, the transition from
E-cadherin to N-cadherin is considered as the major process
in EMT induction. Nonetheless, the disintegration of adherens
junctions between cells changes the cytoskeletal composition
and cell polarity to a more spindle-shaped form. In cancer
cells undergoing EMT, the actin cytoskeleton is reorganized
from cortical thin bundles into thick contractile stress fibers
at the ventral cell surface (15). The monomers of actin, i.e.,
globular-actin (G-actin), polymerize to form filamentous-actin
(F-actin) to start the formation of various migratory protrusions
including podosomes, invadopodia, filopodia, and lamellipodia.
This process is known as dynamic actin reorganization (16).
It is a prerequisite for the morphology change, migration and
invasion of cancer cells (16, 17). Another protein, vimentin, is a
Type III intermediate filament protein that is a major cytoskeletal
component of mesenchymal cells (18). Whereas, fibronectin is
a stromal ECM protein that binds to integrin receptors to link
the ECM with cytoskeleton (19). The up-regulations of these
mesenchymal markers also mark the EMT induction process.
Moreover, cells undergoing EMT could degrade and invade basal
extracellular matrix by matrix metalloproteinases (MMPs) (11).

There are several EMT transcription factors including the
zinc-finger binding transcription factors: Snail1 (Snail) and
Snail2 (Slug), zinc finger E-box-binding homebox 1/2 (ZEB1/2),
TWIST, and lymphoid enhancer-binding factor-1 (LEF-1). They

bind to the promoter region of cell adhesion genes and repress
their transcription. The reduced cell adhesion initiates EMT.
These core EMT transcription factors have non-redundant
functions yet they may cooperate to promote EMT (20). Snail
and Slug bind to the promoter of cadherin-1 (CDH1), which
encodes E-cadherin, to repress its transcription. The other
molecules, ZEB1 and ZEB2, mediate the bipartite E-box regions
of DNA for flanking the CDH1 gene, resulting in E-cadherin
repression. Both Twist-related protein 1 (TWIST1) and Twist-
related protein 2 (TWIST2) belong to the basic helix-loop-helix
(bHLH) transcription family. They also flank the CDH1 gene
to repress E-cadherin. In addition, it has been reported that
TWIST1 binds with Slug promoter to stimulate EMT in human
mammary cells (21). LEF-1 could also directly repress E-cadherin
and induce EMT (22). Its overexpression in colon carcinoma cell
lines could promote EMT by nuclear β-catenin activation (23). In
general, these factors are usually associated with poor prognosis
in different types of cancer (24–35).

Multiple signaling pathways that are involved in these EMT-
inducing factors have been reviewed recently (12). Furthermore,
miRNA-transcription factor regulatory circuits, along with long
non-coding RNAs, have also been proposed recently for complex
control of EMT process (11, 36). In this review, we focus on the
pathways related to hypoxia.

TUMOR HYPOXIA

Hypoxia is a common phenomenon in most solid tumors (5).
Even though tumors are developed by clonal expansion, the
cells are in different stages of maturation and differentiation.
Tumor cells are also arranged in different geometry. Therefore,
each individual tumor is a heterogeneous population of cells and
each individual tumor cell has its own microenvironment (37).
Although tumor cells can promote angiogenesis that stimulate
the growth of endothelial cells from neighbor blood vessels for
the supply of nutrients, over-population, increase in oxygen
diffusion distances of cells, anarchic tumor vasculature with
irregular blood flow and low oxygen diffusion are common
causes of poor oxygenation (37–39). In addition, hypoxia could
be more prominent due to tumor-induced or treatment-induced
anemia and low hemoglobin levels in blood (39). In normal
tissues, the oxygen tension (pO2) is normally 10–80 mmHg,
while tumors often contain low oxygen concentration regions
of severe hypoxia (<0.5 mmHg) and intermediate hypoxia (0.5–
20 mmHg) (5). Hypoxia could pose a variety of adverse clinical
outcome during the treatment of cancer. It has been reported to
increase radioresistance at pO2 level of <1–10 mmHg, genomic
instability, angiogenesis, vasculogenesis, invasiveness, boosted
stem cell properties. Most importantly, cells under hypoxia may
have higher tendency to metastasize and improved survival in
nutrient deprived environment (5, 7).

Hypoxia-inducible factors (HIFs) are the major
transcriptional regulators in response to hypoxia, which
consist of an oxygen-regulated HIF-α subunit (HIF-1α or
HIF-2α) dimerizing with HIF-1β in hypoxia. It activates
target gene transcription with CREB-cAMP-response element
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binding protein (CBP) in hypoxia responsive elements (HRE).
In normoxia, HIF-1α is hydroxylated at proline 402 and
531 while HIF-2α is hydroxylated at proline 405 and 531
by HIF-α prolyl hydroxylases (PHDs) and factor inhibiting
HIF (FIH) proteins within its oxygen-dependent degradation
domain (ODD) of PHDs. This process regulates the binding
of von Hippel-Lindau (VHL) tumor suppressor E3 ligase for
Lys48-linked polyubiquitination of HIF-α and finally results in
proteasomal degradation. Whereas, FIH hydroxylates HIF-1α
and HIF-2α at asparagine 803 and 847 within the C-terminal
transactivation domain, respectively. This action blocks HIF
interaction with p300 or CBP and prevents transcription of target
genes (40–42).

HIF-1α and HIF-2α have distinct physiological roles though
they are similar in overall amino acid sequence, domain
structure and activation mechanisms (43). HIF-1α is usually up-
regulated more prominently in shorter time interval (2–24 h)
and lower oxygen level (<0.1% O2) whereas HIF-2α is usually
up-regulated in a higher oxygen level (<5% O2) with longer
maintenance time (48–72 h) in some cell lines (39, 40). HIF-
1α regulates a variety of tumor processes for adaptation,
such as metabolism, erythropoiesis, angiogenesis, invasion, cell
survival and proliferation (40, 44). HIF-1α could regulate various
EMT transcription factors, histone modifiers [e.g., histone
lysine-specific demethylase 4B (KDM4B)], enzymes [e.g., lysyl
oxidase (LOX), MMP1, MMP3], chemokine receptors 1 and
4 (CX3CR1, CXCR4), adhesion molecules [e.g., angiopoietin-
like 4 (ANGPTL4), L1 cell adhesion molecule (L1CAM)], and
miRNA targets to promote metastasis (45). Its expression was
associated with poor treatment outcome in different types of
cancer (44, 46, 47).

Apart from hypoxia-induced HIF-1α activation, HIF-1α could
be controlled by oxygen-independent oncogenic regulation,
which includes growth factor signaling pathways such as
phosphatidylinositol-3-kinase (PI3K) activation, mouse double
minute 2 homolog (Mdm2) pathway and heat shock protein
90 (Hsp90) (48). In addition, HIF-1α activation is associated
with the Warburg metabolites including glucose transporters
and glycolytic enzymes (49). Furthermore, reactive oxygen
species (ROS) could stabilize HIF-1α under normoxia via several
proposed models (50).

Though HIF-1α has been intensively researched, HIF-2α

was less studied. A recent study by Li et al. (51) found that

HIF-2α was significantly expressed in the cancer stem cell
population but not in other tumor cells. Moreover, HIF-2α was
proposed to promote stem cell marker expression, a stem cell
phenotype and tumorosphere formation in hypoxic conditions
(38). Therefore, HIFs are required for cancer stem cell survival
and tumor progression (38). In fact, HIF-1α and HIF-2α may
have antagonistic roles in some cellular functions including cell
growth. For example, HIF-1α promoted the growth of SW-480
colon cancer cells while HIF-2α suppressed the tumor growth
(41). It is important not to generalize because HIF-1α and HIF-
2α may have different effect in other tumor cell lines (43).
Recent studies also showed HIF-1α and HIF-2α regulate various
non-coding RNAs for facilitating tumorigenesis (52).

HIF-MEDIATED EMT

Initially, both EMT and hypoxia are considered as separate events
promoting invasion and metastasis of various types of cancer.
Recently, the term hypoxia-induced EMT has been proposed
because the signaling pathways are inter-related. Among all the

signaling pathways involved in hypoxia, the HIF pathway was
proposed to be the most important one for hypoxia-induced

EMT though it may also be regulated by oxygen-independent
mechanisms (Figure 1). In earlier studies, HIF-1α has been

linked with transforming growth factor β (TGF-β) activation

in hepatocyte during liver fibrosis and human umbilical vein

endothelial cells (53, 54). TGF-β can also suppress both mRNA
and protein expressions of PHD2 and consequently increases
HIF-1α stability (55). TGF-β is the most studied EMT signaling
pathway, which includes the HIF-1α related mothers against
decapentaplegic homologs (SMAD) signaling and non-SMAD
signaling. For SMAD signaling, the phosphorylation of TGF-
βRI activates SMAD signaling after binding to TGF-βRII and
TGF-βRIII. Then the oligomerization of SMAD2/3 with SMAD4
and the nuclear import of the R-SMAD/SMAD4 complex are
enabled for binding regulatory elements inside the nucleus and
inducing the transcription of EMT associated genes. While
non-SMAD signaling involved variousmitogen-activated protein
kinases (MAPKs) and PI3K- protein kinase B (Akt)- mechanistic
target of rapamycin (mTOR), which will be introduced in later
parts of this review (56). HIF-1α was found to regulate TGF-β-
SMAD3 pathway in breast cancer patients (57). Apart from the
crosstalk between HIF-1α and TGF-β, another important EMT
pathway Wnt/β-catenin could also enhance hypoxia-induced
EMT by potentiating with HIF-1α signaling in hepatocellular
carcinoma (58). Moreover, HIF-1α is linked to the expression
of immunosuppressive molecules in tumor cells, which could
potentiate EMT induction through TGF-β signaling (59, 60).
EMT could in turn elicit multiple immune-regulatory effects
causing natural killer (NK) and T-cell apoptosis and increase
of regulatory T and B cells (61). Furthermore, HIF-1α was
found to mediate hedgehog signaling for EMT and invasion in
pancreatic cancer cells and the silencing of HIF-1α would reverse
hypoxia-induced hedgehog signaling activation (62). Therefore,
there were definitive cross-talks between HIF-1α and other EMT
signaling pathways yet the relationship could be tumor-type
and context-dependent.

Aside from the studies concerning the cross-talks between
HIF-1α and other EMT pathways, more researches have focused
on HIF-1α modulation of various EMT transcription factors
including TWIST, Snail, Slug, SIP1, and ZEB1 (Table 1). For HIF-
1α-TWIST interaction, HIF-1α could bind directly to TWIST by
HRE in the TWIST proximal promoter in hypopharyngeal and
breast cancer cell lines. It also promoted metastasis and the over-
expression of TWIST was essential for HIF-1α-mediated EMT
and non-redundant when compared with other EMT inducers
such as Snail (63). The co-expression of HIF-1α, TWIST, and
Snail in primary tumors of head and neck cancer patients
correlated with the poorest prognosis (63). The up-regulation
of TWIST by HIF-1α was also found among clinical samples of
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FIGURE 1 | HIF-1α mediated EMT. HIF-1α promotes EMT induction in various cancer types by multiple ways. Various pathways promote EMT induction, resulting in

loss of cell-cell adhesion and dynamic actin reorganization.

ovarian epithelial cancers and was associated with lower overall
survival rate (26).

For HIF-1α-Snail interaction, HIF-1α first activates histone
deacetylase 3 (HDAC3). HDAC3 could then bind to the
promoters of CDH1 and junction plakoglobin (JUP) and
eventually promote transcription of Snail (12, 72). In an in
silio analysis by Luo et al. (73), HIF was found to bind with
a putative HRE within minimal Snail promoter of mouse,
demonstrating possible direct interaction between HIF and Snail.
HIF-1α-induced Snail activation was found in liver and lung
cancers (34, 64). Zhang et al. (34) found both HIF-1α and Snail
overexpression were correlated with pathological classification,
TNM staging, and tumor volume in hepatocellular carcinoma
patients. The disease-free survival was also significantly shorter
in HIF-1α positive group than HIF-1α negative group. This study
also showed the elevation of Snail mRNA expression level after
HIF-1α stabilization accompanied with E-cadherin repression
plus vimentin and N-cadherin up-regulation. Meanwhile, in a
shorter path, HDAC3 also regulates the formation of histone
methyltransferase complexes by WD repeat-containing protein
5 (WDR5) recruitment to induce vimentin and N-cadherin
expression (12, 72). As a chromatin modifier, HDAC3 could
directly deacetylate histone H3 Lys4 acetylation (H3K4Ac) for
promotion of EMT marker genes and indirectly increased
the levels of histone H3 Lys4 di/trimethylation (H3K4me2/3)
through WDR5, yet the exact molecular mechanisms remained
to be explored (74).

For another important zinc-finger binding transcription
factor Slug, HIF-1α was associated with its expression in head
and neck squamous carcinoma, lung, and pancreatic cancer
cells (33, 64, 66, 67). Similar to Snail, Slug was also suggested
to contain HRE in its promoter for direct interaction between

HIF-1α and Slug (75). SIP1 activation, together with Snail
activation and E-cadherin repression, were found to be HIF-1α-
mediated in VHL−/− renal clear-cell carcinoma cell line (65). The
reintroduction of wild-type VHL could suppress SIP1 and Snail
but not Slug, and removed the suppression of E-cadherin (65).

HIF-1α could bind directly to the proximal promoter of ZEB1
via HRE in colorectal cancer cells (68). Additionally, this research
group demonstrated the importance of ZEB1 in HIF-1α induced
metastasis with higher percentage of HIF-1α and ZEB1 positive
staining and lower percentage of E-cadherin positive staining
in patients’ metastatic lymph nodes compared with primary
colorectal cancer tissues (68). The influence of HIF-1α on ZEB1
was also evaluated among bladder cancer (69), glioblastoma
(70) and pancreatic cancer cells (67, 71). Joseph et al. (70) has
evaluated HIF-1α but not HIF-2α up-regulated ZEB1 under
hypoxia in glioblastoma cells.

HIF-1α may also act on some EMT transcription factors
indirectly through FoxM1 signaling pathway in prostate cancer
cell lines (76) and through PAFAH1B2 gene in pancreatic
cancer (77). HIF-1α also facilitated the regulatory loop with
integrin-linked kinase (ILK) to promote epithelial-mesenchymal
transition in breast and prostate cancer cell lines (78). In the
view of previous research findings, it is clear that HIF-1α takes
important roles in hypoxia-induced EMT through promoting
wide range of EMT transcription factors through multiple
signaling pathways in various cancer types.Whereas, for HIF-2α-
mediated EMT, researches in this area remained scarce. Notably,
HIF-2α could also activate EMT transcription factors including
TWIST2 in lung and pancreatic cancer cells and WDR5 for
promoting mesenchymal gene expression (72, 79, 80). As HIF-2α
has longer activation period at higher oxygen level than HIF-
1α, it could be an important mediator of EMT induction at
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TABLE 1 | HIF-1α-EMT transcription factors association studies in different

cancer types.

EMT transcription factor Cancer type (cell line, samples

studied)

References

TWIST Hypopharyngeal cancer (FaDu)

Breast cancer (MCF-7)

(63)

Ovarian epithelial cancer (Clinical

samples)

(26)

Snail Hepatocellular carcinoma (HepG2

and SMMC-7721)

(34)

Lung adenocarcinoma (A549) (64)

Renal clear-cell carcinoma (786-O) (65)

Slug Head and neck squamous cell

carcinoma (UM-SCC1, UM-SCC23,

Clinical samples)

(33)

Lung adenocarcinoma (A549) (64)

Prostate cancer (LNCaP) (66)

Pancreatic ductal adenocarcinoma

(AsPC-1, BxPc-3, Capan-1, Capan-2

and MIA-PaCa2)

(67)

SIP1 Renal clear-cell carcinoma (786-O) (65)

ZEB1 Pancreatic ductal adenocarcinoma

(AsPC-1, BxPc-3, Capan-1, Capan-2

and MIA-PaCa2)

(67)

Colorectal cancer (HT-29 and

HCT-116)

(68)

Bladder cancer (T24-P, T24-L, Clinical

samples)

(69)

Glioblastoma (SNB78 and U87) (70)

Pancreatic cancer (PANC-1 and

SW-1990)

(71)

milder hypoxia and thus further studies of HIF-2α-mediated
EMT are warranted.

HYPOXIA-INDUCED NON-HIF EMT
PATHWAYS

In addition to HIF pathways, other signaling pathways involved
in hypoxia may have distinctive characters in inducing EMT
[Summarized in Figure 2; (12, 81–85)].

AMPK
Hypoxia can cause up-regulation of AMP-activated protein
kinase (AMPK) as adenosine monophosphate (AMP)/adenosine
triphosphate (ATP), or adenosine diphosphate (ADP)/ATP
ratios are increased in physiological stresses. AMPK regulates
cancer progression, lipid synthesis and oxidation, DNA repair
and autophagy (86). Traditionally, AMPK was considered as
a metabolic tumor suppressor for tumor cell survival under
nutrient depletion (87). However, in the context of AMPK-
mediated EMT, contradictive results have been reported. Saxena
et al. (88) claimed that AMPK activation by AMPK activator
A769662 could increase the expression and nuclear localization
of TWIST1 and thus promote EMT induction in breast cancer,
melanoma and lung adenocarcinoma cell lines. On the contrary,

Chou et al. (89) showed that AMPK activation by another
AMPK activator OSU-53 could suppress EMT by modulating
the Akt-MDM2-Foxo3 signaling axis. The silencing of AMPK
could abrogate the reverse of the mesenchymal phenotype
among breast and prostate cancer cell lines. Other researches
demonstrated that AMPK could suppress EMT of pancreatic
cancer and hepatocellular carcinoma cells (90–92). In the
previous researches, specific AMPK activators or inhibitors
were used to evaluate AMPK-mediated EMT. The results are
controversial, hence, further researches on the character of
AMPK in hypoxia-induced EMT are needed.

PI3K-Akt-mTOR
PI3K-Akt-mTOR is commonly activated in cancer cells. It has
important roles in cell proliferation, nutrient uptake, anabolic
reactions, and autophagy (93, 94). This pathway can also be
activated by hypoxia and interacts with HIF-1α in different
cell types (9, 95–97). PI3K-Akt-mTOR has been considered as
a mediator of TGF-β signaling through non-SMAD pathway.
TGF-β may activate PI3K directly or by activation of epidermal
growth factor (EGF) and platelet-derived growth factor (PDGF)
receptors in various cell types (12). The mutations in PIK3CA
or loss of PTEN is associated with colorectal cancer progression
through activation of PI3K-Akt pathway with Akt signaling
found to up-regulate Snail and Slug (98). Similar Akt-Snail
activation for EMT induction was also found among tongue
squamous cell carcinoma cell lines (99). Inhibition of Akt could
reverse EMT by restoring E-cadherin in oral squamous cell
carcinoma cells (100). In addition, Akt activates both mTORC1
and mTORC2, which are found to induce EMT, motility and
metastasis of colorectal cancer by RhoA and Rac1 signaling
(101). PI3K-Akt-mTOR could also influence HIF-1α activation as
mTOR is an upstream mediator of HIF-1α (97). mTOR regulates
translation via phosphorylation of 4E-BP1, which in turn inhibits
interaction of eIF4E with translation initiation complex and
results in mRNA translation activation and facilitate HIF-1α
protein synthesis (102). Although there are plenty of researches
demonstrating PI3K-Akt-mTOR mediated EMT, there are no
research published to date concerning the hypoxia-driven PI3K-
Akt-mTOR in EMT induction.

MAPKs
MAPKs are evolutionarily conserved kinases for controlling
fundamental cellular processes such as cell differentiation,
growth, proliferation, apoptosis, autophagy and migration (94,
103). Mainly, three MAPKs extracellular signal-regulated kinase
(ERK), c-Jun N-terminal kinase (JNK) and p38 MAPK are
hypoxia-related and involved in EMT induction through non-
SMAD TGF-β signaling (9, 12, 84, 104). MAPK signaling
also plays a role in HIF α-subunit nuclear accumulation
and transcriptional activity (102). For ERK pathway, the
ERK-associated oncogene RAS overexpression promotes EMT
through CyclinD1 and E-cadherin regulation (105). The
disruption of ERK1 and ERK2 activation could prevent the
delocalization of E-cadherin (104). ERK2 could also regulate
EMT by DOCK10-dependent Rac1/FoxO1 signaling (106). For
the studies on ERK influence in EMT transcription factors, Slug
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FIGURE 2 | Hypoxia-induced Non-HIF EMT pathways. Apart from HIF-1α, there are several potential hypoxia-induced pathways for EMT induction.

is a target of RAS pathway among colorectal cancer cell lines
with mutant RAS (107). While ZEB1, but not Snail nor Slug,
was reported to be the target of ERK for EMT induction in lung
cancer cell lines (108). Demonstration of ERK-mediated EMT
was also found in pancreatic and prostate cancer cell lines (109,
110). Moreover, FGFR3 andWISP1 overexpression in melanoma
could also promote ERK-mediated EMT (111, 112). ERK1 and
ERK2, together with other MAPKs JNK and p38 MAPK, were
found to stabilize the phosphorylation site of TWIST1 for EMT
induction in breast cancer cells (113).

JNK and p38 MAPK mediations of EMT start with the E3
ligase member TRAF6, which in turn activates TGF-βRI for EMT
induction (12). In earlier studies, JNK phosphorylation is found
to mediate TGF-β1-induced EMT by promoting fibronectin and
vimentin synthesis in fibroblasts and keratinocytes (114–116).
Additionally, JNK activation of the proliferating cell nuclear
antigen (PCNA) andDNAmethyltransferase 1 associated protein
1 (DMAP1) domains of DNA methyltransferase 1 (DNMT1) can
directly interact with Snail and suppress E-cadherin in colorectal
cancer, glioma, and nasopharyngeal carcinoma cell lines (117–
119). Furthermore, JNK may be associated with Snail and
TWIST1 via c-Jun in multi-drug resistant epidermoid carcinoma
and as a downstream effector of Akt in gastric cancer cells (120,
121). Other researches also associated JNK with EMT induction
in colorectal cancer (122) and non-small cell lung cancer cells
(123). Whereas, for p38 MAPK-mediated EMT, Lin et al. (124)
evaluated that p38 MAPK regulated p38 interacting protein
(p38IP) and Snail in head and neck squamous cell carcinoma.
Another study revealed that p38 MAPK participated in TGF-β
induced EMT in glioma cells (125).

To date, there was only one published report on the
participation of MAPKs in hypoxia-induced EMT despite
MAPKs were found to be important EMT regulators from the
view of previous researches. Tam et al. (126) demonstrated
that JNK pathway mediates EMT and stemness maintenance of
colorectal cancer cells under low oxygen level including hypoxia
(1%) and blood oxygen level (10%). This was the first report
that showed even the seemingly non-hypoxic 10% oxygen level
could affect EMT progression in cancer as that in the traditional
hypoxic oxygen level (1–2%). Therefore, MAPK signaling could
be an important regulator for hypoxia-induced EMT.

NF-κB
Nuclear factor κ-light-chain-enhancer of activated B cells
(NF-κB) presents in almost all animal cell types and involves
in inflammation, immunity, cell proliferation, apoptosis,
angiogenesis, tumor metabolism, metastasis, and EMT (127).
It can be activated by various stimuli including cytokines,
growth factors, radiation, DNA damage and hypoxia (127).
NF-κB mediates EMT by cooperating with Ras and TGF-β in
breast cancer cells (128). NF-κB was also associated with ezrin
and EGF-induced EMT and promoted metastasis in colorectal
cancer cells (129). For NF-κB influence on EMT transcription
factors, it could directly promote Slug, SIP1, and TWIST1 in
breast cancer cells (130). While for the study of hypoxia-induced
NF-κB mediated EMT, Cheng et al. (131) concluded that
HIF-1α-activated NF-κB could promote EMT in pancreatic
cancer cells by inhibiting E-cadherin and promoting N-cadherin.
TWIST was promoted by NF-κB but no significant changes of
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Snail, ZEB1 or ZEB2 were found. Whereas, Kara et al. (132)
demonstrated TNF-α-NF-κB axis together with PI3K-Akt axis,
contributed to HIF-1α-mediated EMT induction. Therefore,
close relationships between NF-κB and HIF-1α may exist in
hypoxia-induced EMT.

Notch
Notch signaling is an evolutionarily conserved pathway which
regulates cell differentiation, proliferation and death in all
metazoans (133). Notch also involves in tumorigenesis and
EMT by the interaction with Delta/Serrate/Lag-2 (DSL) ligands,
which subsequently causes a proteolytic cleavage of the Notch
receptor protein at the S2 cleavage site with involvement of
ADAM10 or ADAM17 (134). Then the second g-secretase-
mediated cleavage of the residual part of the Notch protein
resulted in the release of the Notch intracellular domain (ICD),
which can then directly activate EMT signaling genes (12).
For the character of Notch in hypoxia, Notch signaling is
important for maintenance of undifferentiated cell state and
its intracellular domain cooperates with HIF-1α (135). Notch
can directly induce Slug, but not Snail and TWIST1, in breast
cancer cell lines (136, 137). However, another study of prostate
cancer cells found Notch1 was associated with Snail and ZEB1
(138). Notch can also induce HIF-1α, NF-κB, and miR-200 for
EMT induction in various cancer cell lines (139–141). Studies
on Notch-mediated hypoxia-induced EMT mainly concentrated
on breast cancer cells, which showed Notch worked closely with
HIF-1α in hypoxia-induced EMT and the inhibition of Notch
could effectively block EMT induction (142, 143). Notch target
genes including HES1 and HEY1 were increased by hypoxia and
both HIF-1α and HIF-2α synergized with the Notch co-activator
MAML1 in promoting Notch activity among breast cancer cells
(143). In addition, another study also showed Notch participated
in hypoxia-induced EMT in colon cancer, ovarian cancer and
glioblastoma with regulation of Snail and HIF-1α (139). Thus,
similar to NF-κB, Notch potentiates HIF-1α-induced EMT in
hypoxic conditions.

FUTURE PERSPECTIVES

Hypoxia has been conclusively established as amajor promoter of
EMT. Among various hypoxia-related EMT signaling pathways,
HIF-1α is an important mediator of hypoxia-induced EMT
in various cancer types. Since HIF-1α is a poor prognosis
indicator which also promotes other adverse treatment outcomes,
such as chemo and radioresistance, targeting HIF-1α shall

increase treatment efficacy and limit metastasis in cancers
(144). Inhibiting HIF-1α in different cancer types have found
to effectively limit metastasis in both in vitro and in vivo
experiments (145). However, there is a lack of selective HIF-1
inhibitors and clinical trials in this area (145). Thus, the clinical
potential of this treatment strategy is yet to be revealed. While for
other potential pathways for hypoxia-induced EMT, researches
on the characters of these pathways in hypoxic conditions are
limited especially for PI3K-Akt-mTOR and MAPKs. Since they
have proven roles in mediating EMT induction, exploration of
their roles in hypoxia-induced EMT shall provide a better picture
for hypoxia-induced EMT. They may be activated in different
time period and oxygen tension when compared with HIF-1α.
This will be essential for better understanding of metastasis
mechanism as metastasis involves complex procedures with
tumor cells experiencing different oxygen levels from hypoxia
in primary tumor site to blood oxygen level in bloodstream (9).
Furthermore, potential therapeutic strategies involving multiple
EMT effector inhibitions may effectively inhibit EMT at a wider
range of oxygen level, which might reduce tumor metastasis and
improve treatment outcome.

CONCLUSION

In sum, hypoxia-induced EMT has been established as important
route for EMT induction and metastasis in wide range of
cancer types in vitro and in vivo. HIF-1α has proved to be
the major mediator of hypoxia-induced EMT. In addition,
there are other potential pathways involved in hypoxia-induced
EMT which may provide clues for controlling hypoxia-induced
EMT by developing new anti-metastatic methods and improving
prognosis of cancers.
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